Wolfgang Lück

Isomorphism Conjectures in K- and L-Theory

SPIN Springer’s internal project number, if known

Mathematics – Monograph (English)

March 21, 2022

Springer
Preface

This manuscript is not finished. Part I and II are in nearly final form, whereas part III is still missing. At the moment the material has to be used at own risk. Comments are very welcome.

The Isomorphism Conjectures due to Farrell-Jones and Baum-Connes aim at the algebraic K- and L-theory of group rings and the topological K-theory of reduced group C^*-algebras. These theories are of major interest for many reasons. For instance, the algebraic L-groups are the recipients for various surgery obstructions and hence highly relevant for the classification of manifolds. Other important obstructions such as Wall’s finiteness obstruction and Whitehead torsion take values in algebraic K-groups. The topological K-groups of C^*-algebras play a central role in index theory and the classification of C^*-algebras.

In general these K- and L-groups are very hard to analyze for group rings or group C^*-algebras. The Isomorphism Conjectures identify them with equivariant homology groups of classifying spaces of families of subgroups. As an illustration, let us consider the special case that G is a torsionfree group and R is a regular ring (with involution). Then the Isomorphism Conjectures predict that the so called assembly maps

$$H_n(BG; K(R)) \xrightarrow{\cong} K_n(RG);$$
$$H_n(BG; L^{(-\infty)}(R)) \xrightarrow{\cong} L_n^{(-\infty)}(RG);$$
$$K_n(BG) \xrightarrow{\cong} K_n(C^*_r(G)),$$

are isomorphisms for all $n \in \mathbb{Z}$. The target is the algebraic K-theory of the group ring RG, the algebraic L-theory of RG with decoration $(-\infty)$, or the topological K-theory of the reduced group C^*-algebra $C^*_r(G)$. The source is the evaluation of a specific homology theory on the classifying space BG, where $H_n(\{\bullet\}; K(R)) \cong K_n(R)$, $H_n(\{\bullet\}; L^{(-\infty)}(R)) \cong L_n^{(-\infty)}(R)$ and $K_n(\{\bullet\}) \cong K_n(\mathbb{C})$ for all $n \in \mathbb{Z}$.

Since the sources of these assembly maps are much more accessible than the targets, the Isomorphism Conjectures are key ingredients in explicit computations of the K- and L-groups of group rings and reduced group C^*-algebras. These often are motivated by and have applications to concrete problems that arise, for instance, in the classification of manifolds or C^*-algebras.

The Farrell-Jones Conjecture and the Baum-Conjecture imply many other prominent conjectures. In a lot of cases these conjectures were not known to be true for certain groups until the Farrell-Jones or the Baum-Connes Conjecture were proved for them. Examples for such prominent conjectures are the Borel Conjecture about the topological rigidity of aspherical closed manifolds,
the (stable) Gromov-Lawson-Rosenberg Conjecture about the existence of Riemannian metrics with positive scalar curvature on closed Spin-manifolds, the Kaplansky Conjecture and the Kadison Conjecture on the non-existence of non-trivial idempotents in the group ring or the reduced group C*-algebra of torsionfree groups, the Novikov Conjecture about the homotopy invariance of higher signatures, and the conjectures about the vanishing of the reduced projective class group of \(\mathbb{Z}G \) and the Whitehead group of \(G \) for a torsionfree group \(G \).

The Farrell-Jones Conjecture and the Baum-Connes Conjecture are still open (at the time of writing). However, tremendous progress has been made on the class of groups for which they are known. The techniques of the sophisticated proofs range from functional analysis, algebra, geometry, topology to dynamical systems.

The Farrell-Jones Conjecture and the Baum-Connes Conjecture seem to be rather focused on the first glance. It is surprising and intriguing that they have strong impact on problems in and involve advanced techniques from many different areas in mathematics. For instance, one would not expect that a solution to the purely algebraic question whether the group ring of a torsion-free group contains no non-trivial idempotents, requires input from spectral analysis or flow spaces. This extreme broad scope of the Baum-Connes Conjecture and the Farrell-Jones Conjecture is both the main challenge and main motivation for writing this book. We hope that, after having read parts of this monograph, the reader will share the enthusiasm of the author for the Isomorphism Conjectures.

Organization

The monograph consists of three parts.

In the first part “Introduction to K- and L-Theory”, which encompasses Chapters 2 to 9, we introduce and motivate the relevant theories, namely, algebraic K-theory, algebraic L-theory and topological K-theory. In these chapters we present some applications and special more accessible cases of the Farrell-Jones and the Baum-Connes Conjecture.

In the second part “The Isomorphism Conjectures”, which consists of Chapters 10 to Chapter 17, we introduce the Farrell-Jones Conjecture and the Baum-Connes Conjecture in its most general form, namely, for arbitrary groups and arbitrary twisted coefficients. We discuss further applications and in particular how they can be used for computations. We give a report about the status of these conjectures and discuss open problems.

The third part “Methods of Proofs”, which ranges from Chapter 18 to Chapter 23. **Comment 1:** Update this range when Part III is finished. we give a survey on the background, philosophy, strategies, and some ingredients of the proofs. **Comment 2:** Extend this paragraph, when Part III is finished.

We have inserted exercises which contain useful additional information and can be thought of as additional lemmas, examples, or remarks. Their
solutions are presented in Chapter 24 and hence one can refer to them in
articles.

A User’s Guide

The monograph is a guide for and gives a panorama of Isomorphism Con-
jectures and related topics. It presents or at least indicates the (at the time of
writing) most advanced results and developments. References for further
reading and information have been inserted.

A reader who wants to get specific information or focus on a certain topic
should consult the detailed table of contents and the index in order to find
the right place in the monograph. We have written the text in a way such
that one can read small units independently from the rest, concentrate on
certain aspects, extract easily and quickly specific information, and can start
reading in any of the chapters. We hopefully have found the right mixture
between definitions, theorems, examples and remarks so that reading the
book is entertaining and illuminating. One can use selected chapters to run
seminars on specific topics.

We recommend the reader to try to solve the exercises. This is gives the
opportunity to recover from reading and to work on its own, thus improving
intuition and familiarity with the definitions, concepts, results, and their
proofs.

We require that the reader is familiar with basic notions in topology
(CW-complexes, chain complexes, homology, homotopy groups, manifolds,
coverings, cofibrations, fibrations . . .), functional analysis (Hilbert spaces,
bounded operators, differential operators, . . .), algebra (groups, modules,
group rings, elementary homological algebra, . . .), group theory (presenta-
tions, Cayley graphs, hyperbolic groups, . . .) and category theory (functors,
transformations, additive categories, . . .).

Other survey articles on the Farrell-Jones Conjecture and the Baum-
Connes Conjecture are [36, 67, 81, 97, 131, 151, 191, 214, 236, 253, 375].

Acknowledgments

The author is grateful to the present and former members of the topology
groups in Bonn and Münster who read through the monograph and made a
lot of useful comments, corrections and suggestions.

The author wants to thank the Deutsche Forschungsgemeinschaft and the
European Research Council which have been and are financing the collabora-
tive research centers “Geometrische Strukturen in der Mathematik” and
“Groups, Geometry and Actions”, the research training groups “Analytische
Topologie und Metageometrie” and “Homotopy and K-homologie”, the clus-
ter of excellence “Hausdorff center for Mathematics” and the Leibniz award
and ERC Advanced Grant of the author. These made it possible to invite guests and run workshops on the topics of the monograph. Also the comments, corrections and suggestions of the guests were very helpful.

The author thanks Paul Baum, Alain Connes, Tom Farrell and Lowell Jones for their beautiful Isomorphism Conjectures. They were originally stated in [97, Conjecture 3.15 on page 254] and [332, 1.6 on page 257].

Finally, the author wants to express his deep gratitude to his wife Sibylle and our children and grandchildren Christian, Isabel, Julian, Nora, Tobias, and Severina for all the direct and indirect support.

Bonn, June 2020,

Wolfgang Lück

last edited on 23.06.2020
last compiled on March 21, 2022
name of texfile: ic
Contents

1 Introduction ... 1

1.1 Motivation for the Baum-Connes Conjecture 1

1.1.1 Topological K-Theory of Reduced Group C^*-Algebras 1

1.1.2 Homological Aspects 2

1.1.3 The Baum-Connes Conjecture for Torsionfree Groups . 4

1.1.4 The Baum-Connes Conjecture 4

1.1.5 Reduced versus Maximal Group C^*-Algebras 7

1.1.6 Applications of the Baum-Connes Conjecture 7

1.2 Motivation for the Farrell-Jones Conjecture for K-Theory . 7

1.2.1 Algebraic K-Theory of Group Rings 7

1.2.2 Appearance of Nil-Terms 8

1.2.3 The Farrell-Jones Conjecture for $K_*(RG)$ for Regular Rings and Torsionfree Groups 9

1.2.4 The Farrell-Jones Conjecture for $K_*(RG)$ for Regular Rings ... 9

1.2.5 The Farrell-Jones Conjecture for $K_*(RG)$ 10

1.2.6 Applications of the Farrell-Jones Conjecture for $K_*(RG)$.. 11

1.3 Motivation for the Farrell-Jones Conjecture for L-Theory . 11

1.3.1 Algebraic L-Theory of Group Rings 11

1.3.2 The Farrell-Jones Conjecture for $L_*(RG)[1/2]$ 12

1.3.3 The Farrell-Jones Conjecture for $L_*(RG)$ 13

1.3.4 Applications of the Farrell-Jones Conjecture for $L_*(RG)$.. 14

1.4 Status of the Baum-Connes and the Farrell-Jones Conjecture 15

1.5 Structural Aspects .. 16

1.5.1 The Meta-Isomorphism Conjecture 16

1.5.2 Assembly ... 17

1.6 Computational Aspects ... 17

1.7 Methods of Proof .. 18

1.7.1 Controlled Topology Methods 18

1.7.2 Coverings, Flow Spaces and Transfer 19
Part I: Introduction to K- and L-theory

2 The Projective Class Group 23
 2.1 Introduction .. 23
 2.2 Definition and Basic Properties of the Projective Class Group . 24
 2.3 The Projective Class Group of a Dedekind Domain 28
 2.4 Swan’s Theorem 30
 2.5 Wall’s Finiteness Obstruction 32
 2.6 Geometric Interpretation of Projective Class Group and
 Finiteness Obstruction 34
 2.7 Universal Functorial Additive Invariants 36
 2.8 Variants of the Farrell-Jones Conjecture for $K_0(RG)$.. 38
 2.9 The Kaplansky Conjecture 42
 2.10 The Bass Conjectures 44
 2.10.1 The Bass Conjecture for Fields of Characteristic Zero
 as Coefficients 44
 2.10.2 The Bass Conjecture for Integral Domains as
 Coefficients 47
 2.11 Survey on Computations of $K_0(RG)$ for Finite Groups 48
 2.12 Survey on Computations of $K_0(C^*_r(G))$ and $K_0(N(G))$.. 52
 2.13 Notes .. 54

3 The Whitehead Group 57
 3.1 Introduction ... 57
 3.2 Definition and Basic Properties of $K_1(R)$ 57
 3.3 Whitehead Group and Whitehead Torsion 64
 3.4 Geometric Interpretation of Whitehead Group and
 Whitehead Torsion 68
 3.5 The s-Cobordism Theorem 73
 3.6 Reidemeister Torsion and Lens Spaces 76
 3.7 The Bass-Heller-Swan Theorem for K_1 81
 3.7.1 The Bass-Heller-Swan Decomposition for K_1 81
 3.7.2 The Grothendieck Decomposition for G_0 and G_1 .. 85
 3.7.3 Regular Rings 85
 3.8 The Mayer-Vietoris K-Theory Sequence of a Pullback of Rings 88
 3.9 The K-Theory Sequence of a Two-Sided Ideal 90
 3.10 Swan Homomorphisms 93
 3.10.1 The Classical Swan Homomorphism 93
3.10.2 The Classical Swan Homomorphism and Free Homotopy Representations 95

3.10.3 The Generalized Swan Homomorphism 97

3.10.4 The Generalized Swan Homomorphism and Free Homotopy Representations 98

3.11 Variants of the Farrell-Jones Conjecture for $K_1(RG)$ 99

3.12 Survey on Computations of $K_1(ZG)$ for Finite Groups 100

3.13 Survey on Computations of Algebraic $K_1(C^*_r(G))$ and $K_1(N(G))$ 102

3.14 Notes 104

4 Negative Algebraic K-Theory 107

4.1 Introduction 107

4.2 Definition and Basic Properties of Negative K-Groups 107

4.3 Geometric Interpretation of Negative K-Groups 114

4.4 Variants of the Farrell-Jones Conjecture for Negative K-Groups 115

4.5 Survey on Computations of Negative K-Groups for Finite Groups 116

4.6 Notes 117

5 The Second Algebraic K-Group 119

5.1 Introduction 119

5.2 Definition and Basic Properties of $K_2(R)$ 119

5.3 The Steinberg Group as Universal Extension 120

5.4 Extending Exact Sequences of Pullbacks and Ideals 121

5.5 Steinberg Symbols 123

5.6 The Second Whitehead Group 125

5.7 A Variant of the Farrell-Jones Conjecture for the Second Whitehead group 126

5.8 The Second Whitehead Group of Some Finite Groups 126

5.9 Notes 127

6 Higher Algebraic K-Theory 129

6.1 Introduction 129

6.2 The Plus-Construction 129

6.3 Survey on Main Properties of Algebraic K-Theory of Rings 132

6.3.1 Compatibility with Finite Products 132

6.3.2 Morita Equivalence 132

6.3.3 Compatibility with Directed Colimits 133

6.3.4 The Bass-Heller-Swan Decomposition 133

6.3.5 Some information about NK-groups 134

6.3.6 Algebraic K-Theory of Finite Fields 135

6.3.7 Algebraic K-Theory of the Ring of Integers in a Number Field 135
Part II: The Isomorphism Conjectures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>269</td>
</tr>
<tr>
<td>10.2</td>
<td>Definition and Basic Properties of G-CW-Complexes</td>
<td>269</td>
</tr>
<tr>
<td>10.3</td>
<td>Proper G-Spaces</td>
<td>273</td>
</tr>
<tr>
<td>10.4</td>
<td>Maps between G-CW-Complexes</td>
<td>274</td>
</tr>
<tr>
<td>10.5</td>
<td>Definition and Basic Properties of Classifying Spaces for Families</td>
<td>276</td>
</tr>
<tr>
<td>10.6</td>
<td>Special Models for the Classifying Space of Proper Actions</td>
<td>277</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Simplicial Model</td>
<td>278</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Operator Theoretic Model</td>
<td>278</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Discrete Subgroups of Almost Connected Lie Groups</td>
<td>278</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Actions on Simply Connected Non-Positively Curved Manifolds</td>
<td>279</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Actions on Trees and Graphs of Groups</td>
<td>279</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Actions on CAT(0)-Spaces</td>
<td>279</td>
</tr>
<tr>
<td>10.6.7</td>
<td>The Rips Complex of a Hyperbolic Group</td>
<td>280</td>
</tr>
<tr>
<td>10.6.8</td>
<td>Arithmetic Groups</td>
<td>281</td>
</tr>
<tr>
<td>10.6.9</td>
<td>Mapping Class Groups</td>
<td>281</td>
</tr>
<tr>
<td>10.6.10</td>
<td>Outer Automorphism Groups of Finitely Generated Free Groups</td>
<td>281</td>
</tr>
<tr>
<td>10.6.11</td>
<td>Special Linear Groups of (2,2)-Matrices</td>
<td>282</td>
</tr>
<tr>
<td>10.6.12</td>
<td>Groups with Appropriate Maximal Finite Subgroups</td>
<td>283</td>
</tr>
<tr>
<td>10.6.13</td>
<td>One-Relator Groups</td>
<td>284</td>
</tr>
<tr>
<td>10.7</td>
<td>Special Models for the Classifying Space for the Family of Virtually Cyclic Subgroups</td>
<td>285</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Groups with Appropriate Maximal Virtually Cyclic Subgroups</td>
<td>286</td>
</tr>
<tr>
<td>10.8</td>
<td>Finiteness Conditions</td>
<td>287</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Review of Finiteness Conditions on BG</td>
<td>287</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Cohomological Criteria for Finiteness Properties in Terms of Bredon Cohomology</td>
<td>289</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Finite Models for the Classifying Space for Proper Actions</td>
<td>289</td>
</tr>
</tbody>
</table>
13.8.2 The Stable Gromov-Lawson-Rosenberg Conjecture 387
13.8.3 L^2-Rho-Invariants and L^2-Signatures 390
13.9 Notes ... 392

14 The (Fibered) Meta- and Other Isomorphism Conjectures 393
14.1 Introduction ... 393
14.2 The Meta-Isomorphism Conjecture 394
14.3 The Fibered Meta-Isomorphism Conjecture 395
14.4 The Farrell-Jones Conjecture with Coefficients in Additive G-Categories is Fibered ... 396
14.5 Transitivity Principles ... 397
14.6 Inheritance Properties of the Fibered Meta-Isomorphism Conjecture ... 401
14.7 Actions on Trees ... 404
14.8 The Meta-Isomorphism Conjecture for Functors from Spaces to Spectra ... 409
14.9 Proof of the Inheritance Properties 414
14.10 The Farrell-Jones Conjecture for A-Theory and Pseudoisotopy . 420
14.11 The Farrell-Jones Conjecture for Topological Hochschild and Cyclic Homology .. 421
14.11.1 Topological Hochschild Homology 422
14.11.2 Topological Cyclic Homology ... 423
14.13 The Farrell-Jones Conjecture for Totally Disconnected Groups and Hecke Algebras .. 426
14.14 Relations among the Isomorphisms Conjectures....................... 427
14.14.2 The Farrell-Jones Conjecture for A-Theory and for Pseudoisotopy ... 428
14.14.3 The Farrell-Jones Conjecture for K-Theory and for topological cyclic homology .. 429
14.14.4 The L-Theoretic Farrell-Jones Conjecture and the Baum-Connes Conjecture .. 430
14.14.5 Mapping Surgery to Analysis ... 432
14.14.6 The Baum-Connes Conjecture and the Bost Conjecture 436
14.15 Notes ... 438

15 Status ... 441
15.1 Introduction ... 441
15.2 Status of the Full Farrell-Jones Conjecture 441
15.3 Status of the Farrell-Jones Conjecture for homotopy K-theory . 444
15.4 Status of the Baum-Connes Conjecture (with coefficients) 445
16 Guide for Computations

16.1 Introduction .. 479
16.2 K- and L-Groups for Finite Groups 479
16.3 The Passage from \(FLN\) to \(VCY\) 480
16.4 Mayer-Vietoris sequences and Wang sequences 481
16.5 Rational Computations for Infinite Groups 483
 16.5.1 Rationalized Algebraic K-Theory 483
 16.5.2 Rationalized Algebraic L-Theory 484
 16.5.3 Rationalized Topological K-Theory 484
 16.5.4 The Complexified Comparison Map from Algebraic to Topological K-theory 485
16.6 Integral Computations for Infinite Groups 486
 16.6.1 Groups satisfying conditions (M) and (NM) 486
 16.6.2 Torsionfree One-Relator Groups 493
 16.6.3 One-Relator Groups with Torsion 497
 16.6.4 Fuchsian groups ... 503
 16.6.5 Torsionfree Hyperbolic Groups 504
 16.6.6 L-theory of Torsionfree Groups 506
 16.6.7 Cocompact NEC-Groups 507
 16.6.8 Crystallographic Groups 507
 16.6.9 Virtually Finitely Generated Free Abelian Groups 509
 16.6.10\(SL_3(\mathbb{Z})\) ... 509
 16.6.11Right angled Artin groups 510
 16.6.12Right angled Coxeter groups 512
 16.6.13Fundamental groups of 3-manifolds 513
16.7 Applications of Some Computations 515
 16.7.1 Classification of some \(C^*-\)algebras 515
 16.7.2 Unstable Gromov-Lawson Rosenberg Conjecture 515
 16.7.3 Classification of Certain Manifolds with Infinite Not Torsionfree Fundamental Groups 515
16.8 Notes .. 516

17 Assembly Maps

17.1 Introduction .. 517
17.2 Homological Approach 518
17.3 Extension from Homogenous Spaces to G-CW-Complexes .. 518
17.4 Homotopy Colimit Approach 519
17.5 Universal Property .. 519
17.6 Identifying assembly maps 524
17.7 Notes .. 526

Part III: Methods of Proofs
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Karoubi filtrations</td>
<td>529</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>529</td>
</tr>
<tr>
<td>18.2</td>
<td>Karoubi Filtration and the Associated Weak Homotopy Fibration Sequence</td>
<td>529</td>
</tr>
<tr>
<td>18.3</td>
<td>Stable Karoubi Filtration</td>
<td>532</td>
</tr>
<tr>
<td>18.4</td>
<td>Non-connective K-theory for homotopical Waldhausen categories</td>
<td>536</td>
</tr>
<tr>
<td>18.5</td>
<td>Non-connective K-theory and Karoubi Filtrations for Waldhausen categories</td>
<td>538</td>
</tr>
<tr>
<td>18.6</td>
<td>Non-connective K-theory and stable Karoubi Filtrations</td>
<td>546</td>
</tr>
<tr>
<td>18.7</td>
<td>Comparing the non-connective K-theory spectra</td>
<td>547</td>
</tr>
<tr>
<td>18.8</td>
<td>Notes</td>
<td>549</td>
</tr>
<tr>
<td>19</td>
<td>Controlled Topology Methods</td>
<td>551</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>551</td>
</tr>
<tr>
<td>19.2</td>
<td>The Definition of a Control Coefficient Category</td>
<td>551</td>
</tr>
<tr>
<td>19.3</td>
<td>The Additive Category $\mathcal{O}^G(X;B)$</td>
<td>552</td>
</tr>
<tr>
<td>19.3.1</td>
<td>The Definition of $\mathcal{O}^G(X;B)$</td>
<td>552</td>
</tr>
<tr>
<td>19.4</td>
<td>Functoriality of $\mathcal{O}^G(X;B)$</td>
<td>557</td>
</tr>
<tr>
<td>19.5</td>
<td>The TOP-Sequence</td>
<td>558</td>
</tr>
<tr>
<td>19.6</td>
<td>The Definition for Pairs</td>
<td>560</td>
</tr>
<tr>
<td>19.7</td>
<td>The Proof of the Axioms of a G-Homology Theory</td>
<td>561</td>
</tr>
<tr>
<td>19.7.1</td>
<td>The Long Exact Sequence of a Pair</td>
<td>562</td>
</tr>
<tr>
<td>19.7.2</td>
<td>Some Eilenberg Swindles on $\mathcal{O}^G(X)$</td>
<td>562</td>
</tr>
<tr>
<td>19.7.3</td>
<td>Excision and G-Homotopy Invariance</td>
<td>572</td>
</tr>
<tr>
<td>19.7.4</td>
<td>The Disjoint Union Axiom</td>
<td>579</td>
</tr>
<tr>
<td>19.8</td>
<td>The Computation of $K_n(D^G(G/H))$</td>
<td>580</td>
</tr>
<tr>
<td>19.8.1</td>
<td>Reduction to $K_n(B(G/H))$</td>
<td>580</td>
</tr>
<tr>
<td>19.8.2</td>
<td>Assembly and Controlled G-homology</td>
<td>582</td>
</tr>
<tr>
<td>19.8.3</td>
<td>The Definition of a Strong Control Coefficient Category</td>
<td>583</td>
</tr>
<tr>
<td>19.8.4</td>
<td>Reduction to $K_n(B(H))$</td>
<td>584</td>
</tr>
<tr>
<td>19.9</td>
<td>Induction</td>
<td>585</td>
</tr>
<tr>
<td>19.10</td>
<td>The Version with Zero Control over \mathbb{N}</td>
<td>588</td>
</tr>
<tr>
<td>19.10.1</td>
<td>Control Categories with Zero Control in the \mathbb{N}-Direction</td>
<td>589</td>
</tr>
<tr>
<td>19.10.2</td>
<td>Relating the K-Theory of D^G and D^G_0</td>
<td>590</td>
</tr>
<tr>
<td>19.11</td>
<td>The Proof of the Axioms of a G-Homology Theory for D^G</td>
<td>602</td>
</tr>
<tr>
<td>19.12</td>
<td>Control structures</td>
<td>608</td>
</tr>
<tr>
<td>19.13</td>
<td>Notes</td>
<td>609</td>
</tr>
<tr>
<td>20</td>
<td>Coverings and Flow Spaces</td>
<td>611</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>611</td>
</tr>
<tr>
<td>20.2</td>
<td>Notes</td>
<td>611</td>
</tr>
<tr>
<td>Exercises</td>
<td>611</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1
Introduction

This version of the introduction closed to its final form, except for Section 1.7.

The Isomorphism Conjectures due to Baum-Connes and Farrell-Jones are important conjectures which have many interesting applications and consequences. However, they are not easy to formulate and it is a priori not clear why the actual versions are the most promising ones. The current versions are the final upshot of a longer process which has led step by step to them. It has been influenced and steered by various new results that have been proved during the last decades and given new insight into the objects, problems and constructions at which these conjectures aim. In this introduction we want to motivate these conjectures by explaining how one can be led to them by general considerations and certain facts. We also give surveys about applications of these conjectures, their status, and the methods of proof.

1.1 Motivation for the Baum-Connes Conjecture

We will start with the easiest and most convenient to handle Isomorphism Conjecture, the Baum-Connes Conjecture for the topological K-theory of reduced group C^*-algebras, and then pass to the more complicated Farrell-Jones Conjecture for the algebraic K- and L-theory of group rings.

1.1.1 Topological K-Theory of Reduced Group C^*-Algebras

The target of the Baum-Connes Conjecture is the topological K-theory of the reduced C^*-algebra $C^*_r(G)$ of a group G. We will consider discrete groups G only. One defines the topological K-groups $K_n(A)$ for any Banach algebra A to be the abelian group $K_n(A) = \pi_{n-1}(GL(A))$ for $n \geq 1$. The famous Bott Periodicity Theorem gives a natural isomorphism $K_n(A) \xrightarrow{\sim} K_{n+2}(A)$ for $n \geq 1$. Finally one defines $K_n(A)$ for all $n \in \mathbb{Z}$ so that the Bott isomorphism theorem is true for all $n \in \mathbb{Z}$. It turns out that $K_0(A)$ is the same as the projective class group of the ring A, which is the Grothendieck group of the abelian monoid of isomorphism classes of finitely generated projective A-modules with the direct sum as addition. The topological K-theory of
More generally, for a finite group G the topological K-theory of $C^*_r(G)$ is the complex representation ring $R_C(G)$ in even dimensions and is trivial in odd dimensions.

Let P be an appropriate elliptic differential operator (or more generally an elliptic complex) on a closed n-dimensional Riemannian manifold M, for instance the Dirac operator or the signature operator. Then one can consider its index in $K_n(\mathbb{C})$ which is zero for odd n and $\dim_{\mathbb{C}}(\ker(P)) - \dim_{\mathbb{C}}(\coker(P)) \in \mathbb{Z}$ for even n. If M comes with an isometric G-action of a finite group G and P is compatible with the G-action, then $\ker(P)$ and $\coker(P)$ are complex finite dimensional G-representations and one obtains an element in $K_n(C^*_r(G)) = R_C(G)$ by $[\ker(P)] - [\coker(P)]$ for even n. Suppose that G is an arbitrary discrete group and that M is a (not necessarily compact) n-dimensional smooth manifold without boundary with a proper cocompact G-action, a G-invariant Riemannian metric and an appropriate elliptic differential operator P compatible with the G-action. An example is the universal covering $M = \tilde{N}$ of an n-dimensional closed Riemannian manifold N with $G = \pi_1(N)$ and the lift P to \tilde{N} of an appropriate elliptic differential operator P on N. Then one can define an equivariant index of P which takes values in $K_n(C^*_r(G))$. Therefore the interest of $K_n(C^*_r(G))$ comes from the fact that it is the natural recipient for indices of certain equivariant differential operators.

1.1.2 Homological Aspects

A first basic problem is to compute $K_n(C^*_r(G))$ or to identify it with more familiar terms. The key idea comes from the observation that $K_n(C^*_r(G))$ has some homological properties. More precisely, if G is the amalgamated free product $G = G_1 *_{G_0} G_2$ for subgroups $G_i \subseteq G$, then there is a long exact sequence

$$
\ldots \xrightarrow{\partial_{n+1}} K_n(C^*_r(G_0)) \oplus K_n(C^*_r(G_1)) \oplus K_n(C^*_r(G_2)) \xrightarrow{K_n(C^*_r(G_1)) - K_n(C^*_r(G_2))} K_n(C^*_r(G)) \xrightarrow{\partial_n} K_{n-1}(C^*_r(G_0)) \oplus K_{n-1}(C^*_r(G_1)) \oplus K_{n-1}(C^*_r(G_2)) \oplus K_{n-1}(C^*_r(G_1)) \xrightarrow{K_{n-1}(C^*_r(G_1)) - K_{n-1}(C^*_r(G_2))} K_{n-1}(C^*_r(G)) \xrightarrow{\partial_{n-1}} \ldots
$$

where i_1, j_2, j_1 and j_2 are the obvious inclusions, see [39, Theorem 18 on page 632]. If $\phi: G \to G$ is a group automorphism and $G \rtimes \phi \mathbb{Z}$ is the associated semidirect product, then there is a long exact sequence
\[\ldots \xrightarrow{\partial_{n+1}} K_n(C_r^*(G)) \xrightarrow{\partial_n} K_{n-1}(C_r^*(G)) \xrightarrow{K_{n-1}(C_r^*(\phi))-\text{id}} K_{n-1}(C_r^*(G)) \xrightarrow{K_{n-1}(C_r^*(k))} \ldots\]

where \(k\) is the obvious inclusion, see [730, Theorem 18 on page 632] or more generally [730] Theorem 18 on page 632.

