Metric homogeneous structures

J. Melleray

Institut Camille Jordan (Université de Lyon)

Workshop on Homogeneous structures
HIM, Bonn, October 31 2013
I. Background
A **Polish group** is a topological group whose topology is induced by a complete separable metric.
A **Polish group** is a topological group whose topology is induced by a complete separable metric.

Example

The permutation group of the integers, denoted by S_∞. If $\sigma, \tau \in S_\infty$, let $d(\sigma, \tau) = \inf\{2^{-n}: \sigma|_n = \tau|_n\}$. This metric is left-invariant but not complete; the following metric is complete, but not left-invariant:

$$d'(\sigma, \tau) = d(\sigma, \tau) + d(\sigma^{-1}, \tau^{-1}).$$
A Polish group is a topological group whose topology is induced by a complete separable metric.

Example

The permutation group of the integers, denoted by S_∞. If $\sigma, \tau \in S_\infty$, let $d(\sigma, \tau) = \inf \left\{ 2^{-n} : \sigma|_n = \tau|_n \right\}$.

This metric is left-invariant but not complete; the following metric is complete, but not left-invariant:

$$d'(\sigma, \tau) = d(\sigma, \tau) + d(\sigma^{-1}, \tau^{-1}).$$

Any closed subgroup of S_∞ is a Polish group.
Observation
The automorphism group of a first-order countable structure is a closed subgroup of \(S_\infty \): identify an automorphism with the permutation that it induces on the universe of the structure.
Observation
The automorphism group of a first-order countable structure is a closed subgroup of S_∞: identify an automorphism with the permutation that it induces on the universe of the structure.

Theorem (Folklore)
Let G be a closed subgroup of S_∞. Then there exists a homogeneous countable relational structure M such that G is isomorphic (as a topological group) to $\text{Aut}(M)$.

“Homogeneous” means that any isomorphism between finitely-generated substructures extends to an automorphism of the whole structure.
Observation
Not every Polish group is (topologically, or even abstractly) isomorphic to a subgroup of S_∞.

J. Melleray
Metric homogeneous structures
Observation
Not every Polish group is (topologically, or even abstractly) isomorphic to a subgroup of S_∞.

Definition
In this talk, a metric structure \mathcal{M} is a family $(M, d, (P_i)_{i \in I}, (K_i)_{i \in I}, (f_j)_{j \in J}, (L_j)_{j \in J})$ where:

- (M, d) is a complete metric space.
- Each P_i is a K_i-Lipschitz map from some M_{n_i}, endowed with the sup-metric, to \mathbb{R}.
- Each f_j is an L_j-Lipschitz map from some M_{m_j} to M.

M is Polish if (M, d) is a Polish metric space.
Observation
Not every Polish group is (topologically, or even abstractly) isomorphic to a subgroup of S_∞.

Definition
In this talk, a metric structure \mathcal{M} is a family $(M, d, (P_i)_{i \in I}, (K_i)_{i \in I}, (f_j)_{j \in J}, (L_j)_{j \in J})$ where:
- (M, d) is a complete metric space.
Observation
Not every Polish group is (topologically, or even abstractly) isomorphic to a subgroup of S_∞.

Definition
In this talk, a metric structure \mathcal{M} is a family $(M, d, (P_i)_{i \in I}, (K_i)_{i \in I}, (f_j)_{j \in J}, (L_j)_{j \in J})$ where:
- (M, d) is a complete metric space.
- each P_i is a K_i-Lipschitz map from some M^{n_i}, endowed with the sup-metric, to \mathbb{R}.

J. Melleray
Metric homogeneous structures
Observation
Not every Polish group is (topologically, or even abstractly) isomorphic to a subgroup of S_∞.

Definition
In this talk, a metric structure \mathcal{M} is a family $(M, d, (P_i)_{i \in I}, (K_i)_{i \in I}, (f_j)_{j \in J}, (L_j)_{j \in J})$ where:

- (M, d) is a complete metric space.
- each P_i is a K_i-Lipschitz map from some M^{n_i}, endowed with the sup-metric, to \mathbb{R}.
- Each f_j is an L_j-Lipschitz map from some M^{m_j} to M.
Observation
Not every Polish group is (topologically, or even abstractly) isomorphic to a subgroup of S_∞.

