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Topics

1) On the definition of spaces with Ricci curvature bounded from
below

2) Analytic properties of RCD∗(K ,N) spaces

3) Geometric properties of RCD∗(K ,N) spaces

4) More on the differential structure of metric measure spaces



Quoting the first sentence of Cheng-Yau ’75

‘Most of the problems in differential geometry can be
reduced to problems in differential equations on Riemannian
manifolds’



‘Rules’ we will follow to make analysis on mm spaces

Forget about: Focus on:

Lipschitz functions Sobolev functions

Charts Intrinsic calculus

Trying to define who Understanding the duality
Df and ∇f really are relation Df (∇g)
(for the moment)



Analytic properties of RCD∗(K ,N) spaces

I Differential calculus on mm spaces

I The heat flow on RCD(K ,∞) spaces again

I Bochner inequality

I Optimal maps

I Distributional Laplacian
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Differentials on Rd

Given f : Rd → R smooth, its differential Df : Rd → T ∗Rd is
intrinsically defined by

Df (x)(v) := lim
t→0

f (x + tv)− f (x)

t
, ∀x ∈ Rd , v ∈ TxRd



Gradients on normed Rd

To define the gradient of a smooth f we need more structure: a norm.

A way to get it is starting from the observation that for any tangent
vector w it holds

Df (x)(w) ≤ ‖Df (x)‖∗‖w‖ ≤
1
2
‖Df (x)‖2

∗ +
1
2
‖w‖2.

Then we can say that v = ∇f (x) provided = holds, or equivalently

Df (x)(v) ≥ 1
2
‖Df (x)‖2

∗ +
1
2
‖v‖2

Rmk.
Uniqueness holds iff the norm is strictly convex

Linearity holds iff the norm comes from a scalar product.
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An important identity

max
v∈∇g(x)

Df (v) = inf
ε>0

‖D(g + εf )‖2
∗(x)− ‖Dg‖2

∗(x)

2ε

min
v∈∇g(x)

Df (v) = sup
ε<0

‖D(g + εf )‖2
∗(x)− ‖Dg‖2

∗(x)

2ε
.



The object D±f (∇g) in mm spaces

For f ,g ∈ S2, the functions D±f (∇g) : X → R are defined by

D+f (∇g) := inf
ε>0

|D(g + εf )|2 − |Dg|2

2ε

D−f (∇g) := sup
ε<0

|D(g + εf )|2 − |Dg|2

2ε

Notice that

D−f (∇g) ≤ D+f (∇g), m− a.e.

|D±f (∇g)| ≤ |Df ||Dg| ∈ L1(X ,m),

D+(−f )(∇g) = −D−f (∇g) = D+f (∇(−g)), m− a.e.
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Calculus rules

Locality

D±f (∇g) = D± f̃ (∇g̃), m-a.e. on {f = f̃} ∩ {g = g̃}

Chain rule

D±(ϕ ◦ f )(∇g) = ϕ′ ◦ f D±sign(ϕ′◦f )f (∇g),

D±f (∇(ϕ ◦ g)) = ϕ′ ◦ g D±sign(ϕ′◦g)f (∇g)

for ϕ Lipschitz

Leibniz rule

D+(f1f2)(∇g) ≤ f1 D sign(f1)f2(∇g) + f2 D sign(f2)f1(∇g),

D−(f1f2)(∇g) ≥ f1 D−sign(f1)f2(∇g) + f2 D−sign(f2)f1(∇g)

For f1, f2 ∈ S2 ∩ L∞, and g ∈ S2.
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Infinitesimally Hilbertian spaces

Definition(G. ’11)
(X ,d ,m) is infinitesimally Hilbertian if W 1,2 is an Hilbert space.

In this case

D+f (∇g) = D−f (∇g) = D+g(∇f ) = D−g(∇f ), m− a.e.

and we denote these quantities by ∇f · ∇g.
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Plan representing gradients: definition

For g ∈ S2 and π ∈P(C([0,1],X )) test plan it holds

lim
t↓0

∫
g(γt )− g(γ0)

t
dπ ≤ 1

2

∫
|Dg|2(γ0) dπ + lim

t↓0

1
2t

∫∫ t

0
|γ̇s|2 ds dπ

We say that π represents ∇g, provided it holds
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Plan representing gradients: existence

Thm (G. ’12. Ambrosio, G., Savaré ’11. G., Kuwada, Ohta ’10).
For g ∈ S2(X ) and µ ∈ P(X ) such that µ ≤ Cm, a plan π
representing ∇g and such that e0 ]π = µ exists.