We compare this with group homology in order to explain the analogy with homology. Recall that the classifying space \(BG\) of a group \(G\) is an aspherical \(CW\)-complex whose fundamental group is isomorphic to \(G\) and that aspherical means that all higher homotopy groups are trivial, or, equivalently, that its universal covering is contractible. It is unique up to homotopy. If one has an amalgamated free product \(G = G_1 \ast_{G_0} G_2\), then one can find models for the classifying spaces such that \(BG_i\) is a \(CW\)-subcomplex of \(BG\) and \(BG = BG_1 \cup BG_2\) and \(BG_0 = BG_1 \cap BG_2\). Thus we obtain a pushout of inclusions of \(CW\)-complexes

\[
\begin{array}{c}
BG_0 \\
\downarrow \text{Bi}_1 \\
BG_2 \\
\downarrow \text{Bi}_2 \\
BG_1 \\
\downarrow \text{Bi}_1 \\
BG_2 \\
\downarrow \text{Bi}_2 \\
BG
\end{array}
\]

It yields a long Mayer-Vietoris sequence for the cellular or singular homology

\[\ldots \xrightarrow{\partial_{n+1}} H_n(BG_0) \xrightarrow{H_n(Bi_1) \oplus H_n(Bi_2)} H_n(BG_1) \oplus H_n(BG_2) \xrightarrow{H_n(Bj_1) - H_n(Bj_2)} H_n(BG) \xrightarrow{\partial_n} H_{n-1}(BG_0) \oplus H_{n-1}(BG_1) \oplus H_{n-1}(BG_2) \xrightarrow{H_{n-1}(Bj_1) - H_{n-1}(Bj_2)} H_{n-1}(BG) \xrightarrow{\partial_{n-1}} \ldots\]

If \(\phi: G \to G\) is a group automorphism, then a model for \(B(G \rtimes_\phi \mathbb{Z})\) is the mapping torus of \(B\phi: BG \to BG\) which is obtained from the cylinder \(BG \times [0,1]\) by identifying the bottom and the top with the map \(B\phi\). Associated to a mapping torus there is the long exact sequence

\[\ldots \xrightarrow{\partial_{n+1}} H_n(BG) \xrightarrow{H_n(B\phi) - \text{id}} H_n(BG) \xrightarrow{H_n(Bk)} H_n(B(G \rtimes_\phi \mathbb{Z})) \xrightarrow{\partial_n} H_{n-1}(BG) \xrightarrow{H_{n-1}(B\phi) - \text{id}} H_{n-1}(BG) \xrightarrow{H_{n-1}(Bk)} \ldots\]

where \(k\) is the obvious inclusion of \(BG\) into the mapping torus.
1.1.3 The Baum-Connes Conjecture for Torsionfree Groups

There is an obvious analogy between the sequences (1.1) and (1.3) and the sequences (1.2) and (1.4). On the other hand we get for the trivial group \(G = \{ 1 \} \) that \(H_n(B\{ 1 \}) = H_n(\{ \bullet \}) \) is \(\mathbb{Z} \) for \(n = 0 \) and trivial for \(n \neq 0 \) so that the group homology of \(BG \) cannot be the same as the topological \(K \)-theory of \(C^*_r(\{ 1 \}) \). But there is a better candidate, namely take the topological \(K \)-homology of \(BG \) instead of the singular homology. Topological \(K \)-homology is a homology theory defined for CW-complexes. At least we mention that for a topologist its definition is a routine, namely, it is the homology theory associated to the \(K \)-theory spectrum which defines topological \(K \)-theory of CW-complexes, i.e., the cohomology theory which comes from considering vector bundles over CW-complexes. In contrast to singular homology, the topological \(K \)-homology of a point \(K_n(\{ \bullet \}) \) is \(\mathbb{Z} \) for even \(n \) and is trivial for \(n \) odd. So we still get exact sequences (1.3) and (1.4) if we replace \(H^* \) by \(K^* \) everywhere and we have \(K_n(B\{ 1 \}) \cong K_n(C^*_r(\{ 1 \})) \) for all \(n \in \mathbb{Z} \). This leads to the following conjecture

Conjecture 1.5 (Baum-Connes Conjecture for torsionfree groups).

Let \(G \) be a torsionfree group. Then there is for \(n \in \mathbb{Z} \) an isomorphism called assembly map

\[
K_n(BG) \xrightarrow{\cong} K_n(C^*_r(G)).
\]

This is indeed a formulation which will turn out to be equivalent to the Baum-Connes Conjecture, provided that \(G \) is torsionfree. Conjecture 1.5 cannot hold in general as already the example of a finite group \(G \) shows. Namely, if \(G \) is finite, then the obvious inclusion induces an isomorphism \(K_n(B\{ 1 \}) \otimes_\mathbb{Z} \mathbb{Q} \cong K_n(BG) \otimes_\mathbb{Z} \mathbb{Q} \) for all \(n \in \mathbb{Z} \), whereas \(K_0(C^*_r(\{ 1 \})) \to K_0(C^*_r(G)) \) agrees with the map \(R^\bullet(\{ 1 \}) \to R^\bullet(G) \) which is rationally bijective if and only if \(G \) itself is trivial. Hence Conjecture 1.5 is not true for non-trivial finite groups.

1.1.4 The Baum-Connes Conjecture

What is going wrong? The sequences (1.1) and (1.2) do exist regardless whether the groups are torsionfree or not. More generally, if \(G \) acts on a tree, then they can be combined to compute the \(K \)-theory \(K^*_\ast(C^*_r(G)) \) of a group \(G \) by a certain Mayer-Vietoris sequence from the stabilizers of the vertices and edges, see Pimsner \[730\] Theorem 18 on page 632)). In the special case, where all stabilizers are finite, one sees that \(K^*_\ast(C^*_r(G)) \) is built by the topological \(K \)-theory of the finite subgroups of \(G \) in a homological fashion. This leads to the idea that \(K^*_\ast(C^*_r(G)) \) can be computed in a homological way, but the building blocks do not only consist of \(K^*_\ast(C^*_r(\{ 1 \})) \) alone but
of $K_\ast(C^\ast_r(H))$ for all finite subgroups $H \subseteq G$. This suggest to study *equivariant topological K-theory*. It assigns to every proper G-CW-complex X a sequence of abelian groups $K_n^G(X)$ for $n \in \mathbb{Z}$ such that G-homotopy invariance holds and Mayer-Vietoris sequences exist. A proper G-CW-complex is a CW-complex with G-action such that for $g \in G$ and every open cell e with $e \cap g \cdot e \neq \emptyset$ we have $gx = x$ for all $x \in e$ and all isotropy groups are finite. Two interesting features are that $K_n^G(G/H)$ agrees with $K_n(C^\ast_r(H))$ for every finite subgroup $H \subseteq G$ and that for a free G-CW-complex X and $n \in \mathbb{Z}$ we have a natural isomorphism $K_n^G(X) \xrightarrow{\sim} K_n(G\backslash X)$. Recall that EG is a free G-CW-complex which is contractible and that $EG \to G\backslash EG = BG$ is the universal covering of BG. We can reformulate Conjecture 1.5 by stating an isomorphism

$$K_n^G(EG) \xrightarrow{\sim} K_n(C^\ast_r(G)).$$

Now suppose that G acts on a tree T with finite stabilizers. Then the computation of Pimsner [730, Theorem 18 on page 632]) mentioned above can be rephrased to the statement that there is an isomorphism

$$K_n^G(T) \xrightarrow{\sim} K_n(C^\ast_r(G)).$$

In particular the left hand side is independent of the tree T on which G acts by finite stabilizers. This can be explained as follows. It is known that for every finite subgroup $H \subseteq G$ the H-fixed point set T is again a non-empty tree and hence contractible. This implies that two trees T_1 and T_2 on which G acts with finite stabilizers are G-homotopy equivalent and hence have the same equivariant topological K-theory. The same remark applies to $K_n(BG)$ and $K_n(EG)$, namely, two models for BG are homotopy equivalent and two models for EG are G-homotopy equivalent and therefore $K_n(BG)$ and $K_n^G(EG)$ are independent of the choice of a model. This leads to the idea to look for an appropriate proper G-CW-complex EG which is characterized by a certain universal property and is unique up to G-homotopy such that for a torsionfree group G we have $EG = E\bar{G}$ and for a tree on which G acts with finite stabilizers we have $E\bar{G} = T$ and that there is an isomorphism

$$K_n^G(E\bar{G}) \xrightarrow{\sim} K_n(C^\ast_r(G)).$$

In particular for a finite group we would like to have $E\bar{G} = G/G = \{\bullet\}$ and then the desired isomorphism above is true for trivial reasons. Recall that EG is characterized up to G-homotopy by the property that it is a G-CW-complex such that EG^H is empty for $H \neq \{1\}$ and is contractible for $H = \{1\}$. Having the case of a tree on which G acts with finite stabilizers in mind, we define the classifying space for proper G-actions $E\bar{G}$ to be a G-CW-complex such that $E\bar{G}^H$ is empty for $|H| = \infty$ and is contractible for $|H| < \infty$. Indeed two models for $E\bar{G}$ are G-homotopy equivalent, a tree on which G acts with finite stabilizers is a model for $E\bar{G}$, we have $EG = E\bar{G}$ if
and only if G is torsionfree and $\underline{EG} = G/G = \{\bullet\}$ if and only if G is finite. This leads to the following

Conjecture 1.6 (Baum-Connes Conjecture). Let G be a group. Then there is for all $n \in \mathbb{Z}$ an isomorphism called *assembly map*

$$K_n^G(\underline{EG}) \xrightarrow{\cong} K_n(C^*_r(G)).$$

The conjecture above makes sense for all groups, and no counterexamples are known at the time of writing. This conjecture reduces in the torsionfree case to Conjecture 1.5 and is consistent with the results by Pimsner [730, Theorem 18 on page 632] for G-acting on a tree with finite stabilizers. It is also true for finite groups G. Pimsner’s result does hold more generally for groups acting on trees with not necessarily finite stabilizers. So one should get the analogous result for the left hand side of the isomorphism appearing in the Baum-Connes Conjecture 1.6. Essentially this boils down to the question, whether the analogues of the long exact sequences \([1.1]\) and \([1.2]\) holds for the left side of the isomorphism appearing in the Baum-Connes Conjecture 1.6. This follows for \([1.1]\) from the fact that for $G = G_1 *_{G_0} G_2$ one can find appropriate models for the classifying spaces for proper G-actions such that there is a G-pushout of inclusions of proper G-CW-complexes

\[
\begin{array}{ccc}
G \times_{G_0} E_{G_0} & \longrightarrow & G \times_{G_1} E_{G_1} \\
\downarrow & & \downarrow \\
G \times_{G_2} E_{G_2} & \longrightarrow & E_G
\end{array}
\]

and for a subgroup $H \subseteq G$ and a proper H-CW-complex X there is a natural isomorphism

$$K_n^H(X) \xrightarrow{\cong} K_n^G(G \times_H X).$$

Thus the associated long exact Mayer-Vietoris sequence yields the long exact sequence

$$\cdots \xrightarrow{\partial_{n+1}} K_n^{G_0}(E_{G_0}) \rightarrow K_n^{G_1}(E_{G_1}) \oplus K_n^{G_2}(E_{G_2}) \rightarrow K_n^G(EG) \xrightarrow{\partial_n} K_{n-1}^{G_0}(E_{G_0}) \rightarrow K_{n-1}^{G_1}(E_{G_1}) \oplus K_{n-1}^{G_2}(E_{G_2}) \rightarrow K_{n-1}^G(EG) \rightarrow \cdots$$

which corresponds to \([1.1]\). For \([1.2]\) one uses fact that for a group automorphism $\phi: G \rightarrow G$ the $G \rtimes_\phi \mathbb{Z}$-CW-complex given by the to both sides infinite mapping telescope of the ϕ-equivariant map $\underline{E\phi}: \underline{EG} \rightarrow \underline{EG}$ is a model for $\underline{E}(G \rtimes_\phi \mathbb{Z})$.

In general $K_n^G(\underline{EG})$ is much bigger than $K_n^G(EG) \cong K_n(BG)$ and the canonical map $K_n^G(EG) \rightarrow K_n^G(\underline{EG})$ is rationally injective but not necessarily integrally injective.
1.2 Motivation for the Farrell-Jones Conjecture for K-Theory

1.1.5 Reduced versus Maximal Group C^*-Algebras

All the arguments above do also apply to the maximal group C^*-algebra which does even have better functorial properties than the reduced group C^*-algebra. So a priori one may think that one should use the maximal group C^*-algebra instead of the reduced one. However, the version for the maximal group C^*-algebra is not true in general and the version for the reduced group C^*-algebra seems to be the right one. This will be discussed in more detail in subsection 13.5.1.

If one considers instead of the reduced group C^*-algebra the Banach group algebra $l^1(G)$, one obtains the Bost Conjecture 13.23.

1.1.6 Applications of the Baum-Connes Conjecture

The assembly map appearing in the Baum-Connes Conjecture 1.6 has an index theoretic interpretation. An element in $K^0_G(EG)$ can be represented by a pair (M, P^*) consisting of a cocompact proper smooth n-dimensional G-manifold M with a G-invariant Riemannian metric together with an elliptic G-complex P^* of differential operators of order 1 on M and its image under the assembly map is a certain equivariant index $\text{ind}_{C^*_r(G)}(M, P^*)$ in $K_n(C^*_r(G))$. There are many important consequences of the Baum-Connes Conjecture such as the Kadison Conjecture, see Subsection 9.4.2, the stable Gromov-Lawson-Rosenberg Conjecture, see Subsection 13.8.2, Novikov Conjecture, see Section 8.14, and the (Modified) Trace Conjecture, see Subsections 9.4.1 and 13.8.1.

A summary of all the application of the Baum-Connes Conjecture is given in Section 13.8.

1.2 Motivation for the Farrell-Jones Conjecture for K-Theory

Next we want to deal with the algebraic K-groups $K_n(RG)$ of the group ring RG of a group G with coefficients in an associative ring R with unit.

1.2.1 Algebraic K-Theory of Group Rings

For an associative ring with unit R one defines $K_0(R)$ to be the projective class group of R and $K_1(R)$ to be the abelianization of $\text{GL}(R) = \text{colim}_{n \to \infty} \text{GL}_n(R)$. The higher algebraic K-groups $K_n(R)$ for $n \geq 1$ are the
homotopy group groups of a certain K-theory space associated to the category of finitely generated projective R-modules. One can define negative K-groups $K_n(R)$ for $n \leq -1$ by a certain contracting procedure applied to $K_0(R)$. Finally there exists a K-theory spectrum $K(R)$ such that $\pi_n(K(R)) = K_n(R)$ for all $n \in \mathbb{Z}$. If $\mathbb{Z} \to R$ is the obvious ring map sending n to $n \cdot 1_R$, then one defines the reduced K-groups to be the cokernel of the induced map $K_n(\mathbb{Z}) \to K_n(R)$. The Whitehead group $Wh(G)$ of a group G is the quotient of $K_1(\mathbb{Z}G)$ by elements given by $(1,1)$-matrices of the shape $(\pm g)$ for $g \in G$.

The reduced projective class group $\tilde{K}_0(\mathbb{Z}G)$ is the recipient for the finiteness obstruction of a finitely dominated CW-complex X with fundamental group $G = \pi_1(X)$. Finitely dominated means that there is a finite CW-complex Y and maps $i: X \to Y$ and $r: Y \to X$ such that $r \circ i$ is homotopic to the identity on X. The Whitehead group $Wh(G)$ is the recipient of the Whitehead torsion of a homotopy equivalence of finitely dominated CW-complexes and of a compact h-cobordism over a closed manifold with fundamental group G. An h-cobordism W over M consists of a manifold W whose boundary is the disjoint union $\partial W = \partial_0 W \bigsqcup \partial_1 W$ such that both inclusions $\partial_i W \to W$ are homotopy equivalences together with a diffeomorphism $M \cong \partial_0 W$. The finiteness obstruction and the Whitehead torsion are very important topological obstructions whose vanishing has interesting geometric consequences. The vanishing of the finiteness obstruction says that the finitely dominated CW-complex under consideration is homotopy equivalent to a finite CW-complex. The vanishing of the Whitehead torsion of a compact h-cobordism W over M of dimension ≥ 6 implies that the W is trivial, i.e., is diffeomorphic to a cylinder $M \times [0,1]$ relative $M = M \times \{0\}$. This explains why topologists are interested in $K_n(\mathbb{Z}G)$ for groups G.

1.2.2 Appearance of Nil-Terms

The situation for algebraic K-theory of RG is more complicated than the one for the topological K-theory of $C^*_r(G)$. As a special case of the sequence (1.2) we obtain an isomorphism

$$K_n(C^*_r(G \times \mathbb{Z})) = K_n(C^*_r(G)) \oplus K_{n-1}(C^*_r(G)).$$

For algebraic K-theory the analogue is the Bass-Heller-Swan decomposition

$$K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R) \oplus NK_n(R) \oplus NK_n(R),$$

where certain additional terms, the Nil-terms $NK_n(R)$ appear. If one replaces R by RG, one gets

$$K_n(R[G \times \mathbb{Z}]) \cong K_n(RG) \oplus K_{n-1}(RG) \oplus NK_n(RG) \oplus NK_n(RG).$$
Such correction terms in form of Nil-terms appear also, when one wants to get analogues of the sequences \((1.1)\) and \((1.2)\) for algebraic \(K\)-theory, see Section 6.9.

1.2.3 The Farrell-Jones Conjecture for \(K_*(RG)\) for Regular Rings and Torsionfree Groups

Let \(R\) be a regular ring, i.e., it is Noetherian and every \(R\)-module possesses a finite dimensional projective resolution. For instance, any principal ideal domain is a regular ring. Then one can prove in many cases for torsionfree groups that the analogues of the sequences \((1.1)\) and \((1.2)\) do hold for algebraic \(K\)-theory, see Waldhausen [886] and [889]. The same reasoning as in the Baum-Connes Conjecture for torsionfree groups leads to

Conjecture 1.7. (Farrell-Jones Conjecture for \(K_*(RG)\) for torsionfree groups and regular rings). Let \(G\) be a torsionfree group and let \(R\) be a regular ring. Then there is for \(n \in \mathbb{Z}\) an isomorphism

\[
H_n(BG; K(R)) \cong K_n(RG).
\]

Here \(H_*(-; K(R))\) is the homology theory associated to the \(K\)-theory spectrum of \(R\). It is a homology theory with the property that \(H_n(\{\bullet\}; K(R)) = \pi_n(K(R)) = K_n(R)\) for \(n \in \mathbb{Z}\).

1.2.4 The Farrell-Jones Conjecture for \(K_*(RG)\) for Regular Rings

If one drops the condition that \(G\) is torsionfree but requires that the order of every finite subgroup of \(G\) is invertible in \(R\), then one still can prove in many cases that the analogues of the sequences \((1.1)\) and \((1.2)\) do hold for algebraic \(K\)-theory. The same reasoning as in the Baum-Connes Conjecture leads to

Conjecture 1.8. (Farrell-Jones Conjecture for \(K_*(RG)\) for regular rings). Let \(G\) be a group. Let \(R\) be a regular ring such that \(|H|\) is invertible in \(R\) for every finite subgroup \(H \subseteq G\). Then there is an isomorphism

\[
H_n^G(EG; K_R) \cong K_n(RG).
\]

Here \(H_n^G(-; K_R)\) is an appropriate \(G\)-homology theory with the property that \(H_n^G(G/H; K_R) \cong H_n^H(\{\bullet\}; K_R) \cong K_n(RH)\) for every subgroup \(H \subseteq G\) and the isomorphism above is induced by the \(G\)-map \(EG \to \{\bullet\}\). Conjecture 1.8 reduces to Conjecture 1.7 if \(G\) is torsionfree.
1.2.5 The Farrell-Jones Conjecture for $K_\ast(RG)$

Conjecture 1.7 can be applied in the case $R = \mathbb{Z}$ what is not true for Conjecture 1.8. So what is the right formulation for arbitrary rings R? The idea is that one does not only need to take all finite subgroups into account but also all virtually cyclic subgroups. A group is called virtually cyclic if it is finite or contains \mathbb{Z} as subgroup of finite index. Namely, let $EG = E_{VCY}(G)$ be the classifying space for the family of virtually cyclic subgroups, i.e., a G-CW-complex EG such that EG^H is contractible for every virtually cyclic subgroup $H \subseteq G$ and is empty for every subgroup $H \subseteq G$ which is not virtually cyclic. The G-space EG is unique up to G-homotopy.

Conjecture 1.9. (Farrell-Jones Conjecture for $K_\ast(RG)$). Let G be a group. Let R be an associative ring with unit. Then there is for all $n \in \mathbb{Z}$ an isomorphism called assembly map which is induced by the G-map $EG \to \{\bullet\}$

$$H^G_n(EG; K_R) \cong K_n(RG).$$

The conjecture above makes sense for all groups and rings, and no counterexamples are known at the time of writing. We have absorbed all the Nil-phenomena into the source by replacing EG by EG. There is a certain prize to pay, since often there are nice small geometric models for EG, whereas the spaces EG are much harder to analyze and are in general huge. There are up to G-homotopy unique G-maps $EG \to EG$ and $EG \to EG$ which yield maps

$$H_n(BG; K(R)) \cong H^G_n(EG; K_R) \to H^G_n(EG; K_R) \to H^G_n(EG; K_R).$$

We will later see that there is a splitting, see Theorem 12.29

$$H^G_n(EG; K_R) \cong H^G_n(EG; K_R) \oplus H^G_n(EG, EG; K_R),$$

where $H^G_n(EG; K_R)$ is the comparatively easy homological part and all Nil-type information is contained in $H^G_n(EG, EG; K_R)$. If R is regular and the order of any finite subgroup of G is invertible in R, then $H^G_n(EG, EG; K_R)$ is trivial and hence the natural map $H^G_n(EG; K_R) \cong H^G_n(EG; K_R)$ is bijective. Therefore Conjecture 1.9 reduces to Conjecture 1.7 and Conjecture 1.8 when they apply.

In the Baum-Connes setting the natural map $K^G_n(EG) \cong K^G_n(EG)$ is always bijective.
1.3 Motivation for the Farrell-Jones Conjecture for L-Theory

1.2.6 Applications of the Farrell-Jones Conjecture for $K_\ast(RG)$

Since $K_n(\mathbb{Z}) = 0$ for $n \leq -1$ and the maps $\mathbb{Z} \xrightarrow{\sim} K_0(\mathbb{Z})$, which sends n to the class of \mathbb{Z}^n, and $\{\pm 1\} \rightarrow K_1(\mathbb{Z})$, which sends ± 1 to the class of the $(1,1)$-matrix (± 1), are bijective, an easy spectral sequence argument shows that Conjecture 1.7 implies Conjecture 1.11. (Farrell-Jones Conjecture $K_n(\mathbb{Z}G)$ in dimensions $n \leq 1$). Let G be a torsionfree group. Then $\tilde{K}_n(\mathbb{Z}G) = 0$ for $n \in \mathbb{Z}, n \leq 0$ and $\text{Wh}(G) = 0$.

In particular the finiteness obstruction and the Whitehead torsion are always zero for torsionfree fundamental groups. This implies in particular that every h-cobordism over a simply connected d-dimensional closed manifold for $d \geq 5$ is trivial and thus the Poincaré Conjecture in dimensions ≥ 6 (and with some extra effort also in dimension $d = 5$). This will be explained in Section 3.5. The Farrell-Jones Conjecture for K-theory 1.9 implies the Bass Conjecture, see Section 2.10. The Kaplansky Conjecture follows from the Farrell-Jones Conjecture for K-theory 1.7 as explained in Section 2.9. Further applications of the Farrell-Jones Conjecture for K-theory 1.9, e.g., to pseudo-isotopy and to automorphisms of manifolds, will be discussed in Section 8.21.

A summary of all the application of the Farrell-Jones Conjecture is given in Section 12.11.

1.3 Motivation for the Farrell-Jones Conjecture for L-Theory

Next we want to deal with the algebraic L-groups $L_h^n(RG)$ of the group ring RG of a group G with coefficients in an associative ring R with unit and involution.

1.3.1 Algebraic L-Theory of Group Rings

Let R be an associative ring with unit. An involution of rings $R \rightarrow R$, $r \mapsto \overline{r}$ on R is a map satisfying $\overline{r+s} = \overline{r} + \overline{s}$, $\overline{rs} = \overline{r}\overline{s}$, $\overline{0} = 0$, $\overline{1} = 1$ and $\overline{r} = r$ for all $r,s \in R$. Given a ring with involution, the group ring RG inherits an involution by $\sum_{g \in G} r_g \cdot g = \sum_{g \in G} \overline{r} \cdot g^{-1}$. If the coefficient ring R is commutative, we usually use the trivial involution $\overline{r} = r$. Given a ring with involution, one can associate to it quadratic L-groups $L_h^n(R)$ for $n \in \mathbb{Z}$. The abelian group $L_h^0(R)$ can be identified with the Witt group of quadratic forms on finitely generated free R-modules, where every hyperbolic quadratic
forms represent the zero element and the addition is given by the orthogonal sum of quadratic forms. The abelian group $L^h_n(R)$ is essentially given by the skew-symmetric versions. One defines $L^h_1(R)$ and $L^h_3(R)$ in terms of automorphism of quadratic forms. The L-groups are four-periodic, i.e., there is a natural isomorphism $L^h_n(R) \cong L^h_{n+4}(R)$ for $n \in \mathbb{Z}$. If one uses finitely generated projective R-modules instead of finitely generated free R-modules, one obtains the quadratic L-groups $L^p_n(RG)$ for $n \in \mathbb{Z}$. If one uses finitely generated based free RG-modules and takes the Whitehead torsion into account, then one obtains the quadratic L-groups $L^s_n(RG)$ for $n \in \mathbb{Z}$. For every $j \in \{-\infty\} \cup \{j \in \mathbb{Z} \mid j \leq 2\}$ there are versions $L^{(j)}_n(RG)$, where (j) is called decoration. The decorations $j = 0, 1$ correspond to the decorations p, h and $j = 2$ is related to the decoration s.

The relevance of the L-groups comes from the fact that they are the recipients for various surgery obstructions. The fundamental surgery problem is the following. Consider a map $f : M \to X$ from a closed manifold M to a finite Poincaré complex X. We want to know whether we can change it by a process called surgery to a map $g : N \to X$ with a closed manifold N as source and the same target such that g is a homotopy equivalence. This can answer the question whether a finite Poincaré complex X is homotopy equivalent to a closed manifold. Note that a space which is homotopy equivalent to a closed manifold must be a finite Poincaré complex but not every finite Poincaré complex is homotopy equivalent to a closed manifold. If f comes with additional bundle data and has degree 1, we can find g if and only if the so called surgery obstruction of f vanishes which takes values in $L^h_n(ZG)$ for $n = \dim(X)$ and $G = \pi_1(X)$. If we want g to be a simple homotopy equivalence, the obstruction lives in $L^s_n(ZG)$. We see that analogous to the finiteness obstruction in $\tilde{K}_0(ZG)$ and the Whitehead torsion in $Wh(G)$ the algebraic L-groups are the recipients for important obstructions whose vanishing has interesting geometric consequences. Also the question whether two closed manifolds are diffeomorphic or homeomorphic can be decided via surgery theory of which the L-groups are a part.

1.3.2 The Farrell-Jones Conjecture for $L_*(RG)[1/2]$

If we invert 2, i.e., if we consider the localization $L^{(-j)}_n(RG)[1/2]$, then there is no difference between the various decorations and the analogues of the sequences (1.1) and (1.2) are true for L-theory, see Cappell [181]. The same reasoning as for the Baum-Connes Conjecture leads to

Conjecture 1.12. (Farrell-Jones Conjecture for $L_*(RG)[1/2]$). Let G be a group. Let R be an associative ring with unit and involution. Then there is for all $n \in \mathbb{Z}$ and all decorations j an isomorphism
1.3 Motivation for the Farrell-Jones Conjecture for L-Theory

Here $H^G_n(\mathbb{L}^{j}(\mathbb{Z});L^j(R))$ is an appropriate G-homology theory with the property that $H^G_n(G/H;L^j(R)) \cong H^H_n(\mathbb{L}^{j}_{\mathbb{R}};L^j(RH))$ for every subgroup $H \subseteq G$ and the isomorphism is induced by the G-map $E \rightarrow \{\bullet\}$.

1.3.3 The Farrell-Jones Conjecture for $L_*(RG)$

In general the L-groups $L^j_n(RG)$ do depend on the decoration and often the 2-torsion carries sophisticated information and is hard to handle. Recall that as a special case of the sequence (1.2) we obtain an isomorphism

$$K_n(C^*_r(G \times \mathbb{Z})) = K_n(C^*_r(G)) \oplus K_{n-1}(C^*_r(G)).$$

The L-theory analogues is given by the Shaneson splitting [827]

$$L^j_n(R(\mathbb{Z})) \cong L^{j-1}_{n-1}(R) \oplus L^j_n(R).$$

Here for the decoration $j = -\infty$ one has to interpret $j - 1$ as $-\infty$. Since S^1 is a model for $B\mathbb{Z}$, we get an isomorphisms

$$H_n(B\mathbb{Z};L^j_n(R)) \cong L^j_n(R) \oplus L^j_n(R).$$

Therefore the decoration $-\infty$ shows the right homological behavior and is the right candidate for the formulation of an isomorphism conjecture.

The analogues of the sequences (1.1) and (1.2) do not hold for $L^j_*(RG)$, certain correction terms, the UNil-terms come in, which are independent of the decoration and are always 2-torsion, see Cappell [180], [181]. As in the algebraic K-theory case this leads to the following

Conjecture 1.13. (Farrell-Jones Conjecture for $L_*(RG)$). Let G be a group. Let R be an associative ring with unit and involution. Then there is for all $n \in \mathbb{Z}$ an isomorphism called *assembly map*

$$H^G_n(\mathbb{L}^{(-\infty)};L^j_{\mathbb{R}}(\mathbb{Z})) \cong L^j_n((\mathbb{R}^\times) \oplus R).$$

Here $H^G_n(\mathbb{L}^{(-\infty)};L^j_{\mathbb{R}}(\mathbb{Z}))$ is an appropriate G-homology theory with the property that $H^G_n(G/H;L^j_{\mathbb{R}}(\mathbb{Z})) \cong H^H_n(\mathbb{L}^{j}_{\mathbb{R}};L^j(RH))$ for every subgroup $H \subseteq G$, and the assembly map is induced by the map $E \rightarrow \{\bullet\}$. The conjecture above makes sense for all groups and rings with involution, and no counterexamples are known at the time of writing.