Definition
In this talk, a metric structure \mathcal{M} is a family $(M, d, (P_i)_{i \in I}, (K_i)_{i \in I}, (f_j)_{j \in J}, (L_j)_{j \in J})$ where:

- (M, d) is a complete metric space.
- each P_i is a K_i-Lipschitz map from some M^{n_i}, endowed with the sup-metric, to \mathbb{R}.
- Each f_j is an L_j-Lipschitz map from some M^{m_j} to M.

\mathcal{M} is Polish if (M, d) is a Polish metric space.
Examples of Polish metric structures

Any first-order countable relational structure (endowed with the discrete metric), any Polish metric space. More interesting examples: a separable Hilbert space, the measure algebra of a standard probability space, the Urysohn space, the Gurarij space...
Examples of Polish metric structures

Any first-order countable relational structure (endowed with the discrete metric), any Polish metric space. More interesting examples: a separable Hilbert space, the measure algebra of a standard probability space, the Urysohn space, the Gurarij space...

It is interesting to try and transfer known concepts and techniques of the model theory of countable structures to the context of Polish metric structures.
Observation

- If \mathcal{M} is a Polish metric structure, its automorphism group $\text{Aut}(\mathcal{M})$, endowed with the pointwise convergence topology, is a Polish group.
Observation

- If \mathcal{M} is a Polish metric structure, its automorphism group $\text{Aut}(\mathcal{M})$, endowed with the pointwise convergence topology, is a Polish group.
- Conversely, for any Polish group G there exists a homogeneous relational Polish metric structure \mathcal{M} such that G is isomorphic (as a topological group) to $\text{Aut}(\mathcal{M})$.

Examples: the Urysohn space, the separable Hilbert space, the Gurarij space (where ε's are really needed)...
Observation

• If \mathcal{M} is a Polish metric structure, its automorphism group $\text{Aut}(\mathcal{M})$, endowed with the pointwise convergence topology, is a Polish group.

• Conversely, for any Polish group G there exists a \textbf{homogeneous} relational Polish metric structure \mathcal{M} such that G is isomorphic (as a topological group) to $\text{Aut}(\mathcal{M})$.

Now “homogeneous ” means that, if \bar{a}, \bar{b} are such that the substructures of \mathcal{M} generated by \bar{a}, \bar{b} are isomorphic via an isomorphism sending \bar{a} to \bar{b}, then for any $\varepsilon > 0$ there exists $g \in \text{Aut}(\mathcal{M})$ such that $d(g(\bar{a}), \bar{b}) < \varepsilon$.
Observation

- If \mathcal{M} is a Polish metric structure, its automorphism group $\text{Aut}(\mathcal{M})$, endowed with the pointwise convergence topology, is a Polish group.
- Conversely, for any Polish group G there exists a homogeneous relational Polish metric structure \mathcal{M} such that G is isomorphic (as a topological group) to $\text{Aut}(\mathcal{M})$.

Now “homogeneous” means that, if \bar{a}, \bar{b} are such that the substructures of \mathcal{M} generated by \bar{a}, \bar{b} are isomorphic via an isomorphism sending \bar{a} to \bar{b}, then for any $\varepsilon > 0$ there exists $g \in \text{Aut}(\mathcal{M})$ such that $d(g(\bar{a}), \bar{b}) < \varepsilon$.

Examples: the Urysohn space, the separable Hilbert space, the Gurarij space (where ε’s are really needed)…
II. Ample generics
Definition (Hodges–Hodkinson–Lascar–Shelah)
Let a Polish group G act on itself by conjugacy, and then let G act on G^n by the diagonal product of this action. Then G has **ample generics** if for any n there is a comeager orbit in G^n.

Theorem (Kechris–Rosendal)
Let G be a Polish group with ample generics, and H a separable topological group. Then any homomorphism from G to H is necessarily continuous.