Horizontal and vertical derivatives, a.k.a.: First order
differentiation formula

Let f ,g ∈ S2, and π which represents ∇g.
Then

lim
t↓0

∫
f (γt )− f (γ0)

t
dπ

≥ lim
t↓0

∫
f (γt )− f (γ0)

t
dπ



Horizontal and vertical derivatives, a.k.a.: First order
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Analytic properties of RCD∗(K ,N) spaces

I Differential calculus on mm spaces

I The heat flow on RCD(K ,∞) spaces again

I Bochner inequality

I Optimal maps

I Distributional Laplacian



A property of GF of K -convex functions on Rd

Let E : Rd → R be K -convex and t 7→ xt be such that

x ′t = −∇E(xt ).

Pick y ∈ Rd and notice that

d
dt

1
2
|xt − y |2 = x ′t · (xt − y) = ∇E(xt ) · (y − xt )

and for yt,s := (1− s)xt + sy we have

d
ds |s=0

E(yt,s) = ∇E(xt ) · (y − xt ).

Hence
d
dt

1
2
|xt − y |2 ≤ E(y)− E(xt )−

K
2
|xt − y |2
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EVIK gradient flows

Def. On a metric space (Y ,dY ), we say that (xt ) ⊂ Y is an EVIK -GF
of E : Y → [0,∞] if it is loc. abs. cont. and for every y ∈ Y we have

d
dt

1
2

d2(xt , y) ≤ E(y)− E(xt )−
K
2

d2(xt , y), a.e. t > 0

(Savaré) If (xt ) is an EVIK gradient flows it satisfies

E(x0) = E(xt ) +
1
2

∫ t

0
|x ′s|2 + |∂−E |2(xs) ds, ∀t > 0

Note: The viceversa is not true
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The heat flow as EVIK gradient flow of the entropy

We want to prove that the heat flow is an EVIK gradient flow of the
entropy.

Thus let t 7→ µt = ρtm be an heat flow and ν = ηm given.

We want to compute

d
dt

1
2

W 2
2 (µt , ν) and

d
ds |s=0

Entm(νt,s)

where s 7→ νt,s is a geodesic joining µt to ν.
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Derivative of 1
2W 2

2 (µt , ν)

Fix t0 a point of differentiability of t 7→ 1
2 W 2

2 (µt , ν) and let ϕ be a
Kantorovich potential from µt0 to ν.
Then

1
2

W 2
2 (µt0 , ν) =

∫
ϕ dµt0 +

∫
ϕc dν

1
2

W 2
2 (µt0+h, ν) ≥

∫
ϕ dµt0+h +

∫
ϕc dν

Recalling that µt = ρtm we get

d
dt |t=t0

1
2

W 2
2 (µt , ν) =

d
dt |t=t0

∫
ϕ dµt =

∫
ϕ∆ρt0 dm



Some properties of W2-geodesics

Thm. (Regularity of interpolated densities Rajala ’12)
Let (X ,d,m) be a compact CD(K ,∞) space and µ, ν ∈ P(X ) s.t.
µ, ν ≤ Cm.

Then there exists a geodesic (µt ) such that µt ≤ C′m for every
t ∈ [0,1] and t 7→ Entm(µt ) is K -convex.

Thm. (Metric Brenier’s theorem Ambrosio, G., Savaré ’11) Let (µt ) be
a geodesic such that µt ≤ Cm for every t ∈ [0,1], π ∈P(C([0,1],X ))
a lifting of it and ϕ a Kantorovich potential inducing it.

Then π represents the gradient of −ϕ.
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Derivative of Entm(νs)

Let s 7→ νs be a geodesic s.t. νs ≤ Cm for every s and such that
ν0 = ηm with η ≥ c > 0, η ∈W 1,2(X ).
Let ϕ be a Kantorovich potential inducing it.