After inverting 2 Conjecture 1.13 is equivalent to Conjecture 1.12.

There is an L-theory version of the splitting (1.10)

\[H^G_n(\mathbb{L}^{(-\infty)};L^j_{\mathbb{R}}(\mathbb{Z})) \cong L^j_n((\mathbb{R}^\times) \oplus R). \]
(1.14) \[H^G_n(EG; L^{(-\infty)}_R) \cong H^G_n(EG; L^{(-\infty)}_R) \oplus H^G_n(EG, EG; L^{(-\infty)}_R), \]

provided that there exists an integer \(i_0 \) such that \(K_i(RV) = 0 \) holds for all virtually cyclic subgroups \(V \subseteq G \) and \(i \leq i_0 \).

1.3.4 Applications of the Farrell-Jones Conjecture for \(L_*(RG) \)

For applications in geometry the groups \(L^*_n(ZG) \) are the interesting ones. The difference between the various decorations is measured by the so called Rothenberg sequences and given in terms of the Tate cohomology of \(\mathbb{Z}/2 \) with coefficients in \(\tilde{K}_n(ZG) \) for \(n \leq 0 \) and \(Wh(G) \) with respect to the involution coming from the involution on the group ring \(ZG \). Hence the decorations do not matter if \(\tilde{K}_n(ZG) \) for \(n \leq 0 \) and \(Wh(G) \) vanish. This leads in view of Conjecture 1.11 to the following version of Conjecture 1.13 for torsionfree groups

Conjecture 1.15. (Farrell-Jones Conjecture for \(L_*(ZG) \) for torsion-free groups). Let \(G \) be a torsionfree group. Then there is for \(n \in \mathbb{Z} \) and all decorations \(j \) an isomorphism

\[H_n(BG; L^{(j)}(Z)) \cong L_n^{(j)}(RG) \]

and the source, target and the map itself are independent of the decoration \(j \).

Here \(H_n(\ast; L^{(j)}(Z)) \) is the homology theory associated to the \(L \)-theory spectrum \(L^{(j)}(Z) \) and satisfies \(H_n(\ast; L^{(j)}(Z)) \cong \pi_n(L^{(j)}(Z)) \cong L_n^{(j)}(Z) \).

The \(L \)-theoretic assembly map appearing in Conjecture 1.15 has a geometric meaning. It appears in the so called long exact surgery sequence. Let \(L^*(Z)(1) \) be the 1-connected cover \(L^*(Z)(1) \) of \(L^*(Z) \). There is a canonical map \(\iota: H_n(BG; L^*(Z)(1)) \to H_n(BG; L^*(Z)) \). Let \(N \) be an aspherical oriented closed manifold with fundamental group \(G \), i.e., an oriented closed manifold homotopy equivalent to \(BG \). Then \(G \) is torsionfree, the source of the composite \(H_n(BG; L^*(Z)(1)) \to L_n^*(RG) \) of the assembly map Conjecture 1.15 with \(\iota \) consists of bordism classes of normal maps \(M \to N \) with \(N \) as target and the composite sends such a normal map to its surgery obstruction. This is analogous to the Baum-Connes setting, where the assembly map can be described by assigning to an equivariant index problem its index.

The third term in the surgery sequence is given by the so called structure set of \(N \). It is the set of equivalence classes of homotopy equivalences \(f_0: M_0 \to N \) with a closed topological manifold as source and \(N \) as target, where \(f_0: M_0 \to N \) and \(f_1: M_1 \to N \) are equivalent if there is a homeomorphism \(g: M_0 \to M_1 \) such that \(f_1 \circ g \) and \(f_0 \) are homotopic. Conjecture 1.15 implies that this structure set is trivial provided that the dimension of \(N \) is...
greater or equal to five. Hence Conjecture 1.15 implies in dimensions ≥ 5 the famous

Conjecture 1.16 (Borel Conjecture). Let M and N be two aspherical closed topological manifolds whose fundamental groups are isomorphic. Then they are homeomorphic and every homotopy equivalence from M to N is homotopic to a homeomorphism.

The Borel Conjecture is a topological rigidity theorem for aspherical closed manifolds and analogous to the Mostow Rigidity Theorem which says that two hyperbolic closed Riemannian manifolds with isomorphic fundamental groups are isometrically diffeomorphic. The Borel Conjecture is false if one replaces topological manifold by smooth manifold and homeomorphism by diffeomorphism. The connection to the Borel Conjecture is one of the main features of the Farrell-Jones Conjecture. More details will be given in Subsections 8.15.2 and 8.15.3.

The Farrell-Jones Conjecture for L-theory 1.13 implies the Novikov Conjecture, see Section 8.14. It also has applications to the problem whether Poincaré duality groups and torsionfree hyperbolic groups with spheres as boundary are fundamental groups of aspherical closed manifolds, see Sections 8.17 and 8.18. Product decompositions of aspherical closed manifolds are treated in Section 8.20.

A summary of all the application of the Farrell-Jones Conjecture is given in Section 12.11.

1.4 Status of the Baum-Connes and the Farrell-Jones Conjecture

A detailed report on the groups for which these conjectures are been proved will be given in Chapter 15. For example, the Baum-Connes Conjecture 1.6 is known for a class of groups which includes amenable groups, hyperbolic groups, knot groups and one-relator groups, but is open for $SL(n, \mathbb{Z})$ for $n \geq 3$.

The class of groups for which the Farrell-Jones Conjectures 1.9 and 1.13 have been proved contains hyperbolic groups, CAT(0)-groups, fundamental groups of 3-manifolds, solvable groups, lattices in almost connected Lie groups and arithmetic groups, but they are open for amenable groups in general. If one allows twisted coefficients, one can prove for the Baum-Connes Conjecture and the Farrell-Jones Conjecture inheritance properties, e.g., the class of groups for which they are true is closed under taking subgroups, finite direct products, free products, directed colimits over directed systems, whose structure map are injective in the Baum-Connes case and can be arbitrary in the Farrell-Jones case. This will be explained in Sections 12.6 and 13.6.

The Farrell-Jones Conjecture (with coefficients) is known to be true for some groups with unusual properties, e.g., groups with expanders, Tarsky
monsters, lacunary groups, subgroups of finite products of hyperbolic groups, selfsimilar groups, see Theorem 15.1. At the time of writing we have no specific candidate of a group or of a general property of groups such that the Farrell-Jones Conjecture (with twisted coefficients) or one of its consequences, e.g., the Novikov Conjecture and the Borel Conjecture, might be false. So we have no good starting point for a search for counterexamples, see Section 15.10. Finding a counterexample will probably require some new ideas, maybe from logic or random groups.

At the time of writing no counterexamples to the Baum-Connes Conjecture is known to the author. There exists a counterexample to the Baum-Connes Conjecture with coefficients, as explained in Section 15.10.

1.5 Structural Aspects

1.5.1 The Meta-Isomorphism Conjecture

The formulations of the Baum-Connes Conjecture 1.6 and of the Farrell-Jones Conjecture 1.9 and 1.13 are very similar in the homological picture. It allows a formulation of the following Meta-Isomorphism Conjecture of which both conjectures are special cases and which has also other very interesting specializations, e.g., for pseudoisotopy, A-theory, topological Hochschild and topological cyclic homology, see Section 14.2.

Meta-Isomorphism Conjecture 1.17. Given a group G, a G-homology theory \mathcal{H}_G^* and a family F of subgroups of G, we say that the Meta-Isomorphism Conjecture is satisfied, if the G-map $E_F(G) \to \{\bullet\}$ induces for all $n \in \mathbb{Z}$ an isomorphism

$$A_F : \mathcal{H}_n^G(E_F(G)) \to \mathcal{H}_n^G(\{\bullet\}).$$

This general formulation is an excellent framework to construct transformations from one conjecture to the other. For instance, the cyclotomic trace relates the K-theoretic Farrell-Jones Conjecture with coefficients in \mathbb{Z} to the Isomorphism Conjecture for topological cyclic homology, see Subsection 14.14.3 and via symmetric signatures one can link the Farrell-Jones Conjecture for algebraic L-theory with coefficient in \mathbb{Z} to the Baum-Connes Conjecture, see Subsection 14.14.4. Moreover, basic computational tools and techniques for equivariant homology theories apply both to the Baum-Connes Conjecture 1.6 and the Farrell-Jones Conjectures 1.9 and 1.13.
1.6 Computational Aspects

1.5.2 Assembly

One important idea is the assembly principle which leads to assembly maps in a canonical and universal way by asking for the best approximation of a homotopy invariant functor from G-spaces to spectra by an equivariant homology theory. It is an important ingredient for the identification of the various descriptions of assembly maps appearing in the Baum-Connes Conjecture and the Farrell-Jones Conjecture. For instance, the assembly map appearing in Baum-Connes Conjecture 1.6 can be interpreted as assigning to an appropriate equivariant elliptic complex its equivariant index, and the assembly map appearing in the L-theoretic Farrell-Jones Conjecture 1.13 is related to the map appearing the surgery sequence which assigns to a surgery problem its surgery obstruction. We have already explained above that these identification are the basis for some of applications of the Isomorphisms Conjectures and we will see that there are also important for proofs. There is a homotopy theoretic approach to the assembly map based on homotopy colimits over the orbit category which motivates the name assembly. All this will be explained in Chapter 17.

This parallel treatment of the Baum-Connes Conjecture and the Farrell-Jones Conjecture and of other variants is one of the topics of this book. However, the geometric interpretations of the assembly maps in terms of indices, surgery obstructions or forget control are quite different. Therefore the methods of proof for the Farrell-Jones Conjecture and the Baum-Connes Conjecture use different input. Although there are some similarities in the proofs, its is not clear how to export methods of proof from one conjecture to the other.

1.6 Computational Aspects

In general the target $K_n(C^*_r(G))$ of the assembly map appearing in the Baum-Connes Conjecture 1.6 is very hard to compute, whereas the source $K^G_n(EG)$ is much more accessible, because one can apply standard techniques from algebraic topology such as spectral sequences and equivariant Chern characters and there are often nice small geometric models for EG. For the Farrell-Jones Conjecture 1.9 and 1.13 this holds for the part $H^G_n(EG; K_R)$ or $H^G_n(EG; L^\langle -\infty \rangle_R)$ respectively appearing in the splittings (1.10) and (1.14).

The other part $H^G_n(EG, EG; K_R)$ or $H^G_n(EG, EG; L^\langle -\infty \rangle_R)$ is harder to handle since it involves Nil- or UNil-terms respectively and the G-CW-complex EG is not proper and in general huge. Most of the known computations of $K_n(C^*_r(G))$, $K_n(RG)$ and $L^i_{(j)}(RG)$ are based on the Baum-Connes Conjecture 1.6 and the Farrell-Jones Conjecture 1.9 and 1.13.
Classifications of manifolds and of C^*-algebras rely on and thus motivate explicit calculations of K- and L-groups. In this context it is often important, not only to determine the K- and L-groups abstractly, but to develop detection techniques so that one can identify or distinguish specific elements associated to the original classification problem or give geometric or index-theoretic interpretations to elements in the K- and L-groups.

A general guide for computations and a list of known cases including applications to classification problems will be given in Chapter 16.

1.7 Methods of Proof

Comment 3: This section is under construction and will be completed after Part III is finished. Here is a brief discussion of the methods of proofs.

1.7.1 Controlled Topology Methods

For the Farrell-Jones Conjecture 1.9 and 1.13 controlled topology and controlled algebra is one of the main important tools. Here the basic idea is that geometric objects or algebraic objects come with a reference map to a metric space so that one can measure sizes. For instance, for an h-cobordism one wants to measure the size of handles. In algebra one considers geometric modules which assign to each point in a metric space a finitely generated \mathbb{Z}-module with a basis such that the non-trivial modules are distributed in a locally finite way. A typical transition from geometry to algebra would be to assign to an h-cobordism the cellular chain complex coming from a handlebody decomposition but taking into account, where the handle sits.

One of the basic features of a homology theory is excision. It often comes from the fact that a representing cycle can be found with arbitrarily good control. An example is the technique of subdivision. It allows to make the representing cycles for simplicial or singular homology arbitrarily small controlled, i.e., the diameter of any simplex appearing with non-zero coefficient is very small. One may say that requiring control conditions amounts to implementing homological properties. In agreement with the assembly principle above, the assembly map can be viewed as a forget control map.

With this interpretation it is clear what the main task in the proof of surjectivity of the assembly map is: achieve control, i.e., manipulate cycles without changing their homology class so that they become sufficiently controlled. There is a general principle that a proof of surjectivity also gives injectivity. Namely, proving injectivity means that one must construct a cycle whose boundary is a given cycle, i.e., one has to solve a surjectivity problem in a relative situation,
1.7 Methods of Proof

Comment 4: We should say something about the axiomatic approach.

1.7.2 Coverings, Flow Spaces and Transfer

In order to get control one needs some geometric input from the groups, for instance, to be the fundamental group of a closed negatively curved Riemannian manifold. Often flows and transfer maps are used to improve control. In a case of a closed negatively curved Riemannian manifold the transfer is used to pass from the manifold to its sphere tangent bundle and then use the geodesic flow which is available on the sphere tangent bundle but not on the manifold itself. When one wants to deal with more general groups, one has to extend these methods to much more singular spaces such as CAT(0)-spaces. These techniques will be explained in Comment 5: Add reference.

1.7.3 Analytic Methods

The main methods of proof for the Baum-Connes Conjecture 1.6 are of analytic nature. In particular the Dirac-Dual Dirac method is very important. The main input will be Kasparov’s equivariant KK-theory and the Kasparov product. They allow to define the assembly map appearing in the Baum-Connes Conjecture 1.6 and its inverse by specifying two elements, the Dirac element and the dual Dirac element, in the equivariant KK-groups and showing that the Kasparov products of these elements is the identity. The construction of these elements requires some input from the group and its geometry or functional analytic properties. For instance, some proofs need actions of the group on Hilbert spaces with certain properties or an appropriate embedding of the group into a Hilbert space. This will be explained in more detail in Comment 6: Add reference.

1.7.4 Cyclic Methods

There are also homotopy theoretic approaches to a proof of the the Farrell-Jones Conjecture, at least to injectivity results about the assembly map. They aim at constructing detection maps from the target of the conjectures to a more familiar object. A prototype is the Dennis-trace map which allows to detect parts of the algebraic K-theory in Hochschild homology. The Dennis trace map is of linear nature. A much more advanced tool to detect the algebraic K-theory is the cyclotomic trace which takes values in topological cyclic homology. All these constructions are on the level of spectra and cannot
be carried out using chain complexes as in the case of the Dennis trace map and Hochschild homology or related theories such as cyclic homology. These methods can be used to get injectivity results but not surjectivity result about the Farrell-Jones assembly map. In order to apply these methods, one does not need geometric input but homotopy theoretic input from the group G such as certain finiteness conditions about the classifying space EG for proper G-actions. For the Baum Connes Conjecture Connes’ cyclic homology and Chern characters are important tools for the proof of injectivity results. All these methods will be discussed in Comment 7: Add reference.

1.8 Are the Baum-Connes Conjecture and the Farrell-Jones Conjecture True in General?

The title of this section is the central and at the time of writing unsolved question. One motivation for writing this monograph is to stimulate some very clever mathematician to work on this problem and finally find an answer. Let us speculate about the possible answer.

We are skeptical about the Baum-Connes Conjecture for two reasons: there are counterexamples for the version with coefficients, and the left side of the Baum-Connes assembly map is functorial under arbitrary group homomorphisms, whereas the right side is not. The Bost Conjecture which predicts an isomorphism

$$K^n_G(EG) \to K_n(l^1(G))$$

has a much better chance to be true in general. The possible failure of the Baum-Connes Conjecture may come from the possible failure of the canonical map $K_n(l^1(G)) \to K_n(C^*_r(G))$ to be bijective.

In spite of the Baum-Connes Conjecture, we do not see an obvious flaw with the Bost Conjecture or the Farrell-Jones Conjecture. As explained above, we have no starting point for a construction of a counterexample, and all abstract properties we know for the right side do hold for the left side of the assembly map and vice versa. In particular for the Bass Conjecture and for the Novikov Conjecture the class of groups for which they are known to be true is impressive. There are some conclusions from the Farrell-Jones Conjecture which are not trivial and true for all groups. These are arguments are in favor of a positive answer.

The following arguments are in favor of a negative answer. The universe of groups is overwhelming large. We have Gromov’s saying on our neck that a statement which is true for all groups is either trivial or false. We have no philosophical reason why the Bost Conjecture or the Farrell-Jones Conjecture should be true.
1.9 Notations and Conventions

The upshot of this discussion is that the author does not believe in the Baum-Connes Conjecture, but sees a chance for the other conjectures, in particular for the Novikov Conjecture, to be true for all groups.

We will elaborate on this discussion in Section 15.10.

1.9 Notations and Conventions

Here is a briefing on our main conventions and notations. Details are of course discussed in the text.

- Ring will mean associative ring with unit unless not explicitly stated differently;
- Module means always left module unless not explicitly stated differently;
- Groups means discrete group unless not explicitly stated differently;
- We will always work in the category of compactly generated spaces, compare [840] and [916, I.4]. In particular every space is automatically Hausdorff;
- For our conventions concerning spectra see Section [11.4] Spectra are denoted with boldface letters such as \mathbb{E};
- We use the standards symbols \mathbb{Z}, \mathbb{Q}, \mathbb{R} and \mathbb{C} for the integers, the rational numbers, the real numbers and the complex numbers. Moreover, we denote

<table>
<thead>
<tr>
<th>symbol</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}/n</td>
<td>finite cyclic group of order n</td>
</tr>
<tr>
<td>S_n</td>
<td>symmetric group of permutations of the set ${1, 2, \ldots n}$</td>
</tr>
<tr>
<td>A_n</td>
<td>alternating group of even permutations of the set ${1, 2, \ldots n}$</td>
</tr>
<tr>
<td>D_∞</td>
<td>infinite dihedral group</td>
</tr>
<tr>
<td>D_n</td>
<td>dihedral group of order n</td>
</tr>
</tbody>
</table>
Chapter 2
The Projective Class Group

2.1 Introduction

This chapter is devoted to the projective class group $K_0(R)$ of a ring R.

We give three equivalent definitions, namely, by the universal additive invariant for finitely generated projective modules, by the Grothendieck construction applied to the abelian monoid of isomorphism classes of finitely generated projective modules, and by idempotent matrices. We explain some calculations for principal ideal domains and Dedekind rings and the significance of $K_0(R)$ for the category of finitely generated projective modules.

We explain connections to geometry. We prove Swan’s Theorem which relates $K_0(C^0(X))$ for the ring $C^0(X)$ of continuous functions on a compact space X to the Grothendieck group of the abelian monoid of isomorphism classes of vector bundles over X. The relevance of $K_0(\mathbb{Z}G)$ for topologists is illustrated by Wall’s finiteness obstruction which also leads to a geometric description of $K_0(\mathbb{Z}G)$ in terms of finitely dominated spaces.

We introduce variants of the K-theoretic Farrell-Jones Conjecture. A prototype asserts that for a torsionfree group G and a regular ring R, e.g., $R = \mathbb{Z}$ or R a field, the change of rings map

$$K_0(R) \xrightarrow{\cong} K_0(RG)$$

is bijective. It implies the conjecture that for a torsionfree group G the reduced projective class group $K_0(\mathbb{Z}G)$ vanishes, which is for finitely presented G equivalent to the conjecture that every finitely dominated CW-complex with $\pi_1(X) \cong G$ is homotopy equivalent to a finite CW-complex. We also introduce a version, where the group is not necessarily torsionfree, but R is a regular ring with $\mathbb{Q} \subseteq R$ or a field of prime characteristic.

We discuss applications. The Kaplansky Conjecture asserts for a torsionfree group G and a field F of characteristic zero that FG contains no non-trivial idempotents. It is a consequence of the Farrell-Jones Conjecture. We also discuss various Bass Conjectures which are also implied by the Farrell-Jones Conjecture.

Finally, we give a survey of $K_0(\mathbb{Z}G)$ for finite groups G and of $K_0(C^*_r(G))$ and $K_0(\mathcal{N}(G))$, where $C^*_r(G)$ is the reduced group C^*-algebra and $\mathcal{N}(G)$ the group von Neumann algebra.
2.2 Definition and Basic Properties of the Projective Class Group

Definition 2.1 (Projective class group \(K_0(R)\)). Let \(R\) be an (associative) ring (with unit). Define its *projective class group* \(K_0(R)\) to be the abelian group whose generators are isomorphism classes \([P]\) of finitely generated projective \(R\)-modules \(P\) and whose relations are \([P_0] + [P_2] = [P_1]\) for any exact sequence \(0 \to P_0 \to P_1 \to P_2 \to 0\) of finitely generated projective \(R\)-modules.

Define \(G_0(R)\) analogously but replacing finitely generated projective by finitely generated.

Given a ring homomorphism \(f: R \to S\), we can assign to an \(R\)-module \(M\) an \(S\)-module \(f_*M\) by \(S \otimes_R M\), where we consider \(S\) as a right \(R\)-module using \(f\). We say that \(f_*M\) is obtained by induction with \(f\) from \(M\). This construction is natural, compatible with direct sums and sends an exact sequence \(0 \to P_0 \to P_1 \to P_2 \to 0\) of finitely generated projective \(R\)-modules to an exact sequence \(0 \to f_*P_0 \to f_*P_1 \to f_*P_2 \to 0\) of finitely generated projective \(S\)-modules. Hence we get a homomorphism of abelian groups

\[
(2.2) \quad f_*: K_0(R) \to K_0(S), \quad [P] \mapsto [f_*P],
\]

which is also called *change of rings homomorphism*. Thus \(K_0\) becomes a covariant functor from the category of rings to the category of abelian groups.

Remark 2.3 (The universal property of the projective class group). One should view \(K_0(R)\) together with the assignment sending a finitely generated projective \(R\)-module \(P\) to its class \([P]\) in \(K_0(R)\) as the *universal additive invariant* or the *universal dimension function* for finitely generated projective \(R\)-modules. Namely, suppose that we are given an abelian group and an assignment \(d\) which associates to a finitely generated projective \(R\)-module an element \(d(P) \in A\) such that \(d(P_0) + d(P_2) = d(P_1)\) holds for any exact sequence \(0 \to P_0 \to P_1 \to P_2 \to 0\) of finitely generated projective \(R\)-modules. Then there is precisely one homomorphism of abelian groups \(\phi: K_0(R) \to A\) such that \(\phi([P]) = d(P)\) holds for every finitely generated projective \(R\)-module \(P\). The analogous statement holds for \(G_0(R)\) if we consider finitely generated \(R\)-modules instead of finitely generated projective \(R\)-modules.

A ring is an *integral domain* if every zero-divisor is trivial, i.e., if \(r, s \in R\) satisfy \(rs = 0\), then \(r = 0\) or \(s = 0\). A *principal ideal domain* is a commutative integral domain for which every ideal is a *principal ideal*, i.e., of the form \((r) = \{r'r \mid r' \in R\}\) for some \(r \in R\).

Example 2.4 \((K_0(R)\) and \(G_0(R)\) of a principal ideal domain). Let \(R\) be a principal ideal domain. Then we get isomorphisms of abelian groups
2.2 Definition and Basic Properties of the Projective Class Group

\[\mathbb{Z} \xrightarrow{\sim} K_0(R), \quad n \mapsto [R^n]; \]
\[K_0(R) \xrightarrow{\sim} G_0(R), \quad [P] \mapsto [P]. \]

This follows from the structure theorem of finitely generated \(R \)-modules over principal ideal domains. It implies for any finitely generated \(R \)-module \(M \) that it can be written as a direct sum \(R^n \oplus T \) for some torsion \(R \)-module \(T \) for which there exists an exact sequence of \(R \)-modules of the shape \(0 \to R^s \to R^s \to T \to 0 \). Moreover, \(M \) is projective if and only if \(T \) is trivial and \(R^m = R^n \iff m = n \).

Definition 2.5 (Reduced projective class group \(\widetilde{K}_0(R) \)). Define the reduced projective class group \(\widetilde{K}_0(R) \) to be the quotient of \(K_0(R) \) by the abelian subgroup \(\{ [R^n] - [R^m] \mid n, m \in \mathbb{Z}, m, n \geq 0 \} \) which is the same as the abelian subgroup generated by the class \([R]\).

We conclude from Example 2.4 that the reduced projective class group \(\widetilde{K}_0(R) \) is isomorphic to the cokernel of the homomorphism

\[f_* : K_0(\mathbb{Z}) \to K_0(R) \]

where \(f \) is the unique ring homomorphism \(\mathbb{Z} \to R, \ n \mapsto n \cdot 1_R \).

Remark 2.6 (The projective class group as a Grothendieck group). Let \(\text{Proj}(R) \) be the abelian semigroup of isomorphism classes of finitely generated projective \(R \)-modules with the addition coming from the direct sum. Let \(G_0'(R) \) be the associated abelian group given by the Grothendieck construction applied to \(\text{Proj}(R) \). There is a natural homomorphism

\[\phi : G_0'(R) \xrightarrow{\sim} K_0(R) \]

sending the class of a finitely generated projective \(R \)-module \(P \) in \(G_0'(R) \) to its class in \(K_0(R) \). This is a well-defined isomorphism of abelian groups.

The analogous definition of \(G_0'(R) \) and the construction of a homomorphism \(G_0'(R) \to G_0(R) \) makes sense, but the latter map is not bijective in general. It works for \(K_0(R) \) because every exact sequence of projective \(R \)-modules \(0 \to P_0 \to P_1 \to P_2 \to 0 \) splits and thus yields an isomorphism \(P_1 \cong P_0 \oplus P_2 \). In general \(K \)-theory deals with exact sequences, not with direct sums. Therefore Definition 2.1 of \(K_0(R) \) reflects better the underlying idea of \(K \)-theory than its definition in terms of the Grothendieck construction.

Exercise 2.7. Prove that the homomorphism \(\phi : K_0'(R) \to K_0(R) \) appearing in Remark 2.6 is a well-defined isomorphism of abelian groups.

Remark 2.8 (What does the reduced projective class group measure?). Let \(P \) be a finitely generated projective \(R \)-module. Then we conclude from Remark 2.6 that its class \([P] \in \widetilde{K}_0(R)\) is trivial if and only if \(P \) is stably...
finitely generated free, i.e., $P \oplus R^r \cong R^s$ for appropriate integers $r, s \geq 0$. So the reduced projective class group $\tilde{K}_0(R)$ measures the deviation of a finitely generated projective R-module to be stably finitely generated free. Note that stably finitely generated free does in general not imply finitely generated free as Examples 2.9 and 2.29 will show.

Example 2.9 (Dunwoody’s example). An interesting $\mathbb{Z}G$-module P which is stably finitely generated free but not finitely generated free is constructed by Dunwoody [288] for G the torsionfree one-relator group $\langle a, b \mid a^2 = b^3 \rangle$, which is the fundamental group of the trefoil knot. Note that $\tilde{K}_0(\mathbb{Z}G)$ is known to be trivial, in other words, every finitely generated projective RG-module is stably finitely generated free. It is also worth while mentioning that $\mathbb{Z}G$ contains no idempotent besides 0 and 1. Hence any direct summand in $\mathbb{Z}G$ is free.

More examples of this kind are given in Berridge-Dunwoody [118].

One basic feature of algebraic K-theory is Morita equivalence.

Theorem 2.10 (Morita equivalence for $K_0(R)$). For every ring R and integer $n \geq 1$, there is a natural isomorphism

$$\mu: K_0(R) \cong K_0(M_n(R)).$$

Proof. We can consider R^n as $M_n(R)$-R-bimodule, denoted by $M_n(R) R^n R$. Then μ sends $[P]$ to $[M_n(R) R^n R \otimes_R P]$. We can also consider R^n as an R-$M_n(R)$-bimodule denoted by $R R^n M_n(R)$. Define $\nu: K_0(M_n(R)) \to K_0(R)$ by sending $[Q]$ to $[R R^n M_n(R) \otimes_{M_n(R)} Q]$. Then μ and ν are inverse to one another. □

Exercise 2.11. Check that μ and ν are inverse to one another.

We omit the easy proof of

Lemma 2.12. Let R_0 and R_1 be rings. Denote by $pr_i: R_0 \times R_1 \to R_i$ for $i = 0, 1$ the projection. Then we obtain an isomorphism

$$(pr_0)_* \times (pr_1)_* : K_0(R_0 \times R_1) \cong K_0(R_0) \times K_0(R_1).$$

Example 2.13 (Rings with non-trivial $\tilde{K}_0(R)$). We conclude from Example 2.4 and Lemma 2.12 that for a principal ideal domain R we have

$$K_0(R \times R) \cong \mathbb{Z} \oplus \mathbb{Z};$$
$$\tilde{K}_0(R \times R) \cong \mathbb{Z}.$$

The $R \times R$-module $R \times \{0\}$ is finitely generated projective but not stably finitely generated free. It is a generator of the infinite cyclic group $\tilde{K}_0(R \times R)$.
2.2 Definition and Basic Properties of the Projective Class Group

Notation 2.14 (M(R), GL(R) and Idem(R)). Let $M_{m,n}(R)$ be the set of (m, n)-matrices over R. For $A \in M_{m,n}(R)$, let $r_A: R^m \to R^n$, $x \mapsto xA$ be the R-homomorphism of (left) R-modules given by right multiplication with A. Let $M_n(R)$ be the ring of (n, n)-matrices over R. Denote by $GL_n(R)$ the group of invertible (n, n)-matrices over R. Let $Idem_n(R)$ be the subset of $M_n(R)$ of idempotent matrices A, i.e., (n, n)-matrices satisfying $A^2 = A$.

There are embeddings $i_{t,n}: M_n(R) \to M_{n+1}(R)$, $A \mapsto \begin{pmatrix} A & 0 \\ 0 & t \end{pmatrix}$ for $t = 0, 1$ and $n \geq 1$. The embedding $i_{1,n}$ induces an embedding $GL_n(R) \to GL_{n+1}(R)$ of groups. Let $GL(R)$ be the union of the $GL_n(R)$-s which is a group. Denote by $M(R)$ the union of the $M_n(R)$-s with respect to the embeddings i_0. This is a ring without unit. Let $Idem(R)$ be the set of idempotent elements in $M(R)$. This is the same as the union of the $Idem_n(R)$-s with respect to the embeddings $Idem_n(R) \to Idem_{n+1}(R)$ coming from the embeddings $i_{0,n}: M_n(R) \to M_{n+1}(R)$.