Question
Does there exist a Polish group which has ample generics and is not isomorphic to a closed subgroup of S_∞?
Definition (Hodges–Hodkinson–Lascar–Shelah)
Let a Polish group G act on itself by conjugacy, and then let G act on G^n by the diagonal product of this action. Then G has **ample generics** if for any n there is a comeager orbit in G^n.

Theorem (Kechris–Rosendal)
Let G be a Polish group with ample generics, and H a separable topological group. Then any homomorphism from G to H is necessarily continuous.
Definition (Hodges–Hodkinson–Lascar–Shelah)
Let a Polish group G act on itself by conjugacy, and then let G act on G^n by the diagonal product of this action. Then G has ample generics if for any n there is a comeager orbit in G^n.

Theorem (Kechris–Rosendal)
Let G be a Polish group with ample generics, and H a separable topological group. Then any homomorphism from G to H is necessarily continuous.

Question
Does there exist a Polish group which has ample generics and is not isomorphic to a closed subgroup of S_∞?
One may endow the automorphism group of a metric structure with two different topologies: pointwise convergence and uniform convergence.
One may endow the automorphism group of a metric structure with two different topologies: pointwise convergence and uniform convergence.

Definition

A Polish topometric group is a triple \((G, \tau, \partial)\) such that

1. \((G, \tau)\) is a Polish group.
2. \(\partial\) is a bi-invariant metric on \(G\) that refines \(\tau\).
3. Each set \(\{ (g, h) : \partial(g, h) \leq r \}\) is closed in \(G^2\). (i.e. \(\partial\) is \(\tau\)-lower semicontinuous)

(Under these conditions, \(\partial\) must be complete, though that will not play a major role in this talk)
One may endow the automorphism group of a metric structure with two different topologies: pointwise convergence and uniform convergence.

Definition
A *Polish topometric group* is a triple \((G, \tau, \partial)\) such that
- \((G, \tau)\) is a Polish group.
- \(\partial\) is a bi-invariant metric on \(G\) that refines \(\tau\).
- Each set \(\{(g, h) : \partial(g, h) \leq r\}\) is closed in \(G^2\). (i.e. \(\partial\) is \(\tau\)-lower semicontinuous)

(Under these conditions, \(\partial\) must be complete, though that will not play a major role in this talk)
One may endow the automorphism group of a metric structure with two different topologies: *pointwise convergence* and *uniform convergence*.

Definition

A **Polish topometric group** is a triple \((G, \tau, \partial)\) such that

- \((G, \tau)\) is a Polish group.
- \(\partial\) is a bi-invariant metric on \(G\) that refines \(\tau\).
- Each set \(\{(g, h): \partial(g, h) \leq r\}\) is closed in \(G^2\). (i.e. \(\partial\) is \(\tau\)-lower semicontinuous)

(Under these conditions, \(\partial\) must be complete, though that will not play a major role in this talk)
Examples of Polish topometric groups

- Any Polish group, endowed with the discrete metric.
Examples of Polish topometric groups

- Any Polish group, endowed with the discrete metric.
- The isometry group of any separable Banach space, endowed with the topology of pointwise convergence and the metric induced by the operator norm. Of particular interest to us: the isometry group of a separable Hilbert space.
Examples of Polish topometric groups

- Any Polish group, endowed with the discrete metric.
- The isometry group of any separable Banach space, endowed with the topology of pointwise convergence and the metric induced by the operator norm. Of particular interest to us: the isometry group of a separable Hilbert space.
- The automorphism group of a standard probability space (X, μ), endowed with
 - The **weak topology**, induced by the maps
 \[g \mapsto \mu(g(A) \Delta A); \]
 - The **uniform metric**, defined e.g. by the formula
 \[\partial(g, h) = \mu(\{ x : g(x) \neq h(x) \}). \]
Observation
Given a Polish group \((G, \tau)\), there exists a coarsest uniformity generated by bi-invariant entourages which refines the left uniformity on \(G\); this uniformity is induced by a bi-invariant metric \(\partial_u\) and \((G, \tau, \partial_u)\) is a Polish topometric group.
Observation
Given a Polish group \((G, \tau)\), there exists a coarsest uniformity generated by bi-invariant entourages which refines the left uniformity on \(G\); this uniformity is induced by a bi-invariant metric \(\partial_u\) and \((G, \tau, \partial_u)\) is a Polish topometric group.