Then

lim
s↓0

Entm(νs)− Entm(ν0)

s
≥ lim

s↓0

1
s

∫
log η d(νs − ν0)

= lim
s↓0

∫
log η(γs)− log η(γ0)

s
dπ(γ)

= −
∫
∇(log η) · ∇ϕ(γ0) dπ(γ)

= −
∫
∇(log η) · ∇ϕ η dm

= −
∫
∇η · ∇ϕ dm
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The heat flow is an EVIK gradient flow of the entropy

We (Ambrosio, G., Savaré ’11) conclude that

d
dt

1
2

W 2
2 (µt , ν) ≤ d

ds |s=0
Entm(νt,s)

≤ Entm(ν)− Entm(µt )−
K
2

W 2
2 (µt , ν)

We deduce that for (µt ), (νt ) ⊂P(X ) heat flows we have

W 2
2 (µt , νt ) ≤ e−2KtW 2

2 (µ0, ν0)
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Heat Kernel and Brownian motion

We deduce that there exists the heat flow t 7→ µt [x ] starting from δx
for any x ∈ X .

General constructions related to the theory of Dirichlet forms then
grant existence and uniqueness of a Markov process Xt with transition
probabilities µt [x ], i.e.:

P(Xt+s ∈ A|Xt = x) = µt [x ](A)



Analytic properties of RCD∗(K ,N) spaces

I Differential calculus on mm spaces

I The heat flow on RCD(K ,∞) spaces again

I Bochner inequality

I Optimal maps

I Distributional Laplacian



A duality result

Thm. (Kuwada ’09)
Let Ht : P(X ) → P(X ) be the heat flow at level of measures and
ht : L1 → L1 the one for densities.

Then TFAE:

W 2
2 (Ht (µ),Ht (ν)) ≤ e−2KtW 2

2 (µ, ν), ∀t ≥ 0, µ, ν ∈P(X )

lip2(ht (f )) ≤ e−2Kt ht (lip2(f )), ∀t ≥ 0, f : X → R Lipschitz

where
lip(f )(x) := lim

y→x

|f (x)− f (y)|
d(x , y)
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Density in energy in W 1,2 of Lipschitz functions

Thm. (Ambrosio, G., Savaré ’11) Let (X ,d,m) be a mms.

Then:

I for every (fn) ⊂ LIP(X ) converging in L2 to some f , we have

|Df | ≤ G, where G is any L2-weak limit of (lip(fn))

I for every f ∈W 1,2(X ) there exists (fn) ⊂ LIP(X ) L2-converging to
f such that

|Df | = lim
n

lip(fn) the limit being intended strong in L2



Density in energy in W 1,2 of Lipschitz functions

Thm. (Ambrosio, G., Savaré ’11) Let (X ,d,m) be a mms. Then:

I for every (fn) ⊂ LIP(X ) converging in L2 to some f , we have

|Df | ≤ G, where G is any L2-weak limit of (lip(fn))

I for every f ∈W 1,2(X ) there exists (fn) ⊂ LIP(X ) L2-converging to
f such that

|Df | = lim
n

lip(fn) the limit being intended strong in L2



Bochner inequality (N =∞)

(G., Kuwada, Ohta ’10. Ambrosio, G., Savaré ’11)
Starting from

lip2(ht (f )) ≤ e−2Kt ht (lip2(f )), ∀t ≥ 0, f ∈ LIP(X )

and by relaxation we deduce

|Dht (f )|2 ≤ e−2Ktht (|Df |2) ∀t ≥ 0, f ∈W 1,2(X )

which gives ∫
∆g
|Df |2

2
dm ≥

∫
(∇f · ∇∆f + K |Df |2)g dm

for every f ∈W 1,2(X )∩D(∆) with ∆f ∈W 1,2(X ) and g ∈ L∞(X )∩D(∆)
with g ≥ 0 and ∆g ∈ L∞(X ).

Also the converse implication from Bochner to RCD(K ,∞) holds
(Ambrosio, G., Savaré ’12)
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for every f ∈W 1,2(X )∩D(∆) with ∆f ∈W 1,2(X ) and g ∈ L∞(X )∩D(∆)
with g ≥ 0 and ∆g ∈ L∞(X ).