Remark 2.15 (The projective class groups in terms of idempotent matrices). The projective class groups $K_0(R)$ can also be defined in terms of idempotent matrices. Namely, the conjugation action of $GL_n(R)$ on $M_n(R)$ induces an action of $GL(R)$ on $M(R)$ which leaves $Idem(R)$ fixed. One obtains a bijection of sets

$$\phi: GL(R) \setminus Idem(R) \to \text{Proj}(R), \quad [A] \mapsto \text{im}(r_A: R^n \to R^n).$$

This becomes a bijection of abelian semigroups if we equip the source with the addition coming from $(A, B) \mapsto \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ and the target with the one coming from the direct sum. So we can identify $K_0(R)$ with the Grothendieck group associated to the abelian semigroup $GL(R) \setminus Idem(R)$ by Remark 2.15.

Exercise 2.16. Show that the map ϕ appearing in Remark 2.15 is a well-defined isomorphism of abelian semigroups.

Example 2.17 (A ring R with trivial $K_0(R)$). Let F be a field and let V be an F-vector space with an infinite countable basis. Consider the ring $R = \text{end}_F(V)$. Next we prove that $K_0(R)$ is trivial.

By Remark 2.15 it suffices to show for every integer $n \geq 0$ and two idempotent matrices $A, B \in Idem_n(R)$ that the matrices $A \oplus 0 \oplus 1$ and $B \oplus 1 \oplus 0$ in $M_{n+2}(R)$ are conjugated by an element in $GL_{n+2}(R)$. This follows from the observation that the both the kernel and the image of the F-linear endomorphisms $r_A \oplus 0 \oplus 1$ and $r_B \oplus 0 \oplus 1$ of V^{n+2} have infinite countable dimension and hence are isomorphic as F-vector spaces.

Lemma 2.18. Let G be a group. Let R be a commutative integral domain with quotient field F. Then we obtain an isomorphism
$K_0(RG) \cong \tilde{K}_0(RG) \oplus \mathbb{Z}, \quad [P] \mapsto ([P], \dim_F(F \otimes_{RG} P)),$

where F is considered as an RG-module with respect to the trivial G-action and the inclusion of rings $j: R \to F$.

Proof. Since $F \otimes_{RG} P$ is a finite dimensional F-vector space for finitely generated P and $F \otimes_{RG} (P + Q) \cong (F \otimes_{RG} P) \oplus (F \otimes_{RG} Q)$, this is a well-defined homomorphism. Bijectivity follows from $\dim_F(F \otimes_{RG} RG^n) = n$. \hfill \Box

2.3 The Projective Class Group of a Dedekind Domain

Let R be a commutative integral domain with quotient field F. A non-zero R-submodule $I \subset F$ is called a **fractional ideal** if for some $r \in R$ we have $rI \subset R$. A fractional ideal I is called **principal** if I is of the form $\{ra/b | r \in R\}$ for some $a, b \in R$ with $a, b \neq 0$.

Definition 2.19 (Dedekind domain). A commutative integral domain R is called a **Dedekind ring** if for any fractional ideal I there exists another fractional ideal J with $IJ = R$.

Note that in Definition 2.19 the fractional ideal J must be given by $\{x \in F | x \cdot I \subset R\}$.

The fractional ideals in a Dedekind ring form by definition a group under multiplication of ideals with R as unit. The principal fractional ideals form a subgroup. The **class group** $C(R)$ is the quotient of these abelian groups.

A proof of the next theorem can be found for instance in [652, Corollary 11 on page 14] and [775, Theorem 1.4.12 on page 20].

Theorem 2.20 (The reduced projective class group and the class group of Dedekind domains). Let R be a Dedekind domain. Then every fractional ideal is a finitely generated projective R-module and we obtain an isomorphism of abelian groups

$$
\mathbb{Z} \oplus C(R) \cong K_0(R), \quad (n, [I]) \mapsto n \cdot [R] + [I] - [R].
$$

In particular we get an isomorphism

$$
C(R) \cong \tilde{K}_0(R), \quad [I] \mapsto [I].
$$

A ring is called **hereditary**, if every ideal is projective, or, equivalently, if every submodule of a projective R-module is projective, see [192, Theorem 5.4 in Chapter I.5 on page 14].

Theorem 2.21 (Characterization of Dedekind domains). The following assertions are equivalent for a commutative integral domain with quotient field F:
(i) \(R \) is a Dedekind domain;
(ii) For every pair of ideals \(I \subseteq J \) of \(R \), there exists an ideal \(K \subseteq R \) with \(I = JK \);
(iii) \(R \) is hereditary;
(iv) Every finitely generated torsionfree \(R \)-module is projective;
(v) \(R \) is Noetherian and integrally closed in its quotient field \(F \) and every non-zero prime ideal is maximal.

Proof. This follows from [243, Proposition 4.3 on page 76 and Proposition 4.6 on page 77] and the fact that a finitely generated torsionfree module over an integral domain \(R \) can be embedded into \(R^n \) for some integer \(n \geq 0 \). See also [59, Chapter 13]. \(\qed \)

Remark 2.22 (The class group in terms of ideals of \(R \)). If one calls two ideals \(I \) and \(J \) in \(R \) equivalent if there exists non-zero elements \(r \) and \(s \) in \(R \) with \(rI = sJ \), then \(C(R) \) is the same as the equivalence classes of ideals under multiplication of ideals and the class given by the principal ideals as unit. Two ideals \(I \) and \(J \) of \(R \) define the same element in \(C(R) \) if and only if they are isomorphic as \(R \)-modules, see [775, Proposition 1.4.4 on page 17].

Recall that an algebraic number field is a finite algebraic extension of \(\mathbb{Q} \) and the ring of integers in \(F \) is the integral closure of \(\mathbb{Z} \) in \(F \).

Theorem 2.23 (The class group of a ring of integers is finite). Let \(R \) be the ring of integers in an algebraic number field. Then \(R \) is a Dedekind domain and its class group \(C(R) \) and hence its reduced projective class group \(\tilde{K}_0(R) \) are finite.

Proof. See [775, Theorem 1.4.18 on page 22 and Theorem 1.4.19 on page 23]. \(\qed \)

Exercise 2.24. Let \(d \) be a squarefree integer. Let \(R \) be the ring of integers in \(\mathbb{Q}[\sqrt{d}] \). Show that \(R \) is \(\mathbb{Z}[\sqrt{d}] \) if \(d = 2, 3 \mod 4 \) and is \(\mathbb{Z}\frac{1+\sqrt{d}}{2} \) if \(d = 1 \mod 4 \).

Remark 2.25 (Class group of \(\mathbb{Z}[\exp(2\pi i/p)] \)). Let \(p \) be a prime number. The ring of integers in the algebraic number field \(\mathbb{Q}[\exp(2\pi i/p)] \) is \(\mathbb{Z}[\exp(2\pi i/p)] \). Its class group \(C(\mathbb{Z}[\exp(2\pi i/p)]) \) is finite by Theorem 2.23. But its structure as a finite abelian group is only known for finitely many small primes, see [652, Remark 3.4 on page 30] or [901, Tables §3 on page 352ff].

Example 2.26 \((\tilde{K}_0(\mathbb{Z}[\sqrt{-5}])))\). The reduced projective class group \(\tilde{K}_0(\mathbb{Z}[\sqrt{-5}]) \) of the Dedekind domain \(\mathbb{Z}[\sqrt{-5}] \) is cyclic of order two. A generator is given by the maximal ideal \((3, 2 + \sqrt{-5}) \) in \(\mathbb{Z}[\sqrt{-5}] \). (For more details see [775, Exercise 1.4.20 on page 25]).
2.4 Swan’s Theorem

Let F be the field \mathbb{R} or \mathbb{C}. Let X be a compact space. Denote by $C(X,F)$ or briefly by $C(X)$ the ring of continuous functions from X to F. Let ξ and η be (finite dimensional locally trivial) F-vector bundles over X. Denote by $C(\xi)$ the F-vector space of continuous sections of ξ. This becomes a $C(X)$-module by the pointwise multiplication. If F denotes the trivial 1-dimensional F-vector bundle $X \times F \to X$, then $C(F)$ and $C(X)$ are isomorphic as $C(X)$-modules. If ξ and η are isomorphic as F-vector bundles, then $C(\xi)$ and $C(\eta)$ are isomorphic as $C(X)$-modules. There is an obvious isomorphism of $C(X)$-modules

$$C(\xi) \oplus C(\eta) \xrightarrow{\cong} C(\xi \oplus \eta). \tag{2.27}$$

Since X is compact, every F-vector bundle has a finite bundle atlas and admits a Riemannian metric. This implies the existence of a F-vector bundle ξ' such that $\xi \oplus \xi'$ is isomorphic to a trivial F-vector bundle F^n. Hence $C(\xi)$ is a finitely generated projective $C(X)$-module. Denote by $\text{hom}(\xi, \eta)$ the $C(X)$-module of morphisms of F-vector bundles from ξ to η, i.e., of continuous maps between the total spaces which commutes with the bundle projections to X and induce linear (not necessarily injective or bijective) maps between the fibers over x for all $x \in X$. This becomes a $C(X)$-module by the pointwise multiplication. Such a morphism $f: \xi \to \eta$ induces a $C(X)$-homomorphism $C(f): C(\xi) \to C(\eta)$ by composition. The next result is due to Swan [852].

Theorem 2.28 (Swan’s Theorem). Let X be a compact space and $F = \mathbb{R}, \mathbb{C}$. Then:

(i) Let ξ and η be F-vector bundles. Then we obtain an isomorphism of $C(X)$-modules

$$\Gamma(\xi, \eta): \text{hom}(\xi, \eta) \to \text{hom}_{C(X)}(C(\xi), C(\eta)), \ f \mapsto C(f);$$

(ii) We have $\xi \cong \eta \iff C(\xi) \cong_{C(X)} C(\eta);$

(iii) If P is a finitely generated projective $C(X)$-module, then there exists an F-vector bundle ξ satisfying $C(\xi) \cong_{C(X)} P$.

Proof. (i) Obviously $\Gamma(\xi \oplus \xi', \eta)$ can be identified with $\Gamma(\xi, \eta) \oplus \Gamma(\xi', \eta)$ and $\Gamma(\xi, \eta \oplus \eta')$ can be identified with $\Gamma(\xi, \eta) \oplus \Gamma(\xi, \eta')$ under the identification $\tag{2.27}$. Since a direct sum of two maps is a bijection if and only if each of the maps is a bijection and for every ξ there is ξ' such that $\xi \oplus \xi'$ is trivial, it suffices to treat the case, where $\xi = F^m$ and $\eta = F^n$ for appropriate integers $m, n \geq 0$. There is an obvious commutative diagram
\[
\begin{array}{ccc}
\text{hom}(F^n, F^n) & \xrightarrow{\Gamma(F^n, F^n)} & \text{hom}_{C(X)}(C(F^n), C(F^n)) \\
\cong & & \cong \\
M_{m,n}(\text{hom}(F, F)) & \xrightarrow{M_{m,n}(\Gamma(F, F))} & M_{m,n}(C(F))
\end{array}
\]

Hence it suffices to treat the claim for \(m = n = 1 \) which is obvious.

\(\text{i} \) This follows from assertion \(\text{ii} \).

\(\text{ii} \) Given a finitely generated projective \(C(X) \)-module \(P \), choose a \(C(X) \)-map \(p: C(X)^n \to C(X)^n \) satisfying \(p^2 = p \) and \(\text{im}(p) \cong C(X) \) \(P \). Because of assertion \(\text{ii} \) we can choose a morphism of \(F \)-vector bundles \(q: F^n \to F^n \) with \(\Gamma(F^n, F^n)(q) = p \). We conclude \(q^2 = q \) from \(p^2 = p \) and the injectivity of \(\Gamma(F^n, F^n) \). Elementary bundle theory shows that the image of \(q \) and the image of \(1 - q \) are \(F \)-subvector bundles in \(F^n \) satisfying \(\text{im}(q) \oplus \text{im}(1 - q) = F^n \). One easily checks \(C(\text{im}(q)) \cong C(X) \) \(P \).

One may summarize Theorem 2.28 by saying that we obtain an equivalence of \(C(X) \)-additive categories from the category of \(F \)-vector bundles over \(X \) to the category of finitely generated projective \(C(X) \)-modules by sending \(\xi \) to \(C(\xi) \).

Example 2.29 \((C(TS^n))\). Consider the \(n \)-dimensional sphere \(S^n \). Let \(TS^n \) be its tangent bundle. Then \(C(TS^n) \) is a finitely generated projective \(C(S^n) \)-module. It is free if and only if \(TS^n \) is trivial. This is equivalent to the condition that \(n = 1, 3, 7 \), see [135]. On the other hand \(C(TS^n) \) is always stably finitely generated free as a \(C(S^n) \)-module since \(TS^n \) is stably finitely generated free as an \(F \)-vector bundle because the direct sum of \(TS^n \) and the normal bundle \(\nu(S^n, \mathbb{R}^{n+1}) \) of the standard embedding \(S^n \subseteq \mathbb{R}^{n+1} \) is \(T\mathbb{R}^{n+1}|_{S^n} \) and both \(F \)-vector bundles \(\nu(S^n, \mathbb{R}^{n+1}) \) and \(T\mathbb{R}^{n+1}|_{S^n} \) are trivial.

Exercise 2.30. Consider an integer \(n \geq 1 \). Show that there exists a \(C(S^n) \)-module \(M \) with \(C(TS^n) \cong_{C(S^n)} C(S^n) \oplus M \) if and only if \(S^n \) admits a nowhere vanishing vector field. (This is equivalent to requiring that \(\chi(S^n) = 0 \), or, equivalently, that \(n \) is odd.)

Remark 2.31 (Topological \(K \)-theory in dimension 0). Let \(X \) be a compact space. Let \(\text{Vect}_F(X) \) be the abelian semigroup of isomorphism classes of \(F \)-vector bundles over \(X \), where the addition comes from the Whitney sum. Let \(K^0(X) \) be the abelian group obtained from the Grothendieck construction to it. It is called the \(0 \)-th topological \(K \)-group of \(X \). If \(f: X \to Y \) is a map of compact spaces, the pullback construction yields a homomorphism \(K^0(f): K^0(Y) \to K^0(X) \). Thus we obtain a contravariant functor \(K^0 \) from the category of compact spaces to the category of abelian groups. Since the pullback of a vector bundle with two homotopic maps yields isomorphic vector bundles, \(K^0(f) \) depends only on the homotopy class of \(f \). Actually
there is a sequence of such homotopy invariants covariant functors K^n for $n \in \mathbb{Z}$ which constitutes a generalized cohomology theory K^* called topological K-theory. It is 2-periodic if $F = \mathbb{C}$, i.e., there are natural so called Bott isomorphism $K^n(X) \xrightarrow{\sim} K^{n+2}(X)$ for $n \in \mathbb{Z}$. If $F = \mathbb{R}$, it is 8-periodic.

We will give further explanations and generalization of topological K-theory later in Section 9.2.

Swan’s Theorem 2.28 yields an identification

\[(2.32) \quad K^0(X) \cong K_0(C(X)) \quad [\xi] \mapsto [C^0(\xi)].\]

Exercise 2.33. Let $f: X \to Y$ be a map of compact spaces. Composition with f yields a ring homomorphism $C(f): C(Y) \to C(X)$. Show that under the identification (2.32) the maps $K^0(f): K^0(Y) \to K^0(X)$ and $C(f)_*: K_0(C(Y)) \to K_0(C(X))$ coincide.

Exercise 2.34. Compute $K_0(C(D^n))$ for the n-dimensional disk D^n for $n \geq 0$.

2.5 Wall’s Finiteness Obstruction

We now discuss the geometric relevance of $\tilde{K}_0(\mathbb{Z}G)$.

Let X be a CW-complex. It is called finite if it consists of finitely many cells. This is equivalent to the condition that X is compact. We call X finitely dominated if there exists a finite domination (Y, i, r), i.e., a finite CW-complex Y together with maps $i: X \to Y$ and $r: Y \to X$ such that $r \circ i$ is homotopic to the identity on X. If X is finitely dominated, its set of path components $\pi_0(X)$ is finite and the fundamental group $\pi_1(C)$ of each component C of X is finitely presented.

While studying existence problems for compact manifolds with prescribed properties (like for example the existence of certain group actions), it happens occasionally that it is relatively easy to construct a finitely dominated CW-complex within a given homotopy type, whereas it is not at all clear whether one can also find a homotopy equivalent finite CW-complex. If the goal is to construct a compact manifold, this is a necessary step in the construction. Wall’s finiteness obstruction, which we will explain below, decides the question.

An example of such a geometric problem is the spherical space form problem, i.e., the classification of closed manifolds M whose universal coverings are diffeomorphic or homeomorphic to the standard sphere. Such examples arise as unit sphere in unitary representations of finite groups, but there are also examples which do not occur in this way. This problem initiated not only the theory of the finiteness obstruction, but also surgery theory for...
closed manifolds with non-trivial fundamental group. We refer to the survey articles [256] and [624] for more information about the spherical space form problem.

The finiteness obstruction also appears in the Ph.D.-thesis [829] of Siebenmann who dealt with the problem whether a given smooth or topological manifold can be realized as the interior of a compact manifold with boundary.

At least we give a brief description of its definition illustrating that it is a kind of Euler characteristic, but now counting elements in the projective class group instead of counting ranks of finitely generated free modules.

Definition 2.35 (Types of chain complexes). We call an R-chain complex finitely generated, free, or projective respectively, if each chain module is finitely generated, free or projective respectively. It is called positive if $C_n = 0$ for $n \leq -1$. It is called finite dimensional, if there exists a natural number N such that $C_n = 0$ for $|n| \leq N$. It is called finite if it is finite dimensional and finitely generated.

In the sequel we ignore base point questions. This is not a real problem since an inner automorphism of a group G induces the identity on $K_0(RG)$.

Given a finitely dominated connected CW-complex X with fundamental group π, we consider its universal covering \tilde{X} and the associated cellular $\mathbb{Z}\pi$-chain complex $C_\ast(\tilde{X})$. Given a finite domination (Y, i, r), we regard the π-covering \tilde{Y} over Y associated to the epimorphism $r_\ast : \pi_1(Y) \to \pi_1(X)$. The pullback construction yields a π-covering $i^\ast \tilde{Y}$ over X. Then $F_\ast = C_\ast(i^\ast \tilde{Y})$ is a finite free $\mathbb{Z}\pi$-chain complex. The maps i and r yield $\mathbb{Z}\pi$-chain maps $r_\ast : F_\ast \to C_\ast(\tilde{X})$ and $i_\ast : C_\ast(\tilde{X}) \to F_\ast$ such that $r_\ast \circ i_\ast$ is $\mathbb{Z}\pi$-chain homotopic to the identity on $C_\ast(\tilde{X})$. Thus (F_\ast, i_\ast, r_\ast) is the chain complex version of a finite domination. This implies that there exists a finite projective $\mathbb{Z}\pi$-chain complex P_\ast which is $\mathbb{Z}\pi$-chain homotopy equivalent to $C_\ast(\tilde{X})$. Now define the unreduced finiteness obstruction

$$o(X) := \sum_{n \in \mathbb{Z}} (-1)^n \cdot [P_n] \in K_0(\mathbb{Z}\pi).$$

This is indeed independent of the choice of P_\ast. Define the finiteness obstruction $\tilde{o}(X)$ to be the image of $o(X)$ under the canonical projection $K_0(\mathbb{Z}\pi) \to \tilde{K}_0(\mathbb{Z}\pi)$. Obviously $\tilde{o}(X) = 0$ if X is homotopy equivalent to a finite CW-complex Z since in this case we can take $P_\ast = C_\ast(\tilde{Z})$ and $C_\ast(\tilde{Z})$ is a finite free $\mathbb{Z}\pi$-chain complex. The next result is due to Wall, see [894] and [895].

Theorem 2.37 (Properties of the Finiteness Obstruction). Let X be a finitely dominated connected CW-complex with fundamental group $\pi = \pi_1(X)$.

(i) The space X is homotopy equivalent to a finite CW-complex if and only if $\tilde{o}(X) = 0 \in K_0(\mathbb{Z}\pi_1(X))$;
(ii) Every element in \(\tilde{K}_0(\mathbb{Z}G) \) can be realized as the finiteness obstruction \(\tilde{o}(X) \) of a finitely dominated connected CW-complex \(X \) with \(G = \pi_1(X) \), provided that \(G \) is finitely presented.

Theorem 2.37 illustrates why it is important to study the algebraic object \(\tilde{K}_0(\mathbb{Z}G) \) when one is dealing with geometric or topological questions. The favorite case is of course, where \(\tilde{K}_0(\mathbb{Z}G) \) vanishes because then the finiteness obstruction is obviously zero and one does not have to go to a specific computation.

Exercise 2.38. Let \(X \) be a finitely dominated connected CW-complex with fundamental group \(\pi \). Define a homomorphism of abelian groups
\[
\psi : K_0(\mathbb{Z}\pi) \to \mathbb{Z}, \quad [P] \mapsto \dim_\mathbb{Q}(\mathbb{Q} \otimes_{\mathbb{Z}} P).
\]
Show that \(\psi \) sends \(o(X) \) to the Euler characteristic \(\chi(X) \).

Exercise 2.39. Let \(P^* \) be a finite projective \(R \)-chain complex. Define its unreduced finiteness obstruction by
\[
o(P^*) := \sum_{n \in \mathbb{Z}} (-1)^n \cdot [P_n] \in K_0(R).
\]
Define its finiteness obstruction \(\tilde{o}(P^*) \in \tilde{K}_0(R) \) to be the image of \(o(P^*) \) under the canonical projection \(K_0(R) \to \tilde{K}_0(R) \). Prove
(i) \(o(P^*) \) depends only on the chain homotopy type of \(P^* \);
(ii) \(P^* \) is \(R \)-chain homotopy equivalent to a finite free \(R \)-chain complex if and only if \(\tilde{o}(P^*) = 0 \);
(iii) If \(0 \to P^*_* \to P'^*_* \to P''^*_* \to 0 \) is an exact sequence of finite projective \(R \)-chain complexes, then
\[
o(P^*) - o(P'^*_*) + o(P''^*_*) = 0.
\]

For more information about the finiteness obstruction we refer for instance to [349, 345, 578, 601, 664, 667, 683, 755, 877, 894, 895].

2.6 Geometric Interpretation of Projective Class Group and Finiteness Obstruction

Next we give a geometric construction of \(\tilde{K}_0(\mathbb{Z}G) \) which is in the spirit of the well-known interpretation of the Whitehead group in terms of deformation retractions which we will present later in Section 3.4. The material of this section is taken from [578], where more information and details of the proofs can be found.

Given a space \(Y \), we want to define an abelian group \(Wa(Y) \). The underlying set is the set of equivalence classes of an equivalence relation \(\sim \) defined on
the set of maps \(f: X \to Y \) with finitely dominated CW-complexes as source and the given space \(Y \) as target. We call \(f_0: X_0 \to Y \) and \(f_4: X_4 \to Y \) equivalent if there exists a commutative diagram

\[
\begin{array}{cccc}
X_0 & \xrightarrow{i_0} & X_1 & \xrightarrow{j_1} X_2 & \xrightarrow{j_3} X_3 & \xleftarrow{i_4} X_4 \\
\downarrow f_0 & & \uparrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow f_4 & & \downarrow \text{Y} \\
& & & & & & & & & & \\
\end{array}
\]

such that \(j_1 \) and \(j_4 \) are homotopy equivalences and \(i_0 \) and \(i_4 \) are inclusions of CW-complexes with the property that the larger one is obtained from the smaller one by attaching finitely many cells. Obviously this relation is symmetric and reflexive. It needs some work to show transitivity and hence that it is an equivalence relation. The addition in \(\text{Wa}(Y) \) is given by the disjoint sum, i.e., define the sum of the class of \(f_0: X_0 \to Y \) and \(f_1: X_1 \to Y \) to be the class of \(f_0 \bigsqcup f_1: X_0 \bigsqcup X_1 \to Y \). It is easy to check that this is compatible with the equivalence relation. The neutral element is represented by \(\emptyset \to Y \). The inverse of the class \([f]\) of \(f: X \to Y \) is constructed as follows.

Choose a finite domination \((Z,i,r)\) of \(X \). Construct a map \(F: \text{cyl}(i) \to X \) from the mapping cylinder of \(i \) to \(Y \) such that \(F|_X = \text{id}_X \) and \(F|_Z = r \). Then an inverse of \([f]\) is given by the class \([f']\) of the composite

\[
f': \text{cyl}(i) \cup_X \text{cyl}(i) \xrightarrow{F \cup \text{id}_X} X \xrightarrow{\text{id}} Y.
\]

This finishes the definition of the abelian group \(\text{Wa}(Y) \). A map \(f: Y_0 \to Y_1 \) induces a homomorphism of abelian groups \(\text{Wa}(f): \text{Wa}(Y_0) \to \text{Wa}(Y_1) \) by composition. Thus \(\text{Wa} \) defines a functor from the category of spaces to the category of abelian groups.

Exercise 2.40. Show that \([f] + [f'] = 0\) holds for the composite \(f' \) above.

Given a finitely dominated CW-complex \(X \), define its geometric finiteness obstruction \(o_{\text{geo}}(X) \in \text{Wa}(X) \) by the class of \(\text{id}_X \).

Theorem 2.41 (The geometric finiteness obstruction). Let \(X \) be a finitely dominated CW-complex. Then \(X \) is homotopy equivalent to a finite CW-complex if and only if \(o_{\text{geo}}(X) = 0 \) in \(\text{Wa}(X) \).

Proof. Obviously \(o_{\text{geo}}(X) = 0 \) if \(X \) is homotopy equivalent to a finite CW-complex. Suppose \(o_{\text{geo}}(X) = 0 \). Hence there are a CW-complex \(Y \), a map \(r: Y \to X \) and a homotopy equivalence \(h: Y \to Z \) to a finite CW-complex \(Z \) such that \(Y \) is obtained from \(X \) by attaching finitely many cells and \(r \circ i = \text{id}_X \) holds for the inclusion \(i: X \to Y \). The mapping cylinder \(\text{cyl}(r) \) is built from
the mapping cylinder \(\text{cyl}(i) \) by attaching a finite number of cells. Choose a homotopy equivalence \(g: \text{cyl}(i) \to Z \). Consider the push-out

\[
\begin{array}{c}
\text{cyl}(i) \\
\downarrow g \\
\downarrow \downarrow \\
Z \\
\downarrow \downarrow \downarrow \\
\text{cyl}(r) \\
\end{array}
\]

where \(i \) is the inclusion. Since \(g \) is a homotopy equivalence, the same is true for \(g' \). Hence \(X \) is homotopy equivalent to the finite \(CW \)-complex \(Z' \).

Theorem 2.42 (Identifying the finiteness obstruction with its geometric counterpart). Let \(Y \) be a space. Then there is a natural isomorphism of abelian groups

\[
\Phi: \text{Wa}(Y) \xrightarrow{\cong} \bigoplus_{C \in \pi_0(Y)} \tilde{K}_0(\mathbb{Z}\pi_1(C)).
\]

Proof. We only explain the definition of \(\Phi \). Consider an element \([f] \in \text{Wa}(Y)\) represented by a map \(f: X \to Y \) from a finitely dominated \(CW \)-complex \(X \) to \(Y \). Given a path component \(C \) of \(X \), let \(C_f \) be the path component of \(Y \) containing \(f(C) \). The map \(f \) induces a map \(f|_C: C \to C_f \) and hence a map \((f|_C)_*: \tilde{K}_0(\mathbb{Z}\pi_1(C)) \to \tilde{K}_0(\mathbb{Z}\pi_1(C_f)) \). Since \(X \) is finitely dominated, every path component \(C \) of \(X \) is finitely dominated and we can consider its finiteness obstruction \(\widetilde{o}(C) \in \tilde{K}_0(\mathbb{Z}\pi_1(C)) \). Let \(\phi([f])_C \) be the image of \(\widetilde{o}(C) \) under the composite

\[
\tilde{K}_0(\mathbb{Z}\pi_1(C)) \xrightarrow{(f|_C)_*} \tilde{K}_0(\mathbb{Z}\pi_1(C_f)) \to \bigoplus_{C \in \pi_0(Y)} \tilde{K}_0(\mathbb{Z}\pi_1(C)).
\]

Since \(\pi_0(X) \) is finite, we can define

\[
\phi([f]) := \sum_{C \in \pi_0(X)} \phi([f])_C.
\]

We omit the proof that this is compatible with the equivalence relation appearing in the definition of \(\text{Wa}(Y) \), that \(\phi \) is a homomorphism of abelian groups and that Theorem [2.37] implies that \(\Phi \) is bijective.

2.7 Universal Functorial Additive Invariants

In this section we describe the pair \((\text{K}_0(\mathbb{Z}\pi_1(X)), o(X))\) by an abstract property.
Definition 2.43 (Functorial additive invariant for finitely dominated CW-complexes). A functorial additive invariant for finitely dominated CW-complexes consists of a covariant functor A from the category of finitely dominated CW-complexes to the category of abelian groups together with an assignment a which associates to every finitely dominated CW-complex X an element $a(X) \in A(X)$ such that the following axioms are satisfied:

- Homotopy invariance of A
 If $f, g: X \to Y$ are homotopic maps between finitely dominated CW-complexes, then $A(f) = A(g)$;
- Homotopy invariance of $a(X)$
 If $f: X \to Y$ is a homotopy equivalence of finitely dominated CW-complexes, then $A(f)(a(X)) = a(Y)$;
- Additivity
 Let
 \[
 \begin{array}{cccc}
 X_0 & \overset{i_1}{\longrightarrow} & X_1 \\
 \downarrow^{i_2} & \downarrow & \downarrow^{j_0} \\
 X_2 & \overset{j_1}{\longrightarrow} & X \\
 \end{array}
 \]
 be a cellular pushout, i.e., the diagram is a pushout, the map i_1 is an inclusion of CW-complexes, the map i_2 is cellular and X carries the induced CW-structure. Suppose that X_0, X_1, X_2 are finitely dominated. Then X is finitely dominated and
 \[
 a(X) = A(j_1)(a(X_1)) + A(j_2)(a(X_2)) - A(j_0)(a(X_0));
 \]
- Normalization
 \[
 a(\emptyset) = 0.
 \]

Example 2.44 (Componentwise Euler characteristic). Let A be the covariant functor sending a finitely dominated CW-complex X to $H_0(X; \mathbb{Z}) = \bigoplus_{C \in \pi_0(X)} \mathbb{Z}$. Let $a(X) \in A(X)$ be the componentwise Euler characteristic, i.e., the collection of integers $\{\chi(C) \mid C \in \pi_0(X)\}$. Then (A, a) is a functorial additive invariant for finitely dominated CW-complexes.