If \(d\) is a left-invariant distance compatible with the topology of \(G\), then one can set

\[
\partial_u(g, h) = \sup_{k \in G} d(gk, hk).
\]
Definition
Let \((G, \tau, \partial)\) be a Polish topometric group. Define

\[(A)_{<\varepsilon} = \{ g \in G : \exists a \in A \: \partial(g, a) < \varepsilon \}\]

Analysis will usually enable us only to speak of \((A)_{<\varepsilon}\) for arbitrarily small \(\varepsilon > 0\) - controlling \(\overline{A}^\partial\) rather than \(A\).
Definition (Ben Yaacov–Berenstein–M.)

Let \((G, \tau, \partial)\) be a Polish topometric group, and let \(G\) act on \(G^n\) by diagonal conjugacy (denoted by \(\ast\)). \(G\) has **ample metric generics** if for any \(n\) and any \(\varepsilon > 0\) there exists \(\bar{g} \in G^n\) such that \(\langle G \ast \bar{g} \rangle_{<\varepsilon}\) is comeagre.

Equivalently: for any \(n\) there exists (a comeagre set of) \(\bar{g} \in G^n\) such that \(G \ast \bar{g} \partial\) is \(\tau\)-comeagre.

Definition

A Polish group \((G, \tau)\) has ample metric generics if \((G, \tau, \partial_u)\) has ample generics.
Definition (Ben Yaacov–Berenstein–M.)

Let (G, τ, ∂) be a Polish topometric group, and let G act on G^n by diagonal conjugacy (denoted by \ast).

G has **ample metric generics** if for any n and any $\varepsilon > 0$ there exists $\bar{g} \in G^n$ such that $(G \ast \bar{g})_{<\varepsilon}$ is comeagre.

Equivalently: for any n there exists (a comeagre set of) $\bar{g} \in G^n$ such that $G \ast \bar{g}^\partial$ is τ-comeagre.
Definition (Ben Yaacov–Berenstein–M.)

Let \((G, \tau, \partial)\) be a Polish topometric group, and let \(G\) act on \(G^n\) by diagonal conjugacy (denoted by \(*\)).

\(G\) has **ample metric generics** if for any \(n\) and any \(\varepsilon > 0\) there exists \(\bar{g} \in G^n\) such that \((G * \bar{g}) < \varepsilon\) is comeagre.

Equivalently: for any \(n\) there exists (a comeagre set of) \(\bar{g} \in G^n\) such that \(G * \bar{g}^\partial\) is \(\tau\)-comeagre.

Definition

A Polish group \((G, \tau)\) has **ample metric generics** if \((G, \tau, \partial_u)\) has ample generics.
Examples (Ben Yaacov–Berenstein–M.)

The unitary group of a separable Hilbert space, the automorphism group of a standard atomless probability space and the isometry group of the Urysohn space have ample metric generics (and conjugacy classes are known to be meager in these groups).
Examples (Ben Yaacov–Berenstein–M.)

The unitary group of a separable Hilbert space, the automorphism group of a standard atomless probability space and the isometry group of the Urysohn space have ample metric generics (and conjugacy classes are known to be meager in these groups).

Theorem (Ben Yaacov–Berenstein-M.)

Let \((G, \tau, \partial)\) be a Polish topometric group with ample metric generics, and \(H\) be a second-countable topological group. Assume that \(\varphi: G \to H\) is a homomorphism that is continuous from \((G, \partial)\) to \(H\). Then \(\varphi\) is continuous from \((G, \tau)\) to \(H\).
Theorem (Ben Yaacov–Berenstein-M)
Let \((X, \mu)\) be a standard atomless probability space. Then \(\text{Aut}(X, \mu)\) has the automatic continuity property.