Also the converse implication from Bochner to RCD(K ,∞) holds
(Ambrosio, G., Savaré ’12)
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Bochner inequality (N <∞)

(Erbar, Kuwada, Sturm ’13) On an RCD∗(K ,N) space we have∫
∆g
|Df |2

2
dm ≥

∫ ( (∆f )2

N
+∇f · ∇∆f + K |Df |2

)
g dm

(see also (Ambrosio, Mondino, Savaré - in progress))



Related results

(Mondino, Garofalo ’13) Li-Yau inequality: for f ≥ 0 on RCD∗(0,N)
spaces we have

∆(log(ht f )) ≤ −N
2t

(Kell ’13, Jiang ’11, Koskela, Rajala, Shanmugalingam ’03) Local
Lipschitz regularity of harmonic functions on RCD∗(K ,N) spaces



Analytic properties of RCD∗(K ,N) spaces

I Differential calculus on mm spaces

I The heat flow on RCD(K ,∞) spaces again

I Bochner inequality

I Optimal maps

I Distributional Laplacian



Optimal maps

Thm. (G., Rajala, Sturm ’13) Let (X ,d,m) be RCD∗(K ,N),
µ, ν ∈P(X ) with µ� m.

Then:

I There is only one optimal plan

I Such plan is induced by a map T

I For µ-a.e. x there is only one geodesic γx from x to T (x)

I For µ-a.e. x 6= y we have γx
t 6= γy

t for every t ∈ [0,1)
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Distributional Laplacian

Let (X ,d,m) be infinitesimally Hilbertian and locally compact, Ω ⊂ X
open, g ∈ S2(Ω)

We say that g ∈ D(∆,Ω) if there exists a Radon measure µ on Ω such
that

−
∫

Ω

∇f · ∇g dm =

∫
Ω

f dµ,

holds for every f Lipschitz with supp(f ) ⊂⊂ Ω.

In this case we put ∆g|Ω := µ
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Calculus rules

Linearity
∆(α1g1 + α2g2) = ∆g1 + ∆g2

Chain rule
∆(ϕ ◦ g) = ϕ′ ◦ g ∆g + ϕ′′ ◦ g|Dg|2m

Leibniz rule

∆(g1g2) = g1∆g2 + g2∆g1 + 2∇g1 · ∇g2m



Relations with nonlinear potential theory

Theorem (G. ’12. G. Mondino ’12) Let (X ,d,m) be inf. Hilb., with
doubling measure and supporting a 2-Poincaré inequality.
Let Ω ⊂ X and g ∈ S2(Ω).

Then TFAE:

I g ∈ D(∆,Ω) and ∆g ≤ 0
I For every Lipschitz f ≥ 0 with supp(f ) ⊂⊂ Ω we have∫

Ω

|Dg|2 dm ≤
∫

Ω

|D(g + f )|2 dm



Relations with nonlinear potential theory

Theorem (G. ’12. G. Mondino ’12) Let (X ,d,m) be inf. Hilb., with
doubling measure and supporting a 2-Poincaré inequality.
Let Ω ⊂ X and g ∈ S2(Ω).
Then TFAE:

I g ∈ D(∆,Ω) and ∆g ≤ 0
I For every Lipschitz f ≥ 0 with supp(f ) ⊂⊂ Ω we have∫

Ω

|Dg|2 dm ≤
∫

Ω

|D(g + f )|2 dm



Laplacian comparison

On a Riemannian manifold M with Ric ≥ 0, dim ≤ N it holds

∆
1
2

d2(·, x) ≤ N

in the sense of distributions.

The same holds on RCD∗(0,N) spaces:
Thm (G. ’12) For (X ,d,m) RCD∗(0,N) and x ∈ X we have

∆
d2(·, x)

2
≤ Nm
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Idea of the proof (1/2)

Pick f ≥ 0 Lipschitz with compact support and let ρ := cf
N

N−1

µ0 := ρm, µ1 := δx , t 7→ µt the geodesic connecting them

The geodesic convexity of UN gives

lim
t↓0

UN(µt )− UN(µ0)

t
≤ UN(µ1)− UN(µ0) = c1− 1

N

∫
f dm



Idea of the proof (2/2)
Let π ∈P(C([0,1],X )) be the lifting of (µt ) and notice that

UN(µt )− UN(µ0) ≥
∫

u′N(ρ) d(µt − µ0)

=

∫
u′N(ρ)(γt )− u′N(ρ)(γ0) dπ(γ)

Notice that π represents the gradient of ϕ := − d2(·,x)
2 to get

lim
t↓0

UN(µt )− UN(µ0)

t
≥
∫
∇(u′N(ρ)) · ∇ϕ (γ0) dπ(γ)

=
c1− 1

N

N

∫
∇f · ∇ϕ dm

Hence

− 1
N

∫
∇f · ∇ d2(·,x)

2 dm ≤
∫

f dm, ∀f ≥ 0, Lip with cpt supp
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Thank you