Definition 2.45 (Universal functorial additive invariant for finitely dominated CW-complexes). A universal functorial additive invariant for finitely dominated CW-complexes (U, u) is a functorial additive invariant with the property that for any functorial additive invariant (A, a) there is precisely one natural transformation $T: U \to A$ with the property that $T(X)(u(X)) = a(X)$ holds for every finitely dominated CW-complex X.

Exercise 2.46. Show that the functorial additive invariant defined in Example 2.44 is the universal one if we restrict to finite CW-complexes.
Obviously the universal additive functorial invariant is unique (up to unique natural equivalence) if it exists. It is also easy to construct it. However, it turns out that there exists a concrete model, namely, the following theorem is proved in [578, Theorem 4.1].

Theorem 2.47 (The finiteness obstruction is the universal functorial additive invariant). The covariant functor \(X \mapsto \bigoplus_{C \in \pi_0(X)} K_0(\mathbb{Z}\pi_1(C)) \) together with the componentwise finiteness obstruction \(\{o(C) \mid C \in \pi_0(X)\} \) is the universal functorial additive invariant for finitely dominated CW-complexes.

Exercise 2.48. (i) Construct for finitely dominated CW-complexes \(X \) and \(Y \) a natural pairing

\[
P(X,Y): U(X) \otimes \mathbb{Z} U(Y) \to U(X \times Y)
\]

sending \(u(X) \otimes u(Y) \) to \(u(X \times Y) \), where \((U, u)\) is the universal functorial additive invariant for finitely dominated CW-complexes;

(ii) Let \(X \) be a finitely dominated CW-complex. Let \(Y \) be a finite CW-complex such that \(\chi(C) = 0 \) for every component \(C \) of \(Y \). Show that \(X \times Y \) is homotopy equivalent to a finite CW-complex.

2.8 Variants of the Farrell-Jones Conjecture for \(K_0(RG) \)

In this section we state variants of the Farrell-Jones Conjecture for \(K_0(RG) \). The Farrell-Jones Conjecture itself will give a complete answer for arbitrary groups and rings, but to formulate the full version some additional effort will be needed. If one assumes that \(R \) is regular and \(G \) torsionfree or that \(R \) is regular and \(\mathbb{Q} \subseteq R \), then the conjecture reduces to easy to formulate statements which we will present next. Moreover, these special cases are already very interesting.

Definition 2.49 (Projective resolution). Let \(M \) be an \(R \)-module. A positive projective \(R \)-chain complex \(P_* \) is a projective resolution \((P_*, \phi_*) \) of \(M \) if \(H_n(P_*) = 0 \) for \(n \geq 1 \) together with an \(R \)-isomorphism \(\phi: H_0(P_*) \xrightarrow{\cong} M \). It is called finite, finitely generated, free, finite dimensional, or \(d \)-dimensional if the \(R \)-chain complex \(P_* \) has this property.

A ring \(R \) is Noetherian if any submodule of a finitely generated \(R \)-module is again finitely generated. A ring \(R \) is called regular if it is Noetherian and any finitely generated \(R \)-module has a finite dimensional projective resolution. Any principal ideal domain such as \(\mathbb{Z} \) or a field is regular.
2.8 Variants of the Farrell-Jones Conjecture for $K_0(RG)$

Conjecture 2.50 (Farrell-Jones Conjecture for $K_0(R)$ for torsionfree G and regular R). Let G be a torsionfree group and let R be a regular ring. Then the map induced by the inclusion of the trivial group into G

$$K_0(R) \xrightarrow{\cong} K_0(RG)$$

is bijective.

In particular we get for any principal ideal domain R and torsionfree G

$$\tilde{K}_0(RG) = 0.$$

Remark 2.51 (Relevance of Conjecture 2.50). In view of Remark 2.8 Conjecture 2.50 is equivalent to the statement that for a torsionfree group G and a regular ring R every finitely generated projective RG-module is stably finitely generated free. This is the algebraic relevance of this conjecture. Its geometric meaning comes from the following conclusion of Theorem 2.37. Namely, if $R = \mathbb{Z}$ and G is a finitely presented torsionfree group, it is equivalent to the statement that every finitely dominated CW-complex with $\pi_1(X) \cong G$ is homotopy equivalent to a finite CW-complex.

Definition 2.52 (Family of subgroups). A family \mathcal{F} of subgroups of a group G is a set of subgroups which is closed under conjugation with elements of G and under passing to closed subgroups.

Notation 2.53.

<table>
<thead>
<tr>
<th>notation</th>
<th>subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>trivial group</td>
</tr>
<tr>
<td>FCY</td>
<td>finite cyclic subgroups</td>
</tr>
<tr>
<td>FIN</td>
<td>finite subgroups</td>
</tr>
<tr>
<td>CYC</td>
<td>cyclic subgroups</td>
</tr>
<tr>
<td>VCY</td>
<td>virtually cyclic subgroups</td>
</tr>
<tr>
<td>ALL</td>
<td>all subgroups</td>
</tr>
</tbody>
</table>

Definition 2.54 (Orbit category). The orbit category $Or(G)$ has as objects homogeneous spaces G/H and as morphisms G-maps. Given a family \mathcal{F} of subgroups of G, let the \mathcal{F}-restricted orbit category $Or_{\mathcal{F}}(G)$ be the full subcategory of $Or(G)$ whose objects are homogeneous spaces G/H with $H \in \mathcal{F}$.

Definition 2.55 (Subgroup category). The subgroup category $Sub(G)$ has as objects subgroups H of $G.$ For $H, K \subseteq G,$ let $\text{conhom}_G(H, K)$ be the set of all group homomorphisms $f : H \to K,$ for which there exists a group element $g \in G$ such that f is given by conjugation with $g.$ The group of inner automorphisms $\text{inn}(K)$ consists of those automorphisms $K \to K,$ which are given by conjugation with an element $k \in K.$ It acts on $\text{conhom}(H, K)$ from the left by composition. Define the set of morphisms in $Sub(G)$ from H to $K.$
to be $\text{inn}(K) \setminus \text{conhom}(H, K)$. Composition of group homomorphisms defines the composition of morphisms in $\text{Sub}(G)$.

Given a family \mathcal{F}, define the \mathcal{F}-restricted category of subgroups $\text{Sub}_\mathcal{F}(G)$ to be the full subcategory of $\text{Sub}(G)$ which is given by objects H belonging to \mathcal{F}.

Exercise 2.56. Show that $\text{Sub}_\mathcal{F}(G)$ is a quotient category of $\text{Or}_\mathcal{F}(G)$.

Note that there is a morphism from H to K only if H is conjugated to a subgroup of K. Clearly $K_0(\mathcal{R}(-))$ yields a functor from $\text{Sub}_\mathcal{F}(G)$ to abelian groups since inner automorphisms on a group K induce the identity on $K_0(RK)$. Using the inclusions into G, one obtains a map

$$\text{colim}_{H \in \text{Sub}_\mathcal{F}(G)} K_0(RH) \to K_0(RG).$$

We briefly recall the notion of a colimit of a covariant functor $F: \mathcal{C} \to \text{ABEL}$ from a small category \mathcal{C} into the category of abelian groups, where small means that the objects of \mathcal{C} form a set. Given an abelian group A, let C_A be the constant functor $\mathcal{C} \to \text{ABEL}$ which sends every object in \mathcal{C} to A and every morphism in \mathcal{C} to id_A. Given a homomorphism $f: A \to B$ of abelian groups, let $C_f: C_A \to C_B$ be the obvious transformation. The colimit, or sometimes also called direct limit, of F consists of an abelian group $\text{colim}_C F$ together with a transformation $T_F: F \to C_{\text{colim}_C F}$ such that for any abelian group B and transformation $T: F \to C_B$ there exists precisely one homomorphism of abelian groups ϕ: $\text{colim}_C F \to B$ satisfying $C_\phi \circ T_F = T$.

The colimit is unique (up to unique isomorphism) and always exists. If we replace abelian group by ring or by R-module respectively, we get the notion of a colimit or sometimes also called direct limit of functors from a small category to rings or R-modules respectively.

Conjecture 2.57 (Farrell-Jones Conjecture for $K_0(RG)$ for regular R with $\mathbb{Q} \subseteq R$). Let R be a regular ring and G be a group such that for every finite subgroup $H \subseteq G$ the element $|H| \cdot 1_R$ of R is invertible in R.

Then the homomorphism

$$(2.58) \quad I_{\mathcal{FLN}}(G, F): \text{colim}_{H \in \text{Sub}_{\mathcal{FLN}}(G)} K_0(RH) \to K_0(RG)$$

coming from the various inclusions of finite subgroups of G into G is a bijection.

We mention that the surjectivity of the map $I_{\mathcal{FLN}}(G, F)$ is equivalent to the surjectivity of the map induced by the various inclusions of subgroups $H \in \mathcal{FLN}$ into G

$$\bigoplus_{H \in \mathcal{FLN}} K_0(RH) \to K_0(RG),$$

because this map factorizes as
heat kernels and the projective class group of complex group rings

\[\bigoplus_{H \in \mathcal{F}^\infty} K_0(RH) \xrightarrow{\psi} \colim_{H \in \text{Sub}_G} K_0(RH) \xrightarrow{I_{\mathcal{F}^\infty}(G,F)} K_0(RG), \]

where the first map \(\psi \) is surjective.

Remark 2.59 (Module-theoretic relevance of Conjecture 2.57). Conjecture 2.57 implies that for a regular ring \(R \) with \(\mathbb{Q} \subseteq R \) every finitely generated projective \(R \)-module is up to adding finitely generated free \(RG \)-modules a direct sum of modules of the shape \(RG \otimes RH \) \(P \) for a finite subgroup \(H \subseteq G \) and a finitely generated projective \(RH \)-module \(P \). So it predicts the (stable) structure of finitely generated projective \(RG \)-modules in the most elementary way. We mention, however, that the situation is much more complicated in the case, where we drop the assumption that \(R \) is regular and \(\mathbb{Q} \subseteq R \). In particular for \(R = \mathbb{Z} \) new phenomena will occur as explained later which are related to so called negative \(K \)-groups and \(Nil \)-groups. For instance, the obvious inclusion \(\mathbb{Z}/6 \to \mathbb{Z} \times \mathbb{Z}/6 \) does not induce a surjection \(K_0(\mathbb{Z}[\mathbb{Z}/6]) \to K_0(\mathbb{Z}[\mathbb{Z} \times \mathbb{Z}/6]) \), since \(K_0(\mathbb{Z}[\mathbb{Z}/6]) = 0 \) and \(\widetilde{K}_0(\mathbb{Z}[\mathbb{Z} \times \mathbb{Z}/6]) \cong \mathbb{Z} \), whereas by \(K_0(\mathbb{Q}[\mathbb{Z}/6]) \to K_0(\mathbb{Q}[\mathbb{Z} \times \mathbb{Z}/6]) \) is known to be bijective as predicted by Conjecture 2.57.

Remark 2.60 (Conjecture 2.57 and the Atiyah Conjecture). Conjecture 2.57 plays a role in a program aiming at a proof of the Atiyah Conjecture about \(L^2 \)-Betti numbers as explained in [585, Section 10.2]. Atiyah defined the \(n \)-th \(L^2 \)-Betti number of the universal covering \(\widetilde{M} \) of a closed Riemannian manifold \(M \) to be the non-negative real number

\[b_n^{(2)}(\widetilde{M}) := \lim_{t \to \infty} \int_{\mathcal{F}} \text{tr}(e^{-t\Delta_\mathcal{F}^{(\widetilde{M})}}) \, d\widetilde{x}, \]

where \(\mathcal{F} \) is a fundamental domain for the \(\pi_1(M) \)-action and \(e^{-t\Delta_\mathcal{F}^{(\widetilde{M})}} \) denotes the heat kernel on \(\widetilde{M} \). The version of the Atiyah Conjecture, which we are interested in and which is at the time of writing open, says that \(d \cdot b_n^{(2)}(\widetilde{M}) \) is an integer if \(d \) is an integer such that the order of any finite subgroup of \(\pi_1(M) \) divides \(d \). In particular \(b_n^{(2)}(\widetilde{M}) \) is expected to be an integer if \(\pi_1(M) \) is torsionfree. This gives an interesting connection between the analysis of heat kernels and the projective class group of complex group rings \(CG \).

If one drops the condition that there exists a bound on the order of finite subgroups of \(\pi_1(M) \), then also transcendental real numbers can occur as \(L^2 \)-Betti number of the universal covering \(\widetilde{M} \) of a closed Riemannian manifold \(M \), see [60, 385, 727].

A \(R \)-module \(M \) is called Artinian if for any descending series of submodules \(M_1 \supseteq M_2 \supseteq \ldots \) there exists an integer \(k \) such that \(M_k = M_k^{(1)} = M_k^{(2)} = \ldots \) holds. An \(R \)-module \(M \) is called simple or irreducible if \(M \neq \{0\} \) and \(M \) contains only \(\{0\} \) and \(M \) as submodules. A ring \(R \) is called Artinian if both \(R \) considered as left \(R \)-module is Artinian and \(R \) considered as right \(R \)-module
is Artinian, or, equivalently, every finitely generated left R-module and every finitely generated right R-module is Artinian. Skewfields and finite rings are Artinian, whereas \mathbb{Z} is not Artinian.

Conjecture 2.61 (Farrell-Jones Conjecture for $K_0(RG)$ for an Artinian ring R). Let G be a group and R be an Artinian ring.

Then the canonical map

$$I(G, R) : \operatorname{colim}_{H \in \text{Sub}_F \mathbb{Z}(G)} K_0(RH) \to K_0(RG)$$

is an isomorphism.

2.9 The Kaplansky Conjecture

In this section we discuss

Conjecture 2.62 (Kaplansky Conjecture). Let R be an integral domain and let G be a torsionfree group. Then all idempotents of RG are trivial, i.e., equal to 0 or 1.

Remark 2.63 (The Kaplansky Conjecture for prime characteristic).

If p is a prime and we additionally assume that p is not a unit in R, then a reasonable version of the Conjecture 2.62 is obtained by replacing the condition torsionfree by the weaker condition that all finite subgroups of G are p-groups.

The Kaplansky Conjecture 2.62 says roughly that idempotents in RG either come from idempotents in R or by the following construction.

Example 2.64 (Construction of idempotents). Let G be a group and $g \in G$ be an element of finite order. Suppose that the order $|g|$ is invertible in R. Define an element $x := |g|^{-1} \cdot \sum_{i=1}^{|g|} g^i$. Then $x^2 = x$, i.e., x is an idempotent in RG.

Remark 2.65 (Sofic groups). In the next theorem we will use the notion of a sofic group that was introduced by Gromov and originally called subamenable group. Every residually amenable group is sofic but the converse is not true. The class of sofic groups is closed under taking subgroups, direct products, amalgamated free products, colimits and inverse limits, and, if H is a sofic normal subgroup of G with amenable quotient G/H, then G is sofic. To the authors’ knowledge there is no example of a group which is not sofic. It is unknown but likely to be true that all hyperbolic groups are sofic. For more information about the notion of a sofic group we refer to [304].
Definition 2.66 (Directly finite). An R-module M is called directly finite if every R-module N satisfying $M \cong_R M \oplus N$ is trivial. A ring R is called directly finite (or von Neumann finite) if it is directly finite as a module over itself, or, equivalently, if $r, s \in R$ satisfy $rs = 1$, then $sr = 1$. A ring is called stably finite if the matrix algebra $M_n(R)$ is directly finite for all $n \geq 1$.

Remark 2.67 (Stable finiteness). Stable finiteness for a ring R is equivalent to the following statement. Every finitely generated projective R-module P whose class in $K_0(R)$ is zero is already the trivial module, i.e., $0 = [P] \in K_0(R)$ implies $P \cong 0$.

If F is a field of characteristic zero, then FG is stably finite for every group G. This is proved by Kaplansky [488], see also Passman [710, Corollary 1.9 on page 38]. If R is a skew-field and G is a sofic group, then RG is stably finite. This is proved for free-by-amenable groups by Ara-Meara-Perera [38] and extended to sofic groups by Elek-Szabo [303, Corollary 4.7]. These results have been extended to extensions with a finitely generated residually finite group as kernel and a sofic finitely generated group as quotient by Berlai [113].

The next theorem is taken from [81, Theorem 1.12].

Theorem 2.68 (The Farrell-Jones Conjecture and the Kaplansky Conjecture). Let G be a group. Let R be a ring whose idempotents are all trivial. Suppose that

$$K_0(R) \otimes \mathbb{Z} \mathbb{Q} \rightarrow K_0(RG) \otimes \mathbb{Z} \mathbb{Q}$$

is an isomorphism.

Then 0 and 1 are the only idempotents in RG if one of the following conditions is satisfied:

(i) RG is stably finite;

(ii) R is a field of characteristic zero;

(iii) R is a skew-field and G is sofic.

Remark 2.69 (The Farrell-Jones Conjecture and the Kaplansky Conjecture). Theorem 2.68 implies that for a skew-field D of characteristic zero and a torsionfree group G the Kaplansky Conjecture 2.62 is true for DG, provided that Conjecture 2.50 holds and that D is commutative or G is sofic.

Remark 2.70 (The Farrell-Jones Conjecture and the Kaplansky Conjecture for prime characteristic). Suppose that D is a skew-field of prime characteristic p, that Conjecture 2.61 holds for G and D, and that all finite subgroups of G are p-groups. Then $K_0(D) \xrightarrow{\cong} K_0(DG)$ is an isomorphism since for a finite p-group H the group ring DH is a local ring, see [243, Theorem 5.24 on page 114], and hence $K_0(DH) = 0$ by Lemma 2.106. If we furthermore assume that G is sofic, then Theorem 2.68 implies that all idempotents in DG are trivial.
Remark 2.71 (Reducing the case of a field of characteristic zero to \(\mathbb{C} \)). Let \(F \) be a field of characteristic zero and let \(u = \sum_{g \in G} r_g \cdot g \in FG \) be an element. Let \(K \) be the finitely generated field extension of \(\mathbb{Q} \) given by \(K = \mathbb{Q}(x_g \mid g \in G) \subset F \). Then \(u \) is already an element in \(KG \). The field \(K \) embeds into \(\mathbb{C} \); since \(K \) is finitely generated, it is a finite algebraic extension of a transcendental extension \(K' \) of \(\mathbb{Q} \), see [556, Theorem 1.1 on p. 356], and \(K' \) has finite transcendence degree over \(\mathbb{Q} \). Since the transcendence degree of \(\mathbb{C} \) over \(\mathbb{Q} \) is infinite, there exists an embedding \(K' \hookrightarrow \mathbb{C} \) induced by an injection of a transcendence basis of \(K \) over \(\mathbb{Q} \) into a transcendence basis of \(\mathbb{C} \) over \(\mathbb{Q} \). It extends to an embedding \(K \hookrightarrow \mathbb{C} \) because \(\mathbb{C} \) is algebraically closed. Hence \(u \) can be viewed as an element in \(\mathbb{C}G \). This reduces the case of fields \(F \) of characteristic zero to the case \(F = \mathbb{C} \).

Next we mention some further results.

Formanek [360, Theorem 9], see also [166, Proposition 4.2], has shown that all idempotents of \(FG \) are trivial, provided that \(F \) is a field of characteristic zero and there are infinitely many primes \(p \) for which there do not exist an element \(g \in G, g \neq 1 \) and an integer \(k \geq 1 \) such that \(g \) and \(g^{p^k} \) are conjugate. Torsionfree hyperbolic groups satisfy these conditions. Hence Formanek’s results imply that all idempotents in \(FG \) are trivial if \(G \) is torsionfree hyperbolic and \(F \) is a field of characteristic zero.

Delzant [272] has proved the Kaplansky Conjecture 2.62 for all integral domains \(R \) for a torsionfree hyperbolic group \(G \), provided that \(G \) admits an appropriate action with large enough injectivity radius. Delzant actually deals with zero-divisors and units as well.

2.10 The Bass Conjectures

2.10.1 The Bass Conjecture for Fields of Characteristic Zero as Coefficients

Let \(G \) be a group. Let \(\text{con}(G) \) be the set of conjugacy classes \((g)\) of elements \(g \in G \). Denote by \(\text{con}(G)_f \) the subset of \(\text{con}(G) \) consisting of those conjugacy classes \((g)\) for which each representative \(g \) has finite order. Let \(R \) be a commutative ring. Let \(\text{class}(G, R) \) and \(\text{class}(G, R)_f \) be the free \(R \)-module with the set \(\text{con}(G) \) and \(\text{con}(G)_f \) as basis. This is the same as the \(R \)-module of \(R \)-valued functions on \(\text{con}(G) \) and \(\text{con}(G)_f \) with finite support. Define the universal \(R \)-trace

\[
\text{tr}^u_{RG} : RG \to \text{class}(G, R), \quad \sum_{g \in G} r_g \cdot g \mapsto \sum_{g \in G} r_g \cdot (g).
\]

It extends to a function \(\text{tr}^u_{RG} : M_n(RG) \to \text{class}(G, R) \) on \((n, n)\)-matrices over \(RG \) by taking the sum of the traces of the diagonal entries. Let \(P \) be a
finitely generated projective RG-module. Choose a matrix $A \in M_n(RG)$ such that $A^2 = A$ and the image of the RG-map $r_A: RG^n \to RG^n$ given by right multiplication with A is RG-isomorphic to P. Define the Hattori-Stallings rank of P to be

$$\text{HS}_{RG}(P) = \text{tr}_{RG}^u(A) \in \text{class}(G, R).$$

The Hattori-Stallings rank depends only on the isomorphism class of the RG-module P. It induces an R-homomorphism, the Hattori-Stallings homomorphism,

$$\text{HS}_{RG}: K_0(RG) \otimes \mathbb{Z} R \to \text{class}(G, R), \quad [P] \otimes r \mapsto r \cdot \text{HS}_{RG}(P).$$

Let F be a field of characteristic zero. Fix an integer $m \geq 1$. Let $F(\zeta_m) \supset F$ be the Galois extension given by adjoining the primitive m-th root of unity ζ_m to F. Denote by $\Gamma(m, F)$ the Galois group of this extension of fields, i.e., the group of automorphisms $\sigma: F(\zeta_m) \to F(\zeta_m)$ which induce the identity on F. It can be identified with a subgroup of $\mathbb{Z}/m\mathbb{Z}^*$ by sending σ to the unique element $u(\sigma) \in \mathbb{Z}/m\mathbb{Z}$ for which $\sigma(\zeta_m) = \zeta_m^{u(\sigma)}$ holds. Let g_1 and g_2 be two elements of G of finite order. We call them F-conjugated if for some (and hence all) positive integers m with $g_1^m = g_2^m = 1$ there exists an element σ in the Galois group $\Gamma(m, F)$ with the property that $g_1^{u(\sigma)}$ and g_2 are conjugated. Two elements g_1 and g_2 are F-conjugated for $F = \mathbb{Q}$, \mathbb{R} or \mathbb{C} respectively if the cyclic subgroups $\langle g_1 \rangle$ and $\langle g_2 \rangle$ are conjugated, if g_1 and g_2 or g_1 and g_2^{-1} are conjugated, or if g_1 and g_2 are conjugated respectively.

Denote by $\text{con}_F(G)_f$ the set of F-conjugacy classes $(g)_F$ of elements $g \in G$ of finite order. Let $\text{class}_F(G)_f$ be the F-vector space with the set $\text{con}_F(G)_f$ as basis, or, equivalently, the F-vector space of functions $\text{con}_F(G)_f \to F$ with finite support. There are obvious inclusions of F-modules

$$\text{class}_F(G)_f \subseteq \text{class}(G, F)_f \subseteq \text{class}(G, F).$$

Lemma 2.75. Suppose that F is a field of characteristic zero and H is a finite group. Then the Hattori-Stallings homomorphism, see (2.74), induces an isomorphism

$$\text{HS}_{FH}: K_0(FH) \otimes \mathbb{Z} F \cong \text{class}_F(H) = \text{class}_F(H)_f.$$

Proof. Since H is finite, an FH-module is a finitely generated projective FH-module if and only if it is a (finite dimensional) H-representation with coefficients in F and $K_0(FH)$ is the same as the representation ring $R_F(H)$. The Hattori-Stallings rank $\text{HS}_{FH}(V)$ and the character χ_V of a G-representation V with coefficients in F are related by the formula

$$\chi_V(h^{-1}) = |C_G(h)| \cdot \text{HS}_{FH}(V)(h).$$
for \(h \in H \), where \(C_G(h) \) is the centralizer of \(h \) in \(G \). Hence Lemma 2.75 \(\square \) follows from representation theory, see for instance [823, Corollary 1 in Chapter 12 on page 96].

Exercise 2.77. Prove formula (2.76).

The following conjecture is the obvious generalization of Lemma 2.75 to infinite groups.

Conjecture 2.78 (Bass Conjecture for fields of characteristic zero as coefficients). Let \(F \) be a field of characteristic zero and let \(G \) be a group. The Hattori-Stallings homomorphism of (2.74) induces an isomorphism

\[
\text{HS}_{FG}: K_0(FG) \otimes \mathbb{Z} F \to \text{class}_F(G).
\]

Lemma 2.79. Suppose that \(F \) is a field of characteristic zero and \(G \) is a group. Then the composite

(2.80) \[
\colim_{H \in \text{Sub} F\mathcal{FI}N(G)} K_0(FH) \otimes \mathbb{Z} F \xrightarrow{I_{F\mathcal{FI}N(G,F) \otimes \mathbb{Z} id_F}} K_0(FG) \otimes \mathbb{Z} F \xrightarrow{\text{HS}_{FG}} \text{class}_F(G)
\]

is injective and has as image \(\text{class}_F(G) \), where \(I_{F\mathcal{FI}N(G,F) \otimes \mathbb{Z} id_F} \) is the map defined in (2.58).

Proof. This follows from the following commutative diagram, compare [581, Lemma 2.15 on page 220].

Here the isomorphism \(j \) is the direct limit over the obvious maps \(\text{class}_F(H) \rightarrow \text{class}_F(G) \) given by extending a class function in the trivial way and the map \(i \) is the natural inclusion and in particular injective. \(\square \)

Exercise 2.81. Let \(F \) be a field of characteristic zero. Show that the group \(G \) must be torsionfree if \(K_0(FG) \) is a torsion group.

Theorem 2.82 (The Farrell-Jones Conjecture and the Bass Conjecture for fields of characteristic zero). The Farrell-Jones Conjecture 2.57 for \(K_0(RG) \) for regular \(R \) and \(\mathbb{Q} \subseteq R \) implies the Bass Conjecture 2.78 for fields of characteristic zero as coefficients.

Proof. This follows from Lemma 2.79. \(\square \)
2.10 The Bass Conjectures

The Bost Conjecture [3.23] implies the Bass Conjecture [2.78] for fields of characteristic zero as coefficients, provided that $F = \mathbb{C}$, see [115, Theorem 1.4 and Lemma 1.5].

Exercise 2.83. Let F be field of characteristic zero and let G be a group. Suppose that the Farrell-Jones Conjecture [2.57] for $K_0(RG)$ for regular R and $\mathbb{Q} \subseteq R$ holds for FG. Consider any finitely generated projective FG-module P. Then the Hattori-Stallings rank $HS(P)$ evaluated at the unit $e \in G$ belongs to $\mathbb{Q} \subseteq F$.

Remark 2.84 (Zalesskii’s Theorem). Zalesskii [940], see also [166, Theorem 3.1], has shown for every field F, every group G, and every idempotent $x \in FG$ that $HS(P)$ evaluated at the unit $e \in G$ belongs to the prime field of F.

2.10.2 The Bass Conjecture for Integral Domains as Coefficients

Conjecture 2.85 (Bass Conjecture for integral domains as coefficients). Let R be a commutative integral domain and let G be a group. Let $g \in G$ be an element in G. Suppose that either the order $|g|$ is infinite or that the order $|g|$ is finite and not invertible in R.

Then for every finitely generated projective RG-module the value of its Hattori-Stallings rank $HS_{RG}(P)$ at (g) is trivial.

Sometimes the Bass Conjecture [2.85] for integral domains as coefficients, is called the Strong Bass Conjecture, see [92, 4.5]. The Weak Bass Conjecture, see [92, 4.4], states for a finitely generated projective ZG-module P that the evaluation of its Hattori-Stallings ring at the unit $HS(P)(1)$ agrees with $\text{dim}_Z(Z \otimes_{ZG} P)$.

Exercise 2.86. Show that the Weak Bass Conjecture follows from the Bass Conjecture [2.85] for integral domains as coefficients.

The Bass Conjecture [2.85] can be interpreted topologically. Namely, the Bass Conjecture [2.85] is true for a finitely presented group G in the case $R = \mathbb{Z}$, if and only if every homotopy idempotent selfmap of an oriented smooth closed manifold, whose dimension is greater than 2 and whose fundamental group is isomorphic to G, is homotopic to one that has precisely one fixed point, see [116]. The Bass Conjecture [2.85] for G in the case $R = \mathbb{Z}$ (or $R = \mathbb{C}$) also implies for a finitely dominated CW-complex with fundamental group G that its Euler characteristic agrees with the L^2-Euler characteristic of its universal covering, see [299, 0.3].

The next results follows from the argument in [338, Section 5].
Theorem 2.87 (The Farrell-Jones Conjecture and the Bass Conjecture for integral domains). Let G be a group. Suppose that

$$I(G, F) \otimes \mathbb{Q}: \text{colim}_{R \in \text{FIN}(G)} K_0(FH) \otimes \mathbb{Q} \rightarrow K_0(FG) \otimes \mathbb{Q}$$

is surjective for all fields F of prime characteristic.