Theorem (Tsankov)
Let \(H\) be a separable Hilbert space. Then the unitary group \(U(H)\) has the automatic continuity property. (This uses our approach via the uniform metric but additional work is required)

Philosophy: the existence of ample metric generics is used to reduce a question about \(\tau\) to a formally easier question about \(\partial u\).
Theorem (Ben Yaacov–Berenstein-M)

Let (X, μ) be a standard atomless probability space. Then $\text{Aut}(X, \mu)$ has the automatic continuity property.

Theorem (Tsankov)

Let \mathcal{H} be a separable Hilbert space. Then the unitary group $U(\mathcal{H})$ has the automatic continuity property.

(This uses our approach via the uniform metric but additional work is required)
Theorem (Ben Yaacov–Berenstein-M)
Let (X, μ) be a standard atomless probability space. Then $\text{Aut}(X, \mu)$ has the automatic continuity property.

Theorem (Tsankov)
Let \mathcal{H} be a separable Hilbert space. Then the unitary group $U(\mathcal{H})$ has the automatic continuity property.
(This uses our approach via the uniform metric but additional work is required)

Philosophy: the existence of ample metric generics is used to reduce a question about τ to a formally easier question about ∂_u.
The existence of groups having ample metric generics without ample generics is somewhat counterintuitive: the existence of a dense diagonal conjugacy class in G^2, and the bi-invariance of ∂_u, imply that ∂_u is constant outside of a meager set. So one extends a meager set by taking its closure for an almost discrete metric, and one ends up with a comeager set...
The existence of groups having ample metric generics without ample generics is somewhat counterintuitive: the existence of a dense diagonal conjugacy class in G^2, and the bi-invariance of ∂_u, imply that ∂_u is constant outside of a meager set. So one extends a meager set by taking its closure for an almost discrete metric, and one ends up with a comeager set...

We would then like to understand better how the metric and topology interact.
Question
Assume \((G, \tau, \partial)\) is a Polish topometric group, and \(A\) is comeager in some open set \(O\). Must \((A)_<r\) be comeager in \((O)_<r\) for \(r > 0\)?
Question
Assume \((G, \tau, \partial)\) is a Polish topometric group, and \(A\) is comeager in some open set \(O\). Must \((A)_r\) be comeager in \((O)_r\) for \(r > 0\)?

Question
Does there exist a topometric version of Effros’ theorem characterizing elements with a comeager orbit under some continuous action of a Polish group?
III. Gray sets
(from now on everything is joint work with Itaï Ben Yaacov)
Convention: In the rest of this talk \((X, \tau, \partial)\) always stands for a Polish topometric space; this means that the following conditions are satisfied:

- \((X, \tau)\) is Polish.
- \(\partial\) refines \(\tau\) and is \(\tau\)-lower semicontinuous.
Convention: In the rest of this talk \((X, \tau, \partial)\) always stands for a Polish topometric space; this means that the following conditions are satisfied:

- \((X, \tau)\) is Polish.
- \(\partial\) refines \(\tau\) and is \(\tau\)-lower semicontinuous.

When moving to ample generics in the context of Polish topometric groups, what really matters in not the element \(g\) but the distance function \(\partial(g, \cdot)\).
Definition
A gray subset of X is a function from X to $[0, +\infty]$.
Definition
A gray subset of X is a function from X to $[0, +\infty]$.

Examples

• If $A \subseteq X$, its zero-indicator function 0_A is defined by

$$0_A(x) = \begin{cases} 0 & \text{if } x \in A \\ +\infty & \text{if } x \notin A \end{cases}$$
Definition
A gray subset of X is a function from X to $[0, +\infty]$.

Examples

- If $A \subseteq X$, its zero-indicator function 0_A is defined by

 $$0_A(x) = \begin{cases}
 0 & \text{if } x \in A \\
 +\infty & \text{if } x \notin A
 \end{cases}$$

- $\partial : X^2 \to [0, +\infty]$ is a gray subset of X^2.

Definition
A gray subset of X is a function from X to $[0, +\infty]$.