Then the Bass Conjecture 2.85 is satisfied for G and every commutative integral domain R.

In particular the Bass Conjecture 2.85 follows from the Farrell-Jones Conjecture 2.61.

For finite G and R an integral domain such that no prime dividing the order of $|G|$ is a unit in R, Conjecture 2.85 was proved by Swan [850, Theorem 8.1], see also [92, Corollary 4.2]. The Bass Conjecture 2.85 has been proved by Bass [92, Proposition 6.2 and Theorem 6.3] for $R = \mathbb{C}$ and G a torsionfree linear group and by Eckmann [297, Theorem 3.3] for $R = \mathbb{Q}$, provided that G has at most cohomological dimension 2 over \mathbb{Q}.

The following result is due to Linnell [570, Lemma 4.1].

Theorem 2.88 (The Bass Conjecture for integral domains and elements of finite order). Let G be a group.

(i) Let p be a prime, and let P be a finitely generated projective $\mathbb{Z}(p)G$-module. Suppose for $g \in G$ that $\text{HS}(P)(g) \neq 0$. Then there exists an integer $n \geq 1$ such that g and g^p are conjugated in G and we get for the Hattori-Stallings rank $\text{HS}(P)(g) = \text{HS}(P)(g^p)$;

(ii) Let P be a finitely generated projective $\mathbb{Z}G$-module. Suppose for $g \in G$ that $g \neq 1$ and $\text{HS}(P)(g) \neq 0$. Then there exist subgroups C, H of G such that $g \in C, C \subseteq H, C$ is isomorphic to the additive group \mathbb{Q}, H is finitely generated, and the elements of C lie in finitely many H-conjugacy classes. In particular the order of g is infinite.

More information about the Bass Conjectures can be found in [91] [115] [117] [166] [209] [308] [309] [310] [490] [585] [707] [807] [808].

2.11 Survey on Computations of $K_0(RG)$ for Finite Groups

In this section we give a brief survey about computations of $K_0(RG)$ for finite groups G and certain rings R. The upshot will be that the reduced projective class group $\tilde{K}_0(\mathbb{Z}G)$ is a finite abelian group, but in most cases it is non-trivial and unknown, and that for F a field of characteristic zero $K_0(FG)$ is a well-known finitely generated free abelian group.

The following result is due to Swan [850, Theorem 8.1 and Proposition 9.1].
Theorem 2.89 (\(K_0(RG)\) is finite for finite \(G\) and \(R\) the ring of integers in an algebraic number field). Let \(G\) be a finite group. Let \(R\) be the ring of algebraic integers in an algebraic number field, e.g., \(R = \mathbb{Z}\). Then \(K_0(RG)\) is finite.

A proof of the next theorem will be given in Section 3.8. It was originally proved by Rim [767].

Theorem 2.90 (Rim’s Theorem). Let \(p\) be a prime number. The homomorphism induced by the ring homomorphism \(\mathbb{Z}[\mathbb{Z}/p] \to \mathbb{Z}[\exp(2\pi i/p)]\) sending the generator of \(\mathbb{Z}/p\) to the primitive \(p\)-th root of unity \(\exp(2\pi i/p)\)

\[K_0(\mathbb{Z}/p) \cong K_0(\mathbb{Z}[\exp(2\pi i/p)]) \]

is a bijection.

Example 2.91 (\(\tilde{K}_0(\mathbb{Z}/p)\)). Let \(p\) be a prime. We have already mentioned in Remark 2.23 that \(\mathbb{Z}[\exp(2\pi i/p)]\) is the ring of integers in the algebraic number field \(\mathbb{Q}[\exp(2\pi i/p)]\) and hence a Dedekind domain and that the structure of its ideal class group \(C(\mathbb{Z}[\exp(2\pi i/p)])\) is only known for a few primes. Thus the message of Rim’s Theorem 2.90 is that we know the structure of the finite abelian group \(\tilde{K}_0(\mathbb{Z}/p)\) only for a few primes. Here is a table taken from [652, page 30] or [901, Tables §3 on page 352ff].

<table>
<thead>
<tr>
<th>(p)</th>
<th>(K_0(\mathbb{Z}/p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 19)</td>
<td>({0})</td>
</tr>
<tr>
<td>23</td>
<td>(\mathbb{Z}/3)</td>
</tr>
<tr>
<td>29</td>
<td>(\mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2)</td>
</tr>
<tr>
<td>31</td>
<td>(\mathbb{Z}/9)</td>
</tr>
<tr>
<td>37</td>
<td>(\mathbb{Z}/37)</td>
</tr>
<tr>
<td>41</td>
<td>(\mathbb{Z}/11 \oplus \mathbb{Z}/11)</td>
</tr>
<tr>
<td>43</td>
<td>(\mathbb{Z}/211)</td>
</tr>
<tr>
<td>47</td>
<td>(\mathbb{Z}/5 \oplus \mathbb{Z}/139)</td>
</tr>
</tbody>
</table>

Remark 2.92 (Strategy to study \(\tilde{K}_0(ZG)\) for finite \(G\)). A \(\mathbb{Z}\)-order \(A\) is a \(\mathbb{Z}\)-algebra which is finitely generated projective over \(\mathbb{Z}\). Its locally free class group is defined as the subgroup of \(K_0(A)\)

\[Cl(A) := \left\{ [P] - [Q] \mid P_{(p)} \cong A_{(p)}, \; Q_{(p)} \text{ for all primes } p \right\} \tag{2.93} \]

where \((p)\) denotes localization at the prime \(p\). This is the part of \(K_0(A)\) which can be described by localization sequences. Its significance for \(A = \mathbb{Z}G\) lies in the result of Swan [850], see also Curtis-Reiner [243, Theorem 32.11 on page 676] and [244] (49.12 on page 221), that \(\tilde{K}_0(\mathbb{Z}G) \cong Cl(\mathbb{Z}G)\) for every finite group \(G\). Now fix a maximal \(\mathbb{Z}\)-order \(\mathbb{Z}G \subseteq M \subseteq \mathbb{Q}G\). Such a maximal order has better ring properties than \(\mathbb{Z}G\), namely, it is a hereditary ring. The map \(i_* : Cl(\mathbb{Z}G) \to Cl(M)\) induced by the inclusion \(i : \mathbb{Z}G \to M\) is surjective. Define
The definition of \(D(ZG) \) is known to be independent of the choice of the maximal order \(M \). Thus the study of \(\tilde{K}_0(ZG) \) splits into the study of \(D(ZG) \) and \(Cl(M) \). The analysis of \(Cl(M) \) can be intractable and involves studying cyclotomic fields, whereas the analysis of \(D(ZG) \) essentially uses \(p \)-adic logarithms.

Remark 2.95 (Finiteness obstructions and \(D(ZG) \)). Often calculations concerning finiteness obstructions are done first in \(Cl(M) = \tilde{K}_0(ZG)/D(ZG) \), and then in \(D(ZG) \), where often some geometric input is needed for the first part. For instance, Mislin [663] proved that the finiteness obstruction for every finitely dominated homologically nilpotent space with the finite group \(G \) as fundamental group lies in \(D(ZG) \), but that not every element in \(D(ZG) \) occurs this way. Questions concerning the spherical space form problem involve direct computations in \(D(ZG) \), see for instance Bentzen [107], Bentzen-Madsen [108], and Milgram [644]. The group \(D(ZG) \) enters also in the work of Oliver on actions of finite groups on disks, see [691, 692].

For computations of \(D(ZG) \) for finite \(p \)-groups we refer to Oliver [693, 694] and Oliver-Taylor [697].

A survey on \(D(ZG) \) and the methods of its computations can be found in Oliver [695].

Theorem 2.96 (Vanishing results for \(D(ZG) \)).

(i) Let \(G \) be a finite abelian group \(G \). Then \(D(ZG) = 0 \) holds precisely for the following groups:

(a) \(G \) has prime order;
(b) \(G \) is cyclic of order 4, 6, 8, 9, 10, 14;
(c) \(G \) is \(\mathbb{Z}/2 \times \mathbb{Z}/2 \);

(ii) If \(G \) is a finite group which is not abelian and satisfies \(D(ZG) = 0 \), then it is \(D_n \) for \(n \geq 6 \), or \(A_4 \), \(A_5 \) or \(S_4 \);

(iii) One has \(D(ZG) = 0 \) if \(G \) is \(A_4 \), \(A_5 \) or \(S_4 \);

(iv) \(D(ZD_n) = 0 \) for \(n < 120 \) and \(D(ZD_{120}) = \mathbb{Z}/2 \);

(v) \(D(ZD_n) = 0 \) if \(n \) satisfies one of the following conditions:

(a) \(n/2 \) is an odd prime;
(b) \(n/2 \) is a power of a regular odd prime;
(c) \(n/2 \) is a power of 2.

Proof. [i] This is proved by Cassou-Noguès [195], see also [244] Theorem 50.16 on page 253].

[ii] This is proved in Endo-Hironaka [311], see also [244] Theorem 50.29 on page 266].
Theorem 2.97 (Finite groups with vanishing $\tilde{K}_0(\mathbb{Z}G)$).

(i) Let G be a finite abelian group G. Then $\tilde{K}_0(\mathbb{Z}G) = 0$ holds precisely for the following groups:

(a) G is cyclic of order n for $1 \leq n \leq 11$;
(b) G is cyclic of order $13, 14, 17, 19$;
(c) G is $\mathbb{Z}/2 \times \mathbb{Z}/2$;

(ii) If G is a non-abelian finite group with $\tilde{K}_0(\mathbb{Z}G) = 0$, then G is D_n for $n \geq 6$ or A_4, A_5 or S_4;

(iii) We have $\tilde{K}_0(\mathbb{Z}G) = 0$ for $G = A_4, S_4, D_6, D_8, D_{12}$.

Proof. This is proved by Cassou-Nogués [195], see also [244, Corollary 50.17 on page 253].

This follows from Theorem 2.96 (i).

The cases $G = A_4, S_4, D_6, D_8$ are already treated in [765, Theorem 6.4 and Theorem 8.2]. Because of Theorem 2.96 (iii), it suffices to show for the maximal order \mathcal{M} for the groups $G = A_4, S_4, D_6, D_8, D_{12}$ that $Cl(\mathcal{M}) = 0$. This follows from the fact that $\mathbb{Q}G$ is a products of matrix algebras over \mathbb{Q} and hence the maximal \mathbb{Z}-order \mathcal{M} is a products of matrix rings over \mathbb{Z}.

Exercise 2.98. Determine all finite groups G of order ≤ 9 for which $\tilde{K}_0(\mathbb{Z}G)$ is non-trivial.

Theorem 2.99 ($K_0(RG)$ for finite G and an Artinian ring R). Let R be an Artinian ring. Let G be a finite group. Then RG is also an Artinian ring. There are only finitely many isomorphism classes $[P_1], [P_2], \ldots, [P_n]$ of irreducible finitely generated projective RG-modules and we obtain an isomorphism of abelian groups

$$\mathbb{Z}^n \xrightarrow{\cong} K_0(RG), \quad (k_1, k_2, \ldots, k_n) \mapsto \sum_{i=1}^n k_i \cdot [P_i].$$

Proof. This follows from [243] Proposition 16.7 on page 406 and the paragraph after Corollary 6.22 on page 132. □
Let F be a field of characteristic zero or a prime number p not dividing $|G|$. Then $K_0(FG)$ is the same as the representation ring $R_F(G)$ of G with coefficients in the field F since the ring FG is semisimple i.e., every submodule of a module is a direct summand. If F is a field of characteristic zero, then representations are detected by their characters (see Lemma 2.75). For more information about modules over FG for a finite group G and a field F we refer for instance to Curtis-Reiner [243, Chapter 1 and Chapter 2] and Serre [823].

Exercise 2.100. Compute $K_0(FD_8)$ for $F = \mathbb{Q}$, \mathbb{R} and \mathbb{C}.

2.12 Survey on Computations of $K_0(C^*_r(G))$ and $K_0(\mathcal{N}(G))$

Let G be a group. Let $B(L^2(G))$ denote the bounded linear operators on the Hilbert space $L^2(G)$ whose orthonormal basis is G. The reduced group C^*-algebra $C^*_r(G)$ is the closure in the norm topology of the image of the regular representation $\mathbb{C}G \to B(L^2(G))$, which sends an element $u \in \mathbb{C}G$ to the (left) G-equivariant bounded operator $L^2(G) \to L^2(G)$ given by right multiplication with u. The group von Neumann algebra $\mathcal{N}(G)$ is the closure in the weak topology. There is an identification $\mathcal{N}(G) = B(L^2(G))$. One has natural inclusions

$$\mathbb{C}G \subseteq C^*_r(G) \subseteq \mathcal{N}(G) \subseteq B(L^2(G)).$$

We have $\mathbb{C}G = C^*_r(G) = \mathcal{N}(G)$ if and only if G is finite. If $G = \mathbb{Z}$, then the Fourier transform gives identifications $C^*_r(\mathbb{Z}) = C(S^1)$ and $\mathcal{N}(\mathbb{Z}) = L^\infty(S^1)$.

Remark 2.101 ($K_0(C^*_r(G))$ versus $K_0(\mathbb{C}G)$). We will later see that the study of $K_0(C^*_r(G))$ is not done by its algebraic nature. Instead we will introduce and analyze the topological K-theory of $C^*_r(G)$ and explain that in dimension 0 the algebraic and the topological K-theory of $C^*_r(G)$ agree. In order to explain the different flavour of $K_0(C^*_r(G))$ in comparison with $K_0(\mathbb{C}G)$, we mention the conclusion of the Baum-Connes Conjecture for torsionfree groups [9,44] that for torsionfree G there exists an isomorphism

$$\bigoplus_{n \geq 0} H_{2n}(BG; \mathbb{Q}) \xrightarrow{\cong} K_0(C^*_r(G)) \otimes \mathbb{Z} \mathbb{Q}. $$

The space BG is the classifying space of the group G, which is up to homotopy characterized by the property that it is a CW-complex with $\pi_1(BG) \cong G$ whose universal covering is contractible. We denote by $H_*(X, R)$ the singular or cellular homology of a space or CW-complex X with coefficient in a
commutative ring R. We can identify $H_*(BG; R)$ with the group homology of G with coefficients in R.

We see that $K_0(C^*_r(G))$ can be huge also for torsionfree groups, whereas $K_0(CG) \cong \mathbb{Z}$ for torsionfree G is a conclusion of the Farrell-Jones Conjecture 2.50 for $K_0(R)$ for torsionfree G and regular R. We see already here a homological behavior of $K_0(C^*_r(G))$ which is not yet evident in the case of group rings so far and will become clear later.

Remark 2.102 ($K_0(\mathcal{N}(G))$). The projective class group $K_0(\mathcal{A})$ can be computed for any von Neumann algebra \mathcal{A} using the center-valued universal trace (see for instance [585, Section 9.2]). In particular one gets for a finitely generated group G which does not contain \mathbb{Z}_n as subgroup of finite index an isomorphism

$$K_0(\mathcal{N}(G)) \cong \mathbb{Z}(\mathcal{N}(G))^{\mathbb{Z}/2}.$$

Here $\mathbb{Z}(\mathcal{N}(G))$ is the center of the group von Neumann algebra and the $\mathbb{Z}/2$-action comes from taking the adjoint of an operator in $B(L^2(G))$ (see [585 Example 9.34 on page 353]). If G is a finitely generated group which does not contain \mathbb{Z}_n as subgroup of finite index and for which the conjugacy class (g) of an element g different from the unit is always infinite, then $\mathbb{Z}(\mathcal{N}(G)) = \mathbb{C}$ and one obtains an isomorphism

$$K_0(\mathcal{N}(G)) \cong \mathbb{R}.$$

A pleasant feature of $\mathcal{N}(G)$ is that there is no difference between stably isomorphic and isomorphic in the sense that for three finitely generated projective $\mathcal{N}(G)$-modules P_0, P_1 and Q we have $P_0 \oplus Q \cong_{\mathcal{N}(G)} P_1 \oplus Q$ if and only if $P_0 \cong_{\mathcal{N}(G)} P_1$.

We see that in the case of the group von Neumann algebra we can compute $K_0(\mathcal{N}(G))$ completely, but the answer does not show any homological behavior in G. In fact, the Farrell-Jones Conjecture and the Baum-Connes Conjecture have no analogues for group von Neumann algebras.

Exercise 2.103. Let G be an torsionfree hyperbolic group which is not cyclic. Prove $K_0(\mathcal{N}(G)) \cong \mathbb{R}$.

Remark 2.104 (Change of rings homomorphisms for \tilde{K}_0 for $\mathbb{Z}G \to CG \to C^*_r(G) \to \mathcal{N}(G)$). We summarize what is conjectured or known about the string of change of rings homomorphism

$$\tilde{K}_0(\mathbb{Z}G) \xrightarrow{i_1} \tilde{K}_0(CG) \xrightarrow{i_2} \tilde{K}_0(C^*_r(G)) \xrightarrow{i_3} \tilde{K}_0(\mathcal{N}(G))$$

coming from the various inclusion of rings. The first map i_1 is conjectured to be rationally trivial (see [604 Conjecture 85 on page 754]) and may also be integrally trivial (see [604 Remark 89 on page 756]). The second map i_2 is conjectured to be rationally injective (compare [584 Theorem 0.5]) but is
not surjective in general. The map \(i_3 \) is in general not injective, not surjective and not trivial. It is known that the composite \(i_3 \circ i_2 \circ i_1 \) is trivial (see for instance [585] Theorem 9.62 on page 362).

2.13 Notes

Algebraic \(K \)-theory is compatible with direct limits as explained for the projective class group next. A directed set \(I \) is a non-empty set with a partial ordering \(\leq \) such that for two elements \(i_0 \) and \(i_1 \) there exists an element \(i \) with \(i_0 \leq i \) and \(i \leq i_1 \). A directed system of rings is a set of rings \(\{ R_i \mid i \in I \} \) indexed by a directed set \(I \) together with a choice of a ring homomorphism \(\phi_{i,j} : R_i \to R_j \) for \(i,j \in I \) with \(i \leq j \) such that \(\phi_{i,k} = \phi_{j,k} \circ \phi_{i,j} \) holds for \(i,j,k \in I \) with \(i \leq j \leq k \) and \(\phi_{i,i} = \text{id} \) holds for \(i \in I \). The colimit, sometimes also called direct limit, of \(\{ R_i \mid i \in I \} \) is a ring denoted by \(\text{colim}_i R_i \) together with ring homomorphisms \(\psi_j : R_i \to \text{colim}_i R_i \) for every \(j \in I \) such that \(\psi_j \circ \phi_{i,j} = \psi_i \) holds for \(i,j \in I \) with \(i \leq j \) and the following universal property is satisfied: For every ring \(S \) and every system of ring homomorphisms \(\{ \mu_i : R_i \to S \mid i \in I \} \) such that \(\mu_j \circ \phi_{i,j} = \mu_i \) holds for \(i,j \in I \) with \(i \leq j \), there is precisely one ring homomorphism \(\mu : \text{colim}_i R_i \to S \) satisfying \(\mu \circ \psi_i = \mu_i \) for every \(i \in I \). If we replace ring by group or module respectively everywhere, we get the notion of directed system and direct limit of groups or modules respectively. This is a special case of the direct limit of a functor, namely, consider \(I \) as category with the set \(I \) as objects and precisely one morphism from \(i \) to \(j \) if \(i \leq j \), and no other morphisms.

Let \(\{ R_i \mid i \in I \} \) be a direct system of rings. For every \(i \in I \), we obtain a change of rings homomorphism \((\psi_i)_* : K_0(R_i) \to K_0(R) \). The universal property of the direct limit yields a homomorphism

\[
(2.105) \quad \colim_i (\psi_i)_* : \colim_i K_0(R_i) \xrightarrow{\cong} K_0(R),
\]

which turns out to be an isomorphism (see [775] Theorem 1.2.5).

We denote by \(R^\times \) the group of units in \(R \). A ring \(R \) is called local if the set \(I := R - R^\times \) forms a (left) ideal. If \(I \) is a left ideal, it is automatically a two-sided ideal and it is maximal both as a left ideal and as a right ideal. A ring \(R \) is local if and only if it has a unique maximal left ideal and a unique maximal right ideal and these two coincide. An example of a local ring is the ring of formal power series \(F[[t]] \) with coefficients in a field \(F \). If \(R \) is a commutative ring and \(I \) is a prime ideal, then the localization \(R_I \) of \(R \) at \(I \) is a local ring.

Theorem 2.106 (\(K_0(R) \) of local rings). Let \(R \) be a local ring. Then every finitely generated projective \(R \)-module is free and \(K_0(R) \) is infinite cyclic with \([R]\) as generator.
Proof. See for instance \[652\] Lemma 1.2 on page 5 or \[775\] Theorem 1.3.11 on page 14].

Its proof is based on Nakayama’s Lemma which says for a ring \(R \) and a finitely generated \(R \)-module \(M \) that \(\text{rad}(R)M = M \iff M = 0 \) holds. Here \(\text{rad}(R) \) is the radical, or Jacobson radical, i.e., the two sided ideal which is given by the intersection of all maximal left ideals, or, equivalently, of all maximal right ideals of \(R \). The radical is the same as the set of element \(r \in R \) for which there exists \(s \in S \) such that \(1 - rs \) has a left inverse in \(R \).

If \(R \) is a commutative ring and \(\text{spec}(R) \) is its spectrum consisting of its prime ideals and equipped with the Zariski topology, then we obtain for every finitely generated projective \(R \)-module \(P \) a continuous rank function \(\text{Spec}(R) \to \mathbb{Z} \) by sending a prime ideal \(I \) to the rank of the finitely generated free \(R_I \)-module \(P_I = P \otimes_R R_I \). This makes sense because of Theorem 2.106 since \(R_I \) is local. If \(R \) is a commutative integral domain, this rank function is constant. For more details we refer for instance to \[775\] Proposition 1.3.12 on page 15.

Exercise 2.107. Prove for an integer \(n \geq 1 \) that \(K_0(\mathbb{Z}/n) \) is the free abelian group whose rank is the number of prime numbers dividing \(n \).

A ring is called semilocal if \(R/\text{rad}(R) \) is Artinian, or, equivalently, \(R/\text{rad}(R) \) is semisimple. If \(R \) is commutative, then \(R \) is semilocal if and only if it has only finitely many maximal ideals (see \[830\] page 69.) For a semilocal ring \(R \), the projective class group \(K_0(R) \) is a finitely generated free abelian group (see \[830\] Proposition 14 on page 28). More information about semilocal rings can be found for instance in \[551\], § 20.

Lemma 2.108. For any ring \(R \) and nilpotent two-sided ideal \(I \subseteq R \), the map \(K_0(R) \to K_0(R/I) \) induced by the projection \(R \to R/I \) is bijective.

Proof. See \[909\] Lemma 2.2 in Section II.2 on page 69].

Given two groups \(G_1 \) and \(G_2 \), let \(G_1 * G_2 \) by the amalgamated free product. Then the natural maps \(G_k \to G_0 * G_1 \) for \(k = 1, 2 \) induce an isomorphism (see \[375\] Theorem 1.1))

\[
\tilde{K}_0(\mathbb{Z}[G_1]) \oplus \tilde{K}_0(\mathbb{Z}[G_1]) \cong \tilde{K}_0(\mathbb{Z}[G_1 * G_2]).
\]

(2.109)

This is a first glimpse of a homological behavior of \(K_0 \) if one compares this with the corresponding isomorphism of group homology

\[
\tilde{H}_n(G_1) \oplus \tilde{H}_n(G_1) \cong \tilde{H}_n(G_1 * G_2).
\]

Exercise 2.110. Show that the projections \(\text{pr}_k : G_1 \times G_2 \to G_k \) for \(k = 1, 2 \) do not in general induce isomorphisms

\[
\tilde{K}_0(\mathbb{Z}[G_1 \times G_2]) \to \tilde{K}_0(\mathbb{Z}[G_1]) \times \tilde{K}_0(\mathbb{Z}[G_2]).
\]
There are also equivariant versions of the finiteness obstructions, see for instance [33], [578], and [579] Chapter 3 and 11]. Finiteness obstructions for categories are investigated in [354], [358].

last edited on 21.03.2022
last compiled on March 21, 2022
name of texfile: ic
Chapter 3
The Whitehead Group

3.1 Introduction

This chapter is devoted to the first K-group $K_1(R)$ of a ring R and the Whitehead group $\text{Wh}(G)$ of a group G.

We give two equivalent definitions of $K_1(R)$, namely, as the universal determinant and in terms of invertible matrices. We explain some elementary calculations of $K_1(R)$ for rings with Euclidian algorithm, local rings, and rings of integers in algebraic number fields.

We introduce the Whitehead group of a group and the Whitehead torsion of a homotopy equivalence of finite CW-complexes algebraically and geometrically. The relevance of these notions are illustrated by the s-Cobordism Theorem and its applications to the classification of manifolds, and by the classification of lens spaces by Reidemeister torsion.

The next topic is the Bass-Heller-Swan decomposition and the long exact sequence associated to a pullback of rings and to a two-sided ideal. These are important tools for computations and relate $K_0(R)$ and $K_1(R)$.

We discuss Swan homomorphisms and free homotopy representations. Thus we will provide a link between torsion invariants and finite obstructions.

We explain the variant of the Farrell-Jones Conjecture that for a torsion-free group G the reduced projective class group $\tilde{K}_0(\mathbb{Z}G)$ and the Whitehead group $\text{Wh}(G)$ vanish. It implies that any h-cobordism with torsionfree fundamental group and dimension ≥ 6 is trivial.

Finally, we give a survey of computations of $K_1(\mathbb{Z}G)$ for finite groups G and of the algebraic K_1-group of commutative Banach algebras, commutative C^*-algebras and of some group von Neumann algebras.

3.2 Definition and Basic Properties of $K_1(R)$

Definition 3.1 (K_1-group $K_1(R)$). Let R be a ring. Define the K_1-group of a ring $K_1(R)$ to be the abelian group whose generators are conjugacy classes $[f]$ of automorphisms $f: P \to P$ of finitely generated projective R-modules with the following relations:

- Additivity

 Given a commutative diagram of finitely generated projective R-modules
with exact rows and automorphisms as vertical arrows, we get

\[[f_1] + [f_3] = [f_2]; \]

- Composition formula
 Given automorphisms \(f, g : P \to P \) of a finitely generated projective \(R \)-module \(P \), we get
 \[[g \circ f] = [f] + [g]. \]

Define \(G_1(R) \) analogously but replacing finitely generated projective by finitely generated everywhere.

Given a ring homomorphism \(f : R \to S \), we obtain a change of rings homomorphism

\[
(3.2) \quad f_* : K_1(R) \to K_1(S), \quad [g : P \to P] \mapsto [f_*g : f_*P \to f_*P]
\]

analogously as we have defined it for the projective class group in (2.2). Thus \(K_1 \) becomes a covariant functor from the category of rings to the category of abelian groups.

Exercise 3.3. Show that \(K_1(R) = 0 \) holds for the ring \(R \) appearing in Example 2.17.

Remark 3.4 (The universal property of \(K_1(R) \)). One should view \(K_1(R) \) together with the assignment sending an automorphism \(f : P \to P \) of a finitely generated projective \(R \)-module \(P \) to its class \([f] \in K_1(R) \) as the universal determinant. Namely, for any abelian group \(A \) and assignment \(a \) which sends the automorphism \(f \) of a finitely generated projective \(R \)-module to \(a(f) \in A \) such that \((A, a)\) satisfies additivity and the composition formula appearing in Definition 3.1, there exists precisely one homomorphism of abelian groups \(\phi : K_1(R) \to A \) such that \(\phi([f]) = a(f) \) holds for every automorphism \(f \) of a finitely generated projective \(R \)-module.

We always have the following map of abelian groups

\[
(3.5) \quad i : R^\times / [R^\times, R^\times] \to K_1(R), \quad [x] \mapsto [r_x : R \to R]
\]

where \(r_x \) right multiplication with \(x \). It is neither injective nor surjective in general. However, we have
3.2 Definition and Basic Properties of $K_1(R)$

Theorem 3.6 (K$_1$(F) of skewfields). The map i defined in (3.5) is an isomorphism if R is a skewfield or, more generally, a local ring. It is surjective (with an explicitly described kernel) if R is a semilocal ring.

Proof. See for instance [830, Corollary 43 on page 133], [775, Corollary 2.2.6 on page 69], and [830, Proposition 53 on page 140]. □

Exercise 3.7. Let H be the skewfield of quaternions \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}. Since H is a 4-dimensional vector space, there is an embedding $\text{GL}_n(H) \to \text{GL}_{4n}(\mathbb{R})$. Its composition with the determinant over \mathbb{R} yields a homomorphism $\mu_n: \text{GL}_n(H) \to \mathbb{R}^\times$ to the multiplicative group of positive real numbers. Show that the system of homomorphisms μ_n induces an isomorphism $\mu: K_1(H) \cong \mathbb{R}^\times$.

The proof of the next two results is analogous to the one of Theorem 2.10

Theorem 3.8 (Morita equivalence for K$_1(R)$). For every ring R and integer $n \geq 1$, there is natural isomorphism $\mu: K_1(R) \cong K_1(M_n(R))$.

Lemma 3.9. Let R_0 and R_1 be rings. Denote by $\text{pr}_i: R_0 \times R_1 \to R_i$ for $i = 0, 1$ the projection. Then we obtain an isomorphism $(\text{pr}_0) \times (\text{pr}_1): K_1(R_0 \times R_1) \cong K_1(R_0) \times K_1(R_1)$.

Lemma 3.10. Define the abelian group $K'_1(R)$ analogous to $K_1(R)$ but with finitely generated projective replaced by finitely generated free everywhere. Then the canonical homomorphism $\alpha: K'_1(R) \cong K_1(R), [f] \mapsto [f]$ is an isomorphism.