Examples

- If $A \subseteq X$, its zero-indicator function 0_A is defined by
 \[
 0_A(x) = \begin{cases}
 0 & \text{if } x \in A \\
 +\infty & \text{if } x \not\in A
 \end{cases}
 \]

- $\partial : X^2 \rightarrow [0, +\infty]$ is a gray subset of X^2.

We write $A \sqsubseteq X$ to mean that A is a gray subset of X; $A \sqsubseteq B$ means that $A(x) \geq B(x)$ for all x, accordingly $A \sqcup B$ denotes $\min(A, B)$, $A \sqcap B$ stands for $\max(A, B)$.

J. Melleray
Metric homogeneous structures
Definition

- $A \subseteq X$ is open if $A : X \to [0, +\infty]$ is upper semi-continuous.
- $A \subseteq X$ is closed if $A : X \to [0, +\infty]$ is lower semi-continuous.
Definition

• $A \subseteq X$ is open if $A: X \to [0, +\infty]$ is upper semi-continuous.
• $A \subseteq X$ is closed if $A: X \to [0, +\infty]$ is lower semi-continuous.

When applied to zero-indicator functions, this yields the usual definitions of open/closed sets. The axiom stating that ∂ is τ-lower semicontinuous may then be viewed as a separation axiom (stating that the diagonal is closed).
Definition

For $A \subseteq X$, the interior A° of A is the union of all gray subset of A - equivalently, this is the inf of all u.s.c functions greater than A, and one has the formula

$$\forall x \in X \quad A^\circ(x) = \limsup_{y \to x} A(y).$$
Definition

For $A \subseteq X$, the **interior** A° of A is the union of all gray subset of A - equivalently, this is the inf of all u.s.c functions greater than A, and one has the formula

$$\forall x \in X \quad A^\circ(x) = \limsup_{y \to x} A(y).$$

One can define similarly the closure of a gray set.
Definition

$A \subseteq X$ is meager if there exists $r > 0$ such that $\{x : A(x) \leq r\}$ is meager; A is comeager if $\{x : A(x) \leq r\}$ is comeager for all $r > 0$, equivalently, if $\{x : A(x) = 0\}$ is comeager.
Definition

A $\sqsubseteq X$ is meager if there exists $r > 0$ such that $\{x : A(x) \leq r\}$ is meager; A is comeager if $\{x : A(x) \leq r\}$ is comeager for all $r > 0$, equivalently, if $\{x : A(x) = 0\}$ is comeager.

Definition

We write $A \sqsubseteq^* B$ if $\{x : B(x) \leq A(x)\}$ is comeager. Then, as in usual descriptive set theory, one can define

$$U(A) = \bigsqcup \{U \sqsubseteq^o X : U \sqsubseteq^* A\}$$

It is always the case that $U(A) \sqsubseteq^* A$.
Then, one wants to say that $A \subseteq X$ is Baire-measurable if $A =^* U(A)$, equivalently, if $A \subseteq^* U(A)$.
Then, one wants to say that $A \subseteq X$ is Baire-measurable if $A =^* U(A)$, equivalently, if $A \sqsubseteq^* U(A)$.

Of course, since we are dealing with functions from X to $[0, +\infty]$, there is a natural notion of Baire-measurability; both definitions are equivalent.
Then, one wants to say that $A \subseteq X$ is Baire-measurable if $A =^* U(A)$, equivalently, if $A \subseteq^* U(A)$.

Of course, since we are dealing with functions from X to $[0, +\infty]$, there is a natural notion of Baire-measurability; both definitions are equivalent.

One can go about developing an analogue of descriptive set theory in this context - defining G_δ gray sets, relative topological notions, stating (and proving) versions of the Baire category and Kuratowski–Ulam theorems for gray sets...
Definition

For $A \subseteq X$, denote by $(A)_\partial$ the largest 1-Lipschitz map smaller than A, namely $(A)_\partial(y) = \inf A(x) + \partial(x, y)$.
Definition
For $A \subseteq X$, denote by $(A)_{\partial}$ the largest 1-Lipschitz map smaller than A, namely $(A)_{\partial}(y) = \inf A(x) + \partial(x, y)$.

Theorem
Assume that, for any open O in X and $r > 0$, $(O)_{<r}$ is open in X (which is true if X is a Polish topometric group).

Corollary
Assume that X satisfies the above assumption, and A is 1-Lipschitz. Then $U(A)$ is also 1-Lipschitz.
Definition
For $A \subseteq X$, denote by $(A)_\partial$ the largest 1-Lipschitz map smaller than A, namely $(A)_\partial(y) = \inf A(x) + \partial(x, y)$.

Theorem
Assume that, for any open O in X and $r > 0$, $(O)_{<r}$ is open in X (which is true if X is a Polish topometric group). Then, whenever A is comeager in an open set O, $(A)_\partial$ is comeager in $(O)_\partial$, i.e. $(O)_\partial \sqsubseteq^* (A)_\partial$.
Definition
For $A \subseteq X$, denote by $(A)_\partial$ the largest 1-Lipschitz map smaller than A, namely $(A)_\partial(y) = \inf A(x) + \partial(x, y)$.

Theorem
Assume that, for any open O in X and $r > 0$, $(O)_{<r}$ is open in X (which is true if X is a Polish topometric group). Then, whenever A is comeager in an open set O, $(A)_\partial$ is comeager in $(O)_\partial$, i.e. $(O)_\partial \sqsubseteq^* (A)_\partial$.
In particular, if a subset A of X is comeager in an open subset O, then $(A)_{<r}$ is comeager in $(O)_{<r}$ for all r.

Corollary
Assume that X satisfies the above assumption, and A is 1-Lipschitz. Then $U(A)$ is also 1-Lipschitz.
Definition
For $A \subseteq X$, denote by $(A)_\partial$ the largest 1-Lipschitz map smaller than A, namely $(A)_\partial(y) = \inf A(x) + \partial(x, y)$.

Theorem
Assume that, for any open O in X and $r > 0$, $(O)_< r$ is open in X (which is true if X is a Polish topometric group).
Then, whenever A is comeager in an open set O, $(A)_\partial$ is comeager in $(O)_\partial$, i.e. $(O)_\partial \sqsubseteq^* (A)_\partial$.
In particular, if a subset A of X is comeager in an open subset O, then $(A)_< r$ is comeager in $(O)_< r$ for all r.

Corollary
Assume that X satisfies the above assumption, and A is 1-Lipschitz. Then $U(A)$ is also 1-Lipschitz.
Theorem (Effros)

Let G be a Polish group acting continuously on a Polish space X. Then $x \in X$ is generic iff $G \cdot x$ is dense and the map $g \mapsto g \cdot x$ is open (from G to $G \cdot x$).
Theorem (Effros)

Let G be a Polish group acting continuously on a Polish space X. Then $x \in X$ is generic iff $G \cdot x$ is dense and the map $g \mapsto g \cdot x$ is open (from G to $G \cdot x$).

When this holds, the orbit of x must be G_δ.
Theorem (Effros)

Let G be a Polish group acting continuously on a Polish space X. Then $x \in X$ is generic iff $G \cdot x$ is dense and the map $g \mapsto g \cdot x$ is open (from G to $G \cdot x$).

When this holds, the orbit of x must be G_δ.

What is the topometric extension of this theorem?
Theorem

Let G be a Polish group acting continuously on a Polish topometric space (X, τ, ∂). Assume that $(U)_r$ is open for any open U and $r > 0$.

Then $x \in X$ is a metric generic iff $G \cdot x$ is dense and the map $g \mapsto g \cdot x$ is metrically open (from G to $G \cdot x$), i.e.:

For any $\varepsilon > 0$, for any open $U \subseteq G$, $(U \cdot x)_\varepsilon$ is open in $G \cdot x$.

When this holds, $G \cdot x$ must be G_δ.
IV. Gray subgroups
From now on G is a topological group whose topology is induced by a complete metric. We are used to multiplying subsets of G:

$$A \cdot B = \{g \in G : \exists a \in A \exists b \in B \ ab = g\} .$$

One can also set $A^{-1} = \{a^{-1} : a \in A\}$.
From now on G is a topological group whose topology is induced by a complete metric. We are used to multiplying subsets of G:

$$A \cdot B = \{ g \in G : \exists a \in A \exists b \in B \ ab = g \} .$$

One can also set $A^{-1} = \{ a^{-1} : a \in A \}$.