Proof. Given an automorphism $f: P \to P$ of a finitely generated projective R-module P, we can choose a finitely generated projective R-module Q, a finitely generated free R-module F and an R-isomorphism $\phi: P \oplus Q \cong F$. We obtain an automorphism $\phi \circ (f \oplus \text{id}_Q) \circ \phi^{-1}: F \to F$ and thus an element $[\phi \circ (f \oplus \text{id}_Q) \circ \phi^{-1}] \in K'_1(R)$. It is easily checked that it is independent of the choice of Q and ϕ and then that it depends only on $[f] \in K_1(R)$. Thus we obtain a homomorphism of abelian groups $\beta: K_1(R) \to K'_1(R)$. It is easily checked that α and β are inverse to one another. □

Next we give a matrix description of $K_1(R)$. Denote by $E_n(i, j)$ for $n \geq 1$ and $1 \leq i, j \leq n$ the (n, n)-matrix whose entry at (i, j) is one and is zero.
elsewhere. Denote by I_n the identity matrix of size n. An elementary (n,n)-matrix is a matrix of the form $I_n + r \cdot E_n(i,j)$ for $n \geq 1$, $1 \leq i, j \leq n$, $i \neq j$ and $r \in R$. Let A be an (n,n)-matrix. The matrix $B = A \cdot (I_n + r \cdot E_n(i,j))$ is obtained from A by adding the i-th column multiplied with r from the right to the j-th column. The matrix $C = (I_n + r \cdot E_n(i,j)) \cdot A$ is obtained from A by adding the j-th row multiplied with r from the left to the i-th row. Let $E(R) \subset GL(R)$ be the subgroup generated by all elements in $GL(R)$ which are represented by elementary matrices.

Lemma 3.11. The subgroup $E(R)$ of $GL(R)$ coincides with the commutator subgroup $[GL(R), GL(R)]$.

Proof. For $n \geq 3$, pairwise distinct numbers $1 \leq i, j, k \leq n$ and $r \in R$ we can write $I_n + r \cdot E_n(i,k)$ as a commutator in $GL(n)(R)$, namely,

$$I_n + r \cdot E_n(i,k) = (I_n + r \cdot E_n(i,j)) \cdot (I_n + E_n(j,k)) \cdot (I_n + r \cdot E_n(i,j))^{-1} \cdot (I_n + E_n(j,k))^{-1}. $$

This implies $E(R) \subset [GL(R), GL(R)]$.

Let A and B be two elements in $GL_n(R)$. Let $[A]$ and $[B]$ be the elements in $GL(R)$ represented by A and B. Given two elements x and y in $GL(R)$, we write $x \sim y$ if there are elements e_1 and e_2 in $E(R)$ with $x = e_1 ye_2$, in other words, if the classes of x and y in $E(R)/GL(R)/E(R)$ agree. One easily checks

$$[AB] \sim \begin{bmatrix} AB & 0 \\ 0 & I_n \end{bmatrix} \sim \begin{bmatrix} AB & A \\ 0 & -B I_n \end{bmatrix} \sim \begin{bmatrix} 0 & A \\ -B & 0 \end{bmatrix},$$

since each step is given by multiplication from the right or left with a block matrix of the form $\begin{bmatrix} I_n & 0 \\ C & I_n \end{bmatrix}$ or $\begin{bmatrix} I_n & C \\ 0 & I_n \end{bmatrix}$ and such a block matrix is obviously obtained from I_{2n} by a sequence of column and row operations and hence its class in $GL(R)$ belongs to $E(R)$. Analogously we get

$$[BA] \sim \begin{bmatrix} 0 & B \\ -A & 0 \end{bmatrix},$$

Since the element in $GL(R)$ represented by $\begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$ belongs to $E(R)$, we conclude

$$\begin{bmatrix} 0 & A \\ -B & 0 \end{bmatrix} \sim \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \sim \begin{bmatrix} 0 & B \\ -A & 0 \end{bmatrix}.$$

and hence

$$[AB] \sim [BA].$$

This implies for any element $x \in GL(R)$ and $e \in E(R)$ that $xe^{-1} \sim ex^{-1}x = e$ and hence $xe^{-1} \in E(R)$. Therefore $E(R)$ is normal. Given a commutator
3.2 Definition and Basic Properties of $K_1(R)$

$xyx^{-1}y^{-1}$ for $x, y \in GL(R)$, we conclude for appropriate elements e_1, e_2, e_3 in $E(R)$

$$xyx^{-1}y^{-1} = e_1yxe_2x^{-1}y^{-1} = e_1yx = e_1e_3 \in E(R).$$

\square

Theorem 3.12 ($K_1(R)$ equals $GL(R)/[GL(R), GL(R)]$). There is a natural isomorphism

$$GL(R)/[GL(R), GL(R)] \cong K_1(R).$$

Proof. Because of Lemma 3.10 it suffices to construct to one another inverse homomorphisms of abelian groups $\alpha : GL(R)/[GL(R), GL(R)] \to K_1^f(R)$ and $\beta : K_1^f(R) \to GL(R)/[GL(R), GL(R)]$. The map α sends the class $[A]$ of $A \in GL_n(R)$ to the class $[r_A]$ of $r_A : R^n \to R^n$. This is a well-defined homomorphism of abelian groups since $[r_{AB}] = [r_A] + [r_B]$, $[r_{AB}I_1] = [r_A]$ holds for all $n \in \mathbb{Z}$, $n \geq 1$ and $A, B \in GL_n(R)$, and $K_1(R)$ is abelian. The map β sends the class $[f]$ of an automorphism f of a finitely generated free R-module F to the class $[A(f, B)]$ of the invertible (n,n)-matrix $A(f, B)$ associated to f after a choice of some R-basis B for F. This class is independent of the choice of B, since for another choice of a bases B' there exists $U \in GL_n(R)$ with $U A(f, B) U^{-1} = A(f, B')$ which implies $[A(f, B')] = [U A(f, B) U^{-1}] = [U] [A(f, B)] [U^{-1}] = [U] [U^{-1}] A(f, B) = [A(f, B)]$. Thus we have defined β on generators. It remains to check the relations. Obviously the composition formula is satisfied. Additivity is satisfied because of the following calculation in $GL(R)/[GL(R), GL(R)]$ for $A \in GL_m(R)$, $B \in GL_n(R)$ and $C \in M_{m,n}(R)$ based on Lemma 3.11

$$\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & I_m \end{bmatrix} \cdot \begin{bmatrix} I_m & 0 \\ 0 & C \end{bmatrix} \cdot \begin{bmatrix} I_m & 0 \\ C^{-1}B & I_n \end{bmatrix}$$

$$= \begin{bmatrix} A & 0 \\ 0 & I_n \end{bmatrix} \cdot \begin{bmatrix} I_m & 0 \\ 0 & C \end{bmatrix} \cdot \begin{bmatrix} I_m & 0 \\ C^{-1}B & I_n \end{bmatrix} = [A] \cdot [C] \cdot [I_{m+n}] = [A] \cdot [C].$$

One easily checks that α and β are inverse to one another. \square

Remark 3.13 (What $K_1(R)$ measures). We conclude from Lemma 3.11 and Theorem 3.12 that two matrices $A \in GL_m(R)$ and $B \in GL_n(R)$ represent the same class in $K_1(R)$ if and only if B can be obtained from A by a sequence of the following operations:

(i) Elementary row operation

B is obtained from A by adding the k-th row multiplied with r from the left to the l-th row for $r \in R$ and $k \neq l$;

(ii) Elementary column operation

B is obtained from A by adding the k-th column multiplied with r from the right to the l-th row for $r \in R$ and $k \neq l$;
(iii) Stabilization

B is obtained by taking the direct sum of A and I_1, i.e., B looks like the block matrix $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$;

(iv) Destabilization

A is the direct sum of B and I_1. (This is the inverse operation to (iii).)

Since multiplication from the left or right with an elementary matrix corresponds to the operation (i) or the operation (ii), the abelian group $K_1(R)$ is trivial if and only if any invertible matrix $A \in \text{GL}_n(R)$ can be reduced by a sequence of the operations above to the empty matrix.

One could delete the operation (i) or the operation (ii) from the list above without changing the conclusion. This follows from the fact that $E(R)$ is a normal subgroup of $\text{GL}(R)$.

One easily checks

Lemma 3.14. Let R be a commutative ring. Then the determinant defines a homomorphism of abelian groups

$$\det : K_1(R) \to R^\times, \quad [f] \mapsto \det(f).$$

It satisfies $\det \circ i = \text{id}_{R^\times}$ for the map i defined in (3.5).

Hence i is injective for commutative rings R.

Definition 3.15 (SK$_1(R)$ of a commutative ring R). Let R be a commutative ring. Define

$$\text{SK}_1(R) := \ker \left(\det : K_1(R) \to R^\times \right).$$

We will see in Section 3.12 that there are commutative group rings ZG for which the surjective map $\det : K_1(ZG) \to ZG^\times$ is not injective, or, equivalently, with non-trivial $\text{SK}_1(ZG)$. Here is another example.

Example 3.16. The following example is taken from [94, Example 4.4], see also [775, Exercise 2.3.11 on page 82]. Let A be obtained from the polynomial ring $\mathbb{R}[x,y]$ by dividing out the ideal generated by $x^2 + y^2 - 1$. This is a Dedekind domain. The matrix

$$M := \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \in \text{SL}_2(A)$$

represents a non-trivial element in $\text{SK}_1(A)$. The proof uses Mennicke symbols and is based on the observation that the function

$$S^1 \to \text{SL}_n(\mathbb{R}), \quad (x,y) \mapsto \begin{pmatrix} x & y & 0 \\ -y & x & 0 \\ 0 & 0 & I_{n-2} \end{pmatrix}$$
represents a non-trivial element in \(\pi_1(\text{SL}_n(\mathbb{R})) \cong \pi_1(\text{SO}(n)) \cong \mathbb{Z}/2 \) for \(n \geq 3 \).

Theorem 3.17 (\(K_1(R) = \mathbb{R}^\times \) for commutative rings with Euclidean algorithm). Let \(R \) be a commutative ring with Euclidean algorithm in the sense of [775, 2.3.1 on page 74], for instance a field or \(\mathbb{Z} \).

Then the determinant induces an isomorphism

\[
\det: K_1(R) \overset{\cong}{\to} \mathbb{R}^\times.
\]

Proof. Because of Lemma 3.14 it suffices to show for \(A \in \text{GL}_n(R) \) with \(\det(A) = 1 \) that it can be reduced to the empty matrix by a sequence of operations appearing in Remark 3.13. But this is a well-known result of elementary algebra, see for instance [775, Theorem 2.3.2 on page 74]. \(\square \)

Exercise 3.18. Prove \(K_1(\mathbb{Z}[i]) \cong \{1, -1, i, -i\} \cong \mathbb{Z}/4 \).

Remark 3.19 (\(K_1(R) \) of principal ideal domains). There exists principal ideal domains \(R \) such that \(\det: K_1(R) \to \mathbb{R}^\times \) is not bijective. For instance Grayson [388] gives such an example, namely, take \(\mathbb{Z}[x] \) and invert \(x \) and all polynomials of the shape \(x^m - 1 \) for \(m \geq 1 \). Other examples can be found in Ischebeck [464].

Theorem 3.20 (Vanishing of SK_1 of ring of integers in an algebraic number field). Let \(R \) be the ring of integers in an algebraic number field. Then the determinant induces an isomorphism

\[
\det: K_1(R) \overset{\cong}{\to} \mathbb{R}^\times.
\]

Proof. See [94, page 77] or [652, Corollary 16.3 on page 159]. \(\square \)

The proof of the next classical result can be found for instance in [774, Theorem 2.3.8 on page 79].

Theorem 3.21 (Dirichlet Unit Theorem). Let \(R \) be the ring of integers in an algebraic number field \(F \). Let \(r_1 \) be the number of distinct embeddings of \(F \) into \(\mathbb{R} \) and let \(r_2 \) be the number of distinct conjugate pairs of embeddings of \(F \) into \(\mathbb{C} \) with image not contained in \(\mathbb{R} \). Then

(i) \(r_1 + 2r_2 \) is the degree \([F : \mathbb{Q}] \) of the extension \(\mathbb{Q} \subseteq F \);
(ii) \(\mathbb{R}^\times \) is finitely generated;
(iii) The torsion subgroup of \(\mathbb{R}^\times \) is the finite cyclic group of roots of unity in \(F \);
(iv) The rank of \(\mathbb{R}^\times \) is \(r_1 + r_2 - 1 \).

Exercise 3.22. Let \(R \) be the ring of integers in an algebraic number field \(F \). Then \(K_1(R) \) is finite if and only if \(F \) is \(\mathbb{Q} \) or an imaginary quadratic field.
3.3 Whitehead Group and Whitehead Torsion

In this section we will assign to a homotopy equivalence \(f: X \to Y \) of finite CW-complexes its Whitehead torsion \(\tau(f) \) in the Whitehead group \(\text{Wh}(\pi(Y)) \) associated to \(Y \). A basic feature is that the Whitehead torsion can distinguish manifolds or spaces which are homotopy equivalent. The notion of Whitehead torsion goes back to the papers by J.H.C. Whitehead [917, 918, 919].

The reduced \(K_1 \)-group \(\tilde{K}_1(R) \) is defined to be the cokernel of the map \(K_1(\mathbb{Z}) \to K_1(R) \) induced by the unique ring homomorphism \(\mathbb{Z} \to R \). The homomorphism \(\text{det}: K_1(\mathbb{Z}) \to \{\pm 1\} \) is a bijection, because \(\mathbb{Z} \) is a ring with Euclidean algorithm, see Theorem 3.17. Hence \(\tilde{K}_1(R) \) is the same as the quotient of \(K_1(R) \) by the cyclic subgroup of at most order two generated by the class of the \((1, 1)\)-matrix \((-1)\).

Definition 3.23 (Whitehead group). Define the Whitehead group \(\text{Wh}(G) \) of a group \(G \) to be the cokernel of the map \(G \times \{\pm 1\} \to K_1(\mathbb{Z}G) \) which sends \((g, \pm 1)\) to the class of the invertible \((1, 1)\)-matrix \((\pm g)\).

Exercise 3.24. Using the ring homomorphism \(f: \mathbb{Z}[\mathbb{Z}/5] \to \mathbb{C} \) which sends the generator of \(\mathbb{Z}/5 \) to \(\exp(2\pi i/5) \) and the norm of a complex number, define a homomorphism of abelian groups \(\phi: \text{Wh}(\mathbb{Z}/5) \to \mathbb{R}^{>0} \).

Show that \(1-t-t^{-1} \) is a unit in \(\mathbb{Z}[\mathbb{Z}/5] \) whose class in \(\text{Wh}(\mathbb{Z}/5) \) is an element of infinite order. (Actually \(\text{Wh}(\mathbb{Z}/5) \) is an infinite cyclic group with this class as generator).

For a ring \(R \) and a group \(G \) we denote by

\[
A_0 = K_0(i): K_0(R) \to K_0(RG)
\]

the map induced by the inclusion \(i: R \to RG \). Sending \((g, [P]) \in G \times K_0(R)\) to the class of the \(RG \)-automorphism \(R[G] \otimes_R P \to R[G] \otimes_R P, u \otimes x \mapsto ug^{-1} \otimes x \) defines a map \(\Phi: G/[G, G] \otimes_{\mathbb{Z}} K_0(R) \to K_1(RG) \). Define a homomorphism

\[
A_1 := \Phi \oplus K_1(i): (G/[G, G] \otimes_{\mathbb{Z}} K_0(R)) \oplus K_1(R) \to K_1(RG).
\]

Definition 3.27 (Generalized Whitehead group). For a regular ring \(R \) and a group \(G \) we define the generalized Whitehead group \(\text{Wh}^R(G) \) as the cokernel of the map \(A_1 \). Denote by \(\text{Wh}_0^R(G) \) the cokernel of the map \(A_0 \).

Note that the abelian group \(\text{Wh}_1^\mathbb{Z}(G) \) of Definition 3.27 agrees with the abelian group \(\text{Wh}(G) \) of Definition 3.23.

Next we will define torsion invariants on the level of chain complexes.
We begin with some input about chain complexes. Let $f_* : C_* \to D_*$ be a chain map of R-chain complexes for some ring R. Define $\text{cyl}_*(f_*)$ to be the chain complex with n-th differential

$$
\begin{pmatrix}
-c_{n-1} & 0 & 0 \\
-d & 0 & 0 \\
-f_{n-1} & 0 & d_n
\end{pmatrix}
C_{n-1} \oplus C_n \oplus D_n \longrightarrow C_{n-2} \oplus C_{n-1} \oplus D_{n-1}.
$$

Define $\text{cone}_*(f_*)$ to be the quotient of $\text{cyl}_*(f_*)$ by the obvious copy of C_*. Hence the n-th differential of $\text{cone}_*(f_*)$ is

$$
\begin{pmatrix}
-c_{n-1} & 0 \\
-f_{n-1} & d_n
\end{pmatrix}
C_{n-1} \oplus D_n \longrightarrow C_{n-2} \oplus D_{n-1}.
$$

Given a chain complex C_*, define ΣC_* to be the quotient of $\text{cone}_*(\text{id}_{C_*})$ by the obvious copy of C_*, i.e., the chain complex with n-th differential

$$
C_{n-1} \longrightarrow C_{n-2}.
$$

Definition 3.28 (Mapping cylinder and mapping cone). We call $\text{cyl}_*(f_*)$ the mapping cylinder, $\text{cone}_*(f_*)$ the mapping cone of the chain map f_*, and ΣC_* the suspension of the chain complex C_*. These algebraic notions of mapping cylinder, mapping cone and suspension are modelled on their geometric counterparts. Namely, the cellular chain complex of a mapping cylinder of a cellular map f of CW-complexes is the mapping cylinder of the chain map induced by f. As suggested already from the geometric picture, there exists obvious exact sequences such as $0 \to C_* \to \text{cyl}_*(f_*) \to \text{cone}_*(f_*) \to 0$ and $0 \to D_* \to \text{cone}_*(f_*) \to \Sigma C_* \to 0$.

A **chain contraction** γ_n for an R-chain complex C_* is a collection of R-homomorphisms $\gamma_n : C_n \to C_{n+1}$ for $n \in \mathbb{Z}$ such that $c_{n+1} \circ \gamma_n + \gamma_{n-1} \circ c_n = \text{id}_{C_n}$ holds for all $n \in \mathbb{Z}$. We call a finite free R-chain complex based free if each R-chain module C_n comes with a preferred (finite ordered) basis. Suppose that C_* is a finite based free R-chain complex which is contractible, i.e., which possesses a chain contraction. Put $C_{\text{odd}} = \oplus_{n \in \mathbb{Z}} C_{2n+1}$ and $C_{\text{ev}} = \oplus_{n \in \mathbb{Z}} C_{2n}$. Let γ_* and δ_* be two chain contractions. Define R-homomorphisms

$$
(c_* + \gamma_*)_{\text{odd}} : C_{\text{odd}} \to C_{\text{ev}};
(c_* + \delta_*)_{\text{ev}} : C_{\text{ev}} \to C_{\text{odd}}.
$$

Let A be the matrix of $(c_* + \gamma_*)_{\text{odd}}$ with respect to the given bases. Let B be the matrix of $(c_* + \delta_*)_{\text{ev}}$ with respect to the given bases. Put $\mu_n := (\gamma_{n+1} - \delta_{n+1}) \circ \delta_n$ and $\nu_n := (\delta_{n+1} - \gamma_{n+1}) \circ \gamma_n$. One easily checks that $(\text{id} + \mu_*)_{\text{odd}}$, $(\text{id} + \nu_*)_{\text{ev}}$ and both compositions $(c_* + \gamma_*)_{\text{odd}} \circ (\text{id} + \mu_*)_{\text{odd}} \circ (c_* + \delta_*)_{\text{ev}}$ and $(c_* + \delta_*)_{\text{ev}} \circ (\text{id} + \nu_*)_{\text{ev}} \circ (c_* + \gamma_*)_{\text{odd}}$ are given by upper triangular matrices.
whose diagonal entries are identity maps. Hence A and B are invertible and their classes $[A], [B] \in \widetilde{K}_1(R)$ satisfy $[A] = -[B]$. Since $[B]$ is independent of the choice of γ_\ast, the same is true for $[A]$. Thus we can associate to a finite based free contractible R-chain complex C_\ast an element

$$\tau(C_\ast) := [A] \in \widetilde{K}_1(R). \tag{3.29}$$

Let $f_\ast : C_\ast \to D_\ast$ be a homotopy equivalence of finite based free R-chain complexes. Its mapping cone $\text{cone}(f_\ast)$ is a contractible finite based free R-chain complex. Define the Whitehead torsion of the homotopy equivalence f_\ast by

$$\tau(f_\ast) := \tau(\text{cone}_\ast(f_\ast)) \in \widetilde{K}_1(R). \tag{3.30}$$

Now we can pass to CW-complexes. Let $f : X \to Y$ be a cellular homotopy equivalence of connected finite CW-complexes. Let $p_X : \tilde{X} \to X$ and $p_Y : \tilde{Y} \to Y$ be the universal coverings. Identify $\pi_1(Y)$ with $\pi_1(X)$ using the isomorphism induced by f. (We ignore base point questions here and in the sequel. This can be done since an inner automorphisms of a group G induces the identity on $K_1(ZG)$ and hence also on $Wh(G)$.) There is a lift $\tilde{f} : \tilde{X} \to \tilde{Y}$ which is $\pi_1(Y)$-equivariant. It induces a $\mathbb{Z}\pi_1(Y)$-chain homotopy equivalence $C_\ast(\tilde{f}) : C_\ast(\tilde{X}) \to C_\ast(\tilde{Y})$. The CW-structure defines a basis for each $\mathbb{Z}\pi_1(Y)$-chain module $C_n(\tilde{X})$ and $C_n(\tilde{Y})$ which is unique up to multiplying each basis element with a unit of the form $\pm g \in \mathbb{Z}\pi_1(Y)$ and permuting the elements of the basis. Pick such a cellular basis for each chain module. We can apply (3.30) to it and thus obtain an element in $\widetilde{K}_1(\mathbb{Z}\pi_1(Y))$ which we can project down to $Wh(\pi_1(Y))$ and thus get

$$\tau(f) \in Wh(\pi_1(Y)). \tag{3.31}$$

Since we consider $\tau(f)$ in $Wh(\pi_1(Y))$, the choice of the cellular basis does not matter anymore.

If $f : X \to Y$ is any homotopy equivalence of connected finite CW-complexes, we can choose by the Cellular Approximation Theorem a cellular map $f' : X \to Y$ which is homotopic to f, and define the Whitehead torsion $\tau(f)$ by $\tau(f')$. By the homotopy invariance of the Whitehead torsion, this is independent of the choice of f'.

If $f : X \to Y$ is a homotopy equivalence of finite CW-complexes, then define $Wh(\pi_1(Y)) := \bigoplus_{C \in \pi_0(Y)} Wh(\pi_1(C))$ and $\tau(f) \in Wh(\pi_1(Y))$ by the collection of the Whitehead torsions of the homotopy equivalences induce between path components. Obviously a map $g : Y_1 \to Y_2$ induces a homomorphism of abelian groups $g_* : Wh(\pi_1(Y_1)) \to Wh(\pi_1(Y_2))$ by the homomorphisms between the various fundamental groups of the path components induced by g.

Definition 3.32 (Whitehead torsion). We call $\tau(f)$ the (algebraic) Whitehead torsion of the homotopy equivalence $f : X \to Y$ of finite CW-complexes.
Exercise 3.33. Let \(0 \to C_* \xrightarrow{i_*} D_* \xrightarrow{p_*} E_* \to 0 \) be an exact sequence of projective \(R \)-chain complexes. Suppose that \(E_* \) is contractible. Construct an \(R \)-chain map \(s_* : E_* \to D_* \) such that \(p_* \circ s_* = \text{id}_{E_*} \). Show that \(i_* \oplus s_* : C_* \oplus E_* \to D_* \) is an isomorphism of \(R \)-chain complexes. Give a counterexample to the conclusion if one drops the condition that \(E_* \) is contractible.

The basic properties of this invariant are summarized in the following theorem whose proof can be found for instance in \cite{219} (22.1), (22.4), (23.1), and (23.2), \cite{235} Chapter 3 or \cite{583} Chapter 2.

Theorem 3.34 (Basic properties of Whitehead torsion).

(i) Sum formula

Let the following two diagrams be pushouts of finite CW-complexes

\[
\begin{array}{ccc}
X_0 & \xrightarrow{i_1} & X_1 \\
\downarrow{i_2} & & \downarrow{j_1} \\
X_2 & \xrightarrow{j_2} & X
\end{array}
\quad
\begin{array}{ccc}
Y_0 & \xrightarrow{k_1} & Y_1 \\
\downarrow{k_2} & & \downarrow{l_1} \\
Y_2 & \xrightarrow{l_2} & Y
\end{array}
\]

where the left vertical arrows are inclusions of CW-complexes, the upper horizontal maps are cellular, and \(X \) and \(Y \) are equipped with the induced CW-structure. Let \(f_i : X_i \to Y_i \) be homotopy equivalences for \(i = 0, 1, 2 \) satisfying \(f_1 \circ i_1 = k_1 \circ f_0 \) and \(f_2 \circ i_2 = k_2 \circ f_0 \). Put \(l_0 = l_1 \circ k_1 = l_2 \circ k_2 \). Denote by \(f : X \to Y \) the map induced by \(f_0, f_1 \) and \(f_2 \) and the pushout property.

Then \(f \) is a homotopy equivalence and

\[
\tau(f) = (l_1)_* \tau(f_1) + (l_2)_* \tau(f_2) - (l_0)_* \tau(f_0);
\]

(ii) Homotopy invariance

Let \(f \simeq g : X \to Y \) be homotopic maps of finite CW-complexes. Then the homomorphisms \(f_* : \text{Wh}(\pi_1(X)) \to \text{Wh}(\pi_1(Y)) \) agree. If additionally \(f \) and \(g \) are homotopy equivalences, then

\[
\tau(g) = \tau(f);
\]

(iii) Composition formula

Let \(f : X \to Y \) and \(g : Y \to Z \) be homotopy equivalences of finite CW-complexes. Then

\[
\tau(g \circ f) = g_* \tau(f) + \tau(g);
\]

(iv) Product formula

Let \(f : X' \to X \) and \(g : Y' \to Y \) be homotopy equivalences of connected finite CW-complexes. Then
\[\tau(f \times g) = \chi(X) \cdot j_* \tau(g) + \chi(Y) \cdot i_* \tau(f), \]

where \(\chi(X), \chi(Y) \in \mathbb{Z} \) denote the Euler characteristics, \(j_*: \text{Wh}(\pi_1(Y)) \to \text{Wh}(\pi_1(X \times Y)) \) is the homomorphism induced by \(j: Y \to X \times Y, y \mapsto (y, x_0) \) for some base point \(x_0 \in X \) and \(i_* \) is defined analogously.

Let \(X \) be a finite simplicial complex. Let \(X' \) be its barycentric subdivision. Then one can show \(\tau(f) = 0 \) for the map \(f: X \to X' \) whose underlying map of spaces is the identity. However, if \(X_1 \) and \(X_2 \) are two finite CW-complexes with the same underlying space, it is not at all clear that \(\tau(f) = 0 \) holds for the map \(f: X_1 \to X_2 \) whose underlying map of spaces is the identity. This problem is solved by the following (in comparison with the other statements above much deeper) result due to Chapman [203, 204], see also [219, Appendix].

Theorem 3.35 (Topological invariance of Whitehead torsion). The Whitehead torsion of a homeomorphism \(f: X \to Y \) of finite CW-complexes vanishes.

3.4 Geometric Interpretation of Whitehead Group and Whitehead Torsion

In this section we introduce the concept of a simple homotopy equivalence \(f: X \to Y \) of finite CW-complexes geometrically. We will show that the obstruction for a homotopy equivalence \(f: X \to Y \) of finite CW-complexes to be simple is the Whitehead torsion.

We have the inclusion of spaces \(S^{n-2} \subset S^{n-1} \subset S^n \subset D^n \), where \(S^{n-1} \subset S^n \) is the upper hemisphere. The pair \((D^n, S^{n-1}) \) carries an obvious relative CW-structure. Namely, attach an \((n-1)\)-cell to \(S^{n-1} \) by the attaching map \(\text{id}: S^{n-2} \to S^{n-2} \) to obtain \(S^{n-1} \). Then we attach to \(S^{n-1} \) an \(n \)-cell by the attaching map \(\text{id}: S^n \to S^{n-1} \) to obtain \(D^n \). Let \(X \) be a CW-complex. Let \(q: S^n \to X \) be a map satisfying \(q(S^{n-2}) \subset X_{n-2} \) and \(q(S^{n-1}) \subset X_{n-1} \). Let \(Y \) be the space \(D^n \cup q X \), i.e., the pushout

\[
\begin{array}{ccc}
S^{n-1} & \xrightarrow{q} & X \\
\downarrow{i} & & \downarrow{j} \\
D^n & \xrightarrow{g} & Y
\end{array}
\]

where \(i \) is the inclusion. Then \(Y \) inherits a CW-structure by putting \(Y_k = j(X_k) \) for \(k \leq n - 2 \), \(Y_{n-1} = j(X_{n-1}) \cup g(S^{n-1}) \) and \(Y_k = j(X_k) \cup g(D^n) \) for \(k \geq n \). Note that \(Y \) is obtained from \(X \) by attaching one \((n-1)\)-cell and one \(n \)-cell. Since the map \(i: S^{n-1} \to D^n \) is a homotopy equivalence and
cofibration, the map \(j : X \to Y \) is a homotopy equivalence and a cofibration. We call \(j \) an \textit{elementary expansion} and say that \(Y \) is obtained from \(X \) by an elementary expansion. There is a map \(r : Y \to X \) with \(r \circ j = \text{id}_X \). This map is unique up to homotopy relative \(j(X) \). We call any such map an \textit{elementary collapse} and say that \(X \) is obtained from \(Y \) by an elementary collapse.

Definition 3.36 (Simple homotopy equivalence). Let \(f : X \to Y \) be a map of finite \(CW \)-complexes. We call it a simple homotopy equivalence if there is a sequence of maps

\[
X = X[0] \xrightarrow{f_0} X[1] \xrightarrow{f_1} X[2] \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} X[n] = Y
\]

such that each \(f_i \) is an elementary expansion or elementary collapse and \(f \) is homotopic to the composition of the maps \(f_i \).