Definition

Given $A, B \subseteq G$, define

$$A \ast B(g) = \inf_{xy=g} A(x) + B(y).$$

Also, $A^{-1}(g) = A(g^{-1})$.
We just extended the usual multiplication/inverse operations defined on subsets to gray subsets; basic tools of the descriptive set theory of Polish groups also adapt. An example:
We just extended the usual multiplication/inverse operations defined on subsets to gray subsets; basic tools of the descriptive set theory of Polish groups also adapt. An example:

Proposition ("Pettis lemma")

For any $A, B \subseteq G$, $U(A) \ast U(B) \subseteq A \ast B$.

In particular, if A is Baire-measurable and nonmeager, then $(A \ast A^{-1})^\circ(1) = 0$.
A subset H of G is a subgroup iff H is nonempty and $H \cdot H^{-1} \subseteq H$.

For gray subsets, the corresponding conditions become $\inf(H) = 0$ and $H \ast H^{-1} \subseteq H$; this is the same as:
A subset H of G is a subgroup iff H is nonempty and $H \cdot H^{-1} \subseteq H$.
For gray subsets, the corresponding conditions become $\inf(H) = 0$ and $H * H^{-1} \subseteq H$; this is the same as:

- $H(1) = 0$.
- $H = H^{-1}$.
- $\forall g, h \ H(gh) \leq H(g) + H(h)$.
A subset H of G is a subgroup iff H is nonempty and $H \cdot H^{-1} \subseteq H$.
For gray subsets, the corresponding conditions become $\inf(H) = 0$ and $H \star H^{-1} \subseteq H$; this is the same as:

- $H(1) = 0$.
- $H = H^{-1}$.
- $\forall g, h \ H(gh) \leq H(g) + H(h)$.

So subgroups correspond to seminorms or, equivalently, to left-invariant pseudometrics on G (via the correspondence $H(\cdot) \leftrightarrow d(1, \cdot)$).
Thus the gray analogue of a (closed) subgroup is a (lower semi-continuous) left-invariant pseudometric. This is reinforced by the following model-theoretic observation.
Thus the gray analogue of a (closed) subgroup is a (lower semi-continuous) left-invariant pseudometric. This is reinforced by the following model-theoretic observation.

Observation

Let \mathcal{M} be an \aleph_0-categorical Polish structure, and $H \subseteq Aut(\mathcal{M})$ be an open real-valued gray subgroup. Then there exists an imaginary $a \in M^{eq}$ such that $H(g) = d(a, g(a))$.
What does the small index property become in the topometric context? Subgroups become left-invariant pseudometrics; index then should translate to density character of the corresponding quotient space.
What does the small index property become in the topometric context? Subgroups become left-invariant pseudometrics; index then should translate to density character of the corresponding quotient space.

Definition
A Polish topometric group \((G, \tau, \partial) \) has the **small density property** if any \(\partial \)-Baire measurable left-invariant pseudometric of density character \(< 2^{\aleph_0} \) is open.
What does the small index property become in the topometric context? Subgroups become left-invariant pseudometrics; index then should translate to density character of the corresponding quotient space.

Definition

A Polish topometric group \((G, \tau, \partial)\) has the small density property if any \(\partial\)-Baire measurable left-invariant pseudometric of density character \(< 2^{\aleph_0}\) is open.

The Baire-measurability above simply comes from the fact that we should impose some mild definability assumption - otherwise the uniform metric \(\partial\) plays no part in the definition.
Theorem (Ben Yaacov–M.)
Any Polish topometric group with ample generics has the small density property.
Theorem (Ben Yaacov–M.)
Any Polish topometric group with ample generics has the small density property.
This is essentially a reformulation of the automatic continuity theorem we saw earlier in the talk - but the approach via gray sets makes the proof more transparent.
Thank you for your attention!