Remark 3.37 (Combinatorial meaning of simple homotopy equivalence). The idea of the definition of a simple homotopy equivalence is that such a map can be written as a composition of elementary maps, namely, elementary expansions and collapses, which are obviously homotopy equivalences and in some sense the smallest and most elementary steps to pass from one finite \(CW \)-complex to another without changing the homotopy type. If one works with simplicial complexes, an elementary map has a purely combinatorial description. An elementary collapse means to delete a simplex and one of its faces which is not shared by another simplex. So one can describe the passage from one finite simplicial complex to another coming from a simple homotopy equivalence by finitely many combinatorial data. This does not work for two finite simplicial complexes which are homotopy equivalent but not simple homotopy equivalent.

This approach is similar to the idea in knot theory that two knots are equivalent if one can pass from one knot to the other by a sequence of elementary moves, the so called Reidemeister moves. A Reidemeister move obviously does not change the equivalence class of a knot and, indeed, it turns out that one can pass from one knot to a second knot by a sequence of Reidemeister moves if and only if the two knots are equivalent, see for instance [164, Chapter 1] or [900]. The analogous statement is not true for homotopy equivalences \(f : X \to Y \) of finite \(CW \)-complexes because there is an obstruction for \(f \) to be simple, namely, its Whitehead torsion.

Exercise 3.38. Consider the simplicial complex \(X \) with four vertices \(v_0, v_1, v_2 \) and \(v_3 \), the edges \(\{v_0, v_1\}, \{v_1, v_2\}, \{v_0, v_2\} \) and \(\{v_2, v_3\} \) and one 2-simplex \(\{v_0, v_1, v_2\} \). Describe a sequence of elementary collapses and expansions transforming it to the one-point-space \(\{\bullet\} \).

Recall that the \textit{mapping cylinder} \(\text{cyl}(f) \) of a map \(f : X \to Y \) is defined by the pushout.
There are natural inclusions $i_X : X = X \times \{1\} \to \text{cyl}(f)$ and $i_Y : Y \to \text{cyl}(f)$ and a natural projection $p : \text{cyl}(f) \to Y$. Note that i_X is a cofibration and $p \circ i_X = f$ and $p_Y \circ i_Y = \text{id}_Y$. Define the mapping cone $\text{cone}(f)$ by the quotient $\text{cyl}(f)/i_X(X)$.

Lemma 3.39. Let $f : X \to Y$ be a cellular map of finite CW-complexes and $A \subset X$ be a CW-subcomplex. Then the inclusion $\text{cyl}(f|A) \to \text{cyl}(f)$ and (in the case $A = \emptyset$) $i_Y : Y \to \text{cyl}(f)$ is a composition of elementary expansions and hence a simple homotopy equivalence.

Proof. It suffices to treat the case, where X is obtained from A by attaching an n-cell by an attaching map $q : S^{n-1} \to X$. Then there is an obvious pushout

$$
S^{n-1} \times [0,1] \cup_{S^{n-1} \times \{0\}} D^n \times \{0\} \to \text{cyl}(f|A)
$$

and an obvious homeomorphism $(D^n \times [0,1], S^{n-1} \times [0,1] \cup_{S^{n-1} \times \{0\}} D^n \times \{0\}) \to (D^{n+1}, S^n)$.

Lemma 3.40. A map $f : X \to Y$ of finite CW-complexes is a simple homotopy equivalence if and only if $i_X : X \to \text{cyl}(f)$ is a simple homotopy equivalence.

Proof. This follows from Lemma 3.39 since a composition of simple homotopy equivalence and a homotopy inverse of a simple homotopy equivalence is again a simple homotopy equivalence.

We only sketch the proof of the next result. More details can be found for instance in [219, (22.2)] or [583, Chapter 2]. However, we try to give enough information about its proof to illustrate, why the geometric problem to decide whether a homotopy equivalence is simple, is equivalent to a question about an invertible matrix A, which has a positive answer precisely if the class of A vanishes in the Whitehead group. The key will be Remark 3.13.

Theorem 3.41 (Whitehead torsion and simple homotopy equivalences).

(i) Let X be a finite CW-complex. Then for any element $x \in \text{Wh}(\pi_1(X))$ there is an inclusion $i : X \to Y$ of finite CW-complexes such that i is a homotopy equivalence and $i^{-1}_*(\tau(i)) = x$;
(ii) Let \(f: X \to Y \) be a homotopy equivalence of finite CW-complexes. Then its Whitehead torsion \(\tau(f) \in \text{Wh}(\pi_1(Y)) \) vanishes if and only if \(f \) is a simple homotopy equivalence.

\textbf{Proof.} We can assume without loss of generality that \(X \) is connected. Put \(\pi = \pi_1(X) \). Choose an element \(A \in \text{GL}_n(\mathbb{Z}\pi) \) representing \(x \in \text{Wh}(\pi) \). Choose \(n \geq 2 \). In the sequel we fix a zero-cell in \(X \) as base point. Put \(X' = X \vee \vee_{j=1}^n S^n \). Let \(b_j \in \pi_n(X') \) be the element represented by the inclusion of the \(j \)-th copy of \(S^n \) into \(X' \) for \(j = 1, 2, \ldots, n \). Recall that \(\pi_n(X') \) is a \(\mathbb{Z}\pi \)-module. Choose for \(i = 1, 2, \ldots, n \) a map \(f_i: S^n \to X_n' \) such that \([f_i] = \sum_{j=1}^n a_{i,j} \cdot b_j \) holds in \(\pi_n(X') \). Attach to \(X' \) for each \(i \in \{1, 2, \ldots, n\} \) an \((n+1) \)-cell by \(f_i: S^n \to X_n' \). Let \(Y \) be the resulting CW-complex and \(i: X \to Y \) be the inclusion. Then \(i \) is an inclusion of finite CW-complexes and induces an isomorphism on the fundamental groups. In the sequel we identify \(\pi \) and \(\pi_1(Y) \) by \(\pi_1(i) \). The cellular \(\mathbb{Z}\pi \)-chain complex \(C_*(\tilde{Y}, \tilde{X}) \) is concentrated in dimensions \(n \) and \((n+1) \) and its \((n+1) \)-differential is given by the matrix \(A \) with respect to the cellular basis. Hence \(C_*(\tilde{Y}, \tilde{X}) \) is a contractible finite based free \(\mathbb{Z}\pi \)-chain complex with \(\tau(C_*(\tilde{Y}, \tilde{X})) = [A] \) in \(\text{Wh}(\pi) \). This implies that \(i: X \to Y \) is a homotopy equivalence with \(i_*^{-1}(\tau(i)) = x \).

Suppose that \(f \) is a simple homotopy equivalence. We want to show \(\tau(f) = 0 \). Because of Theorem 3.34 (iii) it suffices to prove for an elementary expansion \(j: X \to Y \) that its Whitehead torsion \(\tau(j) \in \text{Wh}(Y) \) vanishes. We can assume without loss of generality that \(Y \) is connected. In the sequel we write \(\pi = \pi_1(Y) \) and identify \(\pi = \pi_1(X) \) by \(\pi_1(f) \). The following diagram of based free finite \(\mathbb{Z}\pi \)-chain complexes

\[
\begin{array}{ccccc}
0 & \longrightarrow & C_*(\tilde{X}) & \xrightarrow{C_*(\tilde{j})} & C_*(\tilde{Y}) & \xrightarrow{pr_*} & C_*(\tilde{Y}, \tilde{X}) & \longrightarrow & 0 \\
\downarrow{id_*} & & \downarrow{c_*} & & \downarrow{pr_*} & & \downarrow{0_*} & & \downarrow{0} \\
0 & \longrightarrow & C_*(\tilde{X}) & \xrightarrow{id_*} & C_*(\tilde{X}) & \longrightarrow & 0 & \longrightarrow & 0
\end{array}
\]

has based exact rows and \(\mathbb{Z}\pi \)-chain homotopy equivalences as vertical arrows. Elementary facts about chain complexes, in particular the conclusion from Exercise 3.33 imply

\[
\tau(C_*(\tilde{j})) = \tau(id_*: C_*(\tilde{X}) \to C_*(\tilde{X})) + \tau(0_*: 0 \to C_*(\tilde{Y}, \tilde{X})) = 0 + \tau(C_*(\tilde{Y}, \tilde{X})) = \tau(C_*(\tilde{Y}, \tilde{X})).
\]

The \(\mathbb{Z}\pi \)-chain complex \(C_*(\tilde{Y}, \tilde{X}) \) is concentrated in two consecutive dimensions and its only non-trivial differential is \(id: \mathbb{Z}\pi \to \mathbb{Z}\pi \) if we identify the two non-trivial \(\mathbb{Z}\pi \)-chain modules with \(\mathbb{Z}\pi \) using the cellular basis. This implies \(\tau(C_*(\tilde{Y}, \tilde{X})) = 0 \) and hence \(\tau(j) := \tau(C_*(\tilde{j})) = 0 \).
Now suppose that $\tau(f) = 0$. We want to show that f is simple. We can assume without loss of generality that X is connected, otherwise treat each path component separately. Because of Lemma 3.40 we can assume that f is an inclusion $i: X \to Y$ of connected finite CW-complexes which is a homotopy equivalence. We have to show that we can achieve by a sequence of elementary collapses and expansions that $Y = X$, i.e., we must get rid of all the cells in $Y - X$.

Since $\chi(X) = \chi(Y)$, it is clear that one cannot remove a single cell, this always has to be done in pairs. In the first step one shows for an n-dimensional cell e_n that one can attach one new $(n + 1)$-cell e_{n+1} and a new $(n + 2)$-cell e_{n+2} by an elementary expansion and then get rid of e_n and e_{n+1} by an elementary collapse. The outcome is that one can replace an $(n + 2)$-cell by an $(n + 1)$-cell. Analogously, one can show that one can replace an $(n + 2)$-cell by a n-cell. Thus one can arrange for some integer $n \geq 2$ that Y is obtained from X by attaching k cells of dimension n trivially and then attaching k cells of dimension $(n + 1)$. Hence the cellular $\mathbb{Z}\pi$-chain complex $C_\ast(Y, X)$ is concentrated in dimension n and $(n+1)$. After we have picked a cellular basis, its $(n+1)$-differential is given by an invertible (k,k)-matrix A. By definition $\tau(f)$ is the class of this matrix in $Wh(\pi)$. In Remark 3.13 we have described what $\tau(f) = [A] = 0$ means, namely, there is a sequence of operations which transform A to the empty matrix. Note that $X = Y$ precisely if A is the empty matrix. Now the main idea is to show that each of this operations can be realized by elementary expansions and collapses. □

Next we describe the Whitehead group geometrically. Fix a finite CW-complex X. Consider two pairs of finite CW-complexes (Y, X) and (Z, X) such that the inclusions of X into Y and Z are homotopy equivalences. We call them equivalent, if there is a chain of pairs of finite CW-complexes

$$(Y, X) = (Y[0], X), (Y[1], X), (Y[2], X), \ldots, (Y[n], X) = (Z, X),$$

such that for each $k \in \{1, 2, \ldots, n\}$ either $Y[k]$ is obtained from $Y[k-1]$ by an elementary expansion or $Y[k-1]$ is obtained from $Y[k]$ by an elementary expansion. Denote by $Wh^{geo}(X)$ the equivalence classes $[Y, X]$ of such pairs (Y, X). This becomes an abelian group under the addition $[Y, X] + [Z, X] := [Y \cup_X Z, X]$. The zero element is given by $[X, X]$. The inverse of $[Y, X]$ is constructed as follows. Choose a map $\tau: Y \to X$ with $r_X = 1$. Let $p: X \times [0,1] \to X$ be the projection. Then $[(\text{cyl}(r) \cup_p X) \cup_r X, X] + [Y, X] = 0$. A map $g: X \to X'$ induces a homomorphism $g_\ast: Wh^{geo}(X) \to Wh^{geo}(X')$ by sending $[Y, X]$ to $[Y \cup_g X', X']$. We obviously have $id_\ast = 1$ and $(g \circ h)_\ast = g_\ast \circ h_\ast$. In other words, we obtain a covariant functor on the category of finite CW-complexes with values in abelian groups. More information about this construction can be found for instance in [219, § 6 in Chapter II].

Given a homotopy equivalence of finite CW-complexes $f: X \to Y$, define its geometric Whitehead torsion $\tau^{geo}(f) \in Wh^{geo}(X)$ to be the class of
3.5 The s-Cobordism Theorem

3.5.1 The Cobordism Theorem

Because of Lemma 3.40 we have \(\tau^{\text{geo}}(f) = 0 \) if and only if \(f \) is a simple homotopy equivalence.

The next result is essentially a consequence of Theorem 3.41. Details of its proof can be found in [219 §21].

Theorem 3.42 (Geometric and algebraic Whitehead groups).

(i) Let \(X \) be a finite CW-complex. The map

\[
\tau: \text{Wh}^{\text{geo}}(X) \to \text{Wh}(\pi_1(X))
\]

sending \([Y, X]\) to \(i_*^{-1}\tau(i)\) for the inclusion \(i: X \to Y \) is a natural isomorphism of abelian groups.

It sends \(\tau^{\text{geo}}(f) \) to \(f_*^{-1}\tau(f) \) for a homotopy equivalence \(f: X \to Y \) of finite CW-complexes.

(ii) A homotopy equivalence \(f: X \to Y \) is a simple homotopy equivalence if and only if \(\tau(f) \in \text{Wh}(Y) \) vanishes.

Exercise 3.43. Let \(Y \) be a simply connected finitely dominated CW-complex. Show that there exists a finite CW-complex \(X \) and a homotopy equivalence \(f: X \to Y \). Prove that for any two finite CW-complexes \(X_0 \) and \(X_1 \) and homotopy equivalences \(f_i: X_i \to Y \) for \(i = 0, 1 \) there exists a simple homotopy equivalence \(g: X_0 \to X_1 \) with \(f_1 \circ g \simeq f_0 \).

3.5 The s-Cobordism Theorem

One of the main applications of Whitehead torsion is the theorem below.

Theorem 3.44 (s-Cobordism Theorem). Let \(M_0 \) be a connected closed manifold of dimension \(n \geq 5 \) with fundamental group \(\pi = \pi_1(M_0) \). Then

(i) Let \((W; M_0, f_0, M_1, f_1)\) be an h-cobordism over \(M_0 \). Then \(W \) is trivial over \(M_0 \) if and only if its Whitehead torsion \(\tau(W, M_0) \in \text{Wh}(\pi) \) vanishes;

(ii) For any \(x \in \text{Wh}(\pi) \) there is an h-cobordism \((W; M_0, f_0, M_1, f_1)\) over \(M_0 \) with \(\tau(W, M_0) = x \in \text{Wh}(\pi) \);

(iii) The function assigning to an h-cobordism \((W; M_0, f_0, M_1, f_1)\) over \(M_0 \) its Whitehead torsion yields a bijection from the diffeomorphism classes relative \(M_0 \) of h-cobordisms over \(M_0 \) to the Whitehead group \(\text{Wh}(\pi) \).

Here are some explanations. An \(n \)-dimensional cobordism (sometimes also called just bordism) \((W; M_0, f_0, M_1, f_1)\) consists of a compact \(n \)-dimensional manifold \(W \), closed \((n-1)\)-dimensional manifolds \(M_0 \) and \(M_1 \), a disjoint decomposition \(\partial W = \partial_0 W \coprod \partial_1 W \) of the boundary \(\partial W \) of \(W \) and diffeomorphisms \(f_0: M_0 \to \partial_0 W \) and \(f_1: M_1 \to \partial_1 W \). If we want to specify \(M_0 \), we say that \(W \) is a cobordism over \(M_0 \). If \(\partial_0 W = M_0 \), \(\partial_1 W = M_1 \) and \(f_0 \) and
f_1 are given by the identity or if f_0 and f_1 are obvious from the context, we briefly write $(W; \partial_0 W, \partial_1 W)$. We call a cobordism $(W; M_0, f_0, M_1, f_1)$ an h-cobordism, if the inclusions $\partial_i W \to W$ for $i = 0, 1$ are homotopy equivalences. Two cobordisms $(W; M_0, f_0, M_1, f_1)$ and $(W'; M_0, f'_0, M_1, f'_1)$ over M_0 are diffeomorphic relative M_0 if there is a diffeomorphism $F: W \to W'$ with $F \circ f_0 = f'_0$. We call an h-cobordism over M_0 trivial, if it is diffeomorphic relative M_0 to the trivial h-cobordism $(M_0 \times [0, 1]; M_0 \times \{0\}, (M_0 \times \{1\}))$. Note that the choice of the diffeomorphisms f_i do play a role although they are often suppressed in the notation.

The Whitehead torsion of an h-cobordism $(W; M_0, f_0, M_1, f_1)$ over M_0

\[(3.45) \quad \tau(W, M_0) \in Wh(\pi_1(M_0)) \]

is defined to be the preimage of the Whitehead torsion, see Definition 3.32,

\[\tau \left(M_0 \xrightarrow{f_0} \partial_0 W \xrightarrow{i_0} W \right) \in Wh(\pi_1(W)) \]

under the isomorphism $(i_0 \circ f_0)_* : Wh(\pi_1(M_0)) \xrightarrow{\sim} Wh(\pi_1(W))$, where the map $i_0 : \partial_0 W \to W$ is the inclusion. Here we use the fact that each smooth closed manifold has a CW-structure, which comes for instance from a smooth triangulation, or that each closed topological manifold of dimension different from 4 has a CW-structure, which comes from a handlebody decomposition, and that the choice of CW-structure does not matter by the topological invariance of the Whitehead torsion, see Theorem 3.35.

The idea of the proof of Theorem 3.44 is analogous to the one of Theorem 3.41 but now one uses a handlebody decomposition instead of a CW-structure and carries out the manipulation for handlebodies instead of for cells. Here a handlebody of index k corresponds to a k-dimensional cell. More details can be found for instance in [235, Chapter 2].

The s-Cobordism Theorem 3.44 is due to Barden, Mazur, Stallings. Its topological version was proved by Kirby and Siebenmann [524, Essay II]. More information about the s-cobordism theorem can be found for instance in [519], [583, Chapter 1], [650], [651], [792, page 87–90]. The s-cobordism theorem is known to be false (smoothly) for $n = \dim(M_0) = 4$ in general, by the work of Donaldson [283], but it is true for $n = \dim(M_0) = 4$ for so called “good” fundamental groups in the topological category by results of Freedman [363], [364]. The trivial group is an example of a “good” fundamental group. Counterexamples in the case $n = \dim(M_0) = 3$ are constructed by Cappell and Shaneson [183].

Exercise 3.46. Show for $n \geq 6$ that there exists an n-dimensional h-cobordism $(W; M_0, M_1)$ which is not trivial such that the h-cobordism $(W \times S^3; M_0 \times S^3, M_1 \times S^3)$ is trivial.
3.5 The s-Cobordism Theorem

Since the Whitehead group of the trivial group vanishes, see Theorem \[3.17\], the s-Cobordism Theorem \[3.44\] implies, see also \[650\],

Theorem 3.47 (h-Cobordism Theorem). Let \(M_0 \) be a simply connected closed \(n \)-dimensional manifold with \(\dim(M_0) \geq 5 \). Then every h-cobordism \((W; M_0, f_0, M_1, f_1)\) over \(M_0 \) is trivial.

Theorem 3.48 (Poincaré Conjecture). The Poincaré Conjecture is true for a closed \(n \)-dimensional manifold \(M \) with \(\dim(M) \geq 5 \), namely, if \(M \) is simply connected and its homology \(H_p(M) \) is isomorphic to \(H_p(S^n) \) for all \(p \in \mathbb{Z} \), then \(M \) is homeomorphic to \(S^n \).

Proof. We only give the proof for \(\dim(M) \geq 6 \). Since \(M \) is simply connected and \(H_*(M) \cong H_*(S^n) \), one can conclude from the Hurewicz theorem and Whitehead theorem \[916, \text{ Theorem IV.7.13 on page 181 and Theorem IV.7.17 on page 182} \] that there is a homotopy equivalence \(f: M \to S^n \). Let \(D_i^n \subset M \) for \(i = 0, 1 \) be two embedded disjoint disks. Let \(W \) be obtained from \(M \) by removing the interior of the two disks \(D_0^n \) and \(D_1^n \). Then \(W \) turns out to be a simply connected h-cobordism. Hence we can find because of Theorem \[3.47\] a homeomorphism \(F: (\partial D_0^n \times [0, 1], \partial D_0^n \times \{0\}, \partial D_0^n \times \{1\}) \to (W, \partial D_0^n, \partial D_1^n) \) which is the identity on \(\partial D_0^n = \partial D_0^n \times \{0\} \) and induces some (unknown) homeomorphism \(f_1: \partial D_0^n \times \{1\} \to \partial D_1^n \). By the Alexander trick one can extend \(f_1: \partial D_0^n = \partial D_0^n \times \{1\} \to \partial D_1^n \) to a homeomorphism \(\overline{f}_1: D_0^n \to D_1^n \). Namely, any homeomorphism \(f: S^{n-1} \to S^{n-1} \) extends to a homeomorphism \(\overline{f}: D^n \to D^n \) by sending \(t \cdot x \) for \(t \in [0, 1] \) and \(x \in S^{n-1} \) to \(t \cdot f(x) \). Now define a homeomorphism \(h: D_0^n \times \{0\} \cup_i \partial D_0^n \times \{0, 1\} \cup_i D_0^n \times \{1\} \to M \) for the canonical inclusions \(i_k: \partial D_0^n \times \{k\} \to \partial D_0^n \times \{0, 1\} \) for \(k = 0, 1 \) by \(h|D_0^n \times \{0\} = \text{id} \), \(h|\partial D_0^n \times \{0, 1\} = F \) and \(h|D_0^n \times \{1\} = \overline{f}_1 \). Since the source of \(h \) is obviously homeomorphic to \(S^n \), Theorem \[3.48\] follows.

In the case \(\dim(M) = 5 \) one uses the fact that \(M \) is the boundary of a contractible 6-dimensional manifold \(W \) and applies Theorem \[3.47\] to \(W \) with an embedded disc removed.

\(\square \)

The Poincaré Conjecture, see Theorem \[3.48\], is nowadays also known in dimension 3 by work of Perelman, see \[\[925, 1674, 1675, 1721, 1722, 1723\], and in dimension 4 by work of Freedman, see \[\[363, 364\]. It is obviously true in dimensions 1 and 2.

Remark 3.49 (Exotic Spheres). Note that the proof of the Poincaré Conjecture in Theorem \[3.48\] works only in the topological category but not in the smooth category. In other words, we cannot conclude the existence of a diffeomorphism \(h: S^n \to M \). The proof in the smooth case breaks down when we apply the Alexander trick. The construction of \(\overline{f} \) given by coning \(f \) yields only a homeomorphism \(\overline{f} \) and not a diffeomorphism, even if we start with a diffeomorphism \(f \). The map \(\overline{f} \) is smooth outside the origin of \(D^n \) but not necessarily at the origin. Indeed, not every diffeomorphism \(f: S^{n-1} \to S^{n-1} \) can be extended to a diffeomorphism \(D^n \to D^n \) and there exist so called
exotic spheres, i.e., closed manifolds which are homeomorphic to S^n but not diffeomorphic to S^n. The classification of these exotic spheres is one of the early very important achievements of surgery theory and one motivation for its further development. For more information about exotic spheres we refer for instance to [235, Chapter 12], [520], [552], [565] and [583, Chapter 6].

Remark 3.50 (The surgery program). In some sense the s-Cobordism Theorem 3.44 is one of the first theorems, where diffeomorphism classes of certain manifolds are determined by an algebraic invariant, namely, the Whitehead torsion. Moreover, the Whitehead group $\text{Wh}(\pi)$ depends only on the fundamental group $\pi = \pi_1(M_0)$, whereas the diffeomorphism classes of h-cobordisms over M_0 a priori depend on M_0 itself. The s-Cobordism Theorem 3.44 is one step in a program to decide whether two closed manifolds M and N are diffeomorphic what is in general a very hard question. The idea is to construct an h-cobordism $(W; M, f, N, g)$ with vanishing Whitehead torsion. Then W is diffeomorphic to the trivial h-cobordism over M what implies that M and N are diffeomorphic. So the surgery program is:

(i) Construct a simple homotopy equivalence $f : M \to N$;
(ii) Construct a cobordism $(W; M, N)$ and a map $(F, f, \text{id}) : (W; M, N) \to (N \times [0, 1], N \times \{0\}, N \times \{1\})$;
(iii) Modify W and F relative boundary by so called surgery such that F becomes a simple homotopy equivalence and thus W becomes an h-cobordism whose Whitehead torsion is trivial.

The advantage of this approach will be that it can be reduced to problems in homotopy theory and algebra which can sometimes be handled by well-known techniques. In particular one will get sometimes computable obstructions for two homotopy equivalent manifolds to be diffeomorphic. Often surgery theory has proved to be very useful when one wants to distinguish two closed manifolds which have very similar properties. The classification of homotopy spheres is one example. Moreover, surgery techniques can be applied to problems which are of different nature than of diffeomorphism or homeomorphism classifications, for instance for the construction of group actions.

More information about surgery theory will be given in Chapter 8.

3.6 Reidemeister Torsion and Lens Spaces

In this section we briefly deal with Reidemeister torsion which was defined earlier than Whitehead torsion and motivated the definition of Whitehead torsion. Reidemeister torsion was the first invariant in algebraic topology which could distinguish between spaces which are homotopy equivalent but not homeomorphic. Namely, it can be used to classify lens spaces up to home-
omorphism, see Reidemeister \cite{764}. We will give no proofs. More information and complete proofs can be found in \cite{219} Chapter V and \cite{583} Section 2.4.

Let X be a finite CW-complex with fundamental group π. Let U be an orthogonal finite dimensional π-representation. Denote by $H_p(X;U)$ the homology of X with coefficients in U, i.e., the homology of the \mathbb{R}-chain complex $U \otimes_{\mathbb{Z}_p} C_*(X)$. Suppose that X is U-acyclic, i.e., $H_n(X;U) = 0$ for all $n \geq 0$. If we fix a cellular basis for $C_*(\widetilde{X})$ and some orthogonal \mathbb{R}-basis for U, then $U \otimes_{\mathbb{Z}_p} C_*(\widetilde{X})$ is a contractible based free finite \mathbb{R}-chain complex and yields an element $\tau(U \otimes_{\mathbb{Z}_p} C_*(\widetilde{X})) \in \tilde{K}_1(\mathbb{R})$, see \cite{3.29}. Define the Reidemeister torsion

\begin{equation}
\rho(X;U) \in \mathbb{R}_{>0}
\end{equation}

to be the image of $\tau(U \otimes_{\mathbb{Z}_p} C_*(\widetilde{X})) \in \tilde{K}_1(\mathbb{R})$ under the homomorphism $\tilde{K}_1(\mathbb{R}) \rightarrow \mathbb{R}_{>0}$ sending the class $[A]$ of $A \in \text{GL}_n(\mathbb{R})$ to $|\det(A)|$. Note that for any trivial unit $\pm \gamma$ the automorphism of U given by multiplication with $\pm \gamma$ is orthogonal and that the absolute value of the determinant of any orthogonal automorphism of U is 1. Therefore $\rho(X;U) \in \mathbb{R}_{>0}$ is independent of the choice of cellular basis for $C_*(\widetilde{X})$ and the orthogonal basis for U, and hence is an invariant of the CW-complex X and the orthogonal representation U.

We state without proof the next result, which essential says that Whitehead torsion of a homotopy equivalence is related to the difference of Reidemeister torsion of the target and the source when defined.

Lemma 3.52. Let $f: X \rightarrow Y$ be a homotopy equivalence of connected finite CW-complexes and let U be an orthogonal finite dimensional $\pi = \pi_1(Y)$-representation. Suppose that Y is U-acyclic. Let f^*U be the orthogonal $\pi_1(X)$-representation obtained from U by restriction with the isomorphism $\pi_1(f)$. Let $d_U: \text{Wh}(\pi(Y)) \rightarrow \mathbb{R}_{>0}$ be the map sending the class $[A]$ of $A \in \text{GL}_n(\mathbb{Z}\pi_1(Y))$ to $|\det(d_U \otimes_{\mathbb{Z}_p} r_A: U \otimes_{\mathbb{Z}_p} \mathbb{Z}\pi^n \rightarrow U \otimes_{\mathbb{Z}_p} \mathbb{Z}\pi^n)|$.

Then X is f^*U-acyclic and we get

$$
\frac{\rho(Y;U)}{\rho(X;f^*U)} = d_U(\tau(f)).
$$

Next we introduce lens spaces. Let G be a cyclic group of finite order $|G|$. Let V be a unitary finite dimensional G-representation. Define its unit sphere SV and its unit disk DV to be the G-subspaces $SV = \{v \in V \mid \|v\| = 1\}$ and $DV = \{v \in V \mid \|v\| \leq 1\}$ of V. Note that a complex finite dimensional vector space has a preferred orientation as real vector space, namely the one given by the \mathbb{R}-basis $\{b_1, ib_1, b_2, ib_2, \ldots, b_n, ib_n\}$ for any \mathbb{C}-basis $\{b_1, b_2, \ldots, b_n\}$. Any \mathbb{C}-linear automorphism of a complex finite dimensional vector space preserves this orientation. Thus SV and DV are oriented compact Riemannian manifolds with isometric orientation preserving G-action. We call a unitary G-representation V free if the induced G-action on its unit sphere SV is free.
Let \(G \) be a finite cyclic group. Let \(L(V) := G \backslash SV \) inherits from \(SV \) the structure of an oriented closed Riemannian manifold.

Definition 3.53 (Lens space). We call the closed oriented Riemannian manifold \(L(V) \) the lens space associated to the free finite dimensional unitary representation \(V \) of the finite cyclic group \(G \).

Exercise 3.54. Show that the 3-dimensional real projective space \(\mathbb{R}P^3 \) is a lens space. Let \(\mathbb{R}^- \) be the non-trivial orthogonal \(\mathbb{Z}/2 \)-representation. Show that \(\mathbb{R}P^3 \) is \(\mathbb{R}^- \)-acyclic and compute the Reidemeister torsion \(\rho(\mathbb{R}P^3; \mathbb{R}^-) \).

One can specify these lens spaces also by numbers as follows.

Notation 3.55. Let \(\mathbb{Z}/t \) be the cyclic group of order \(t \geq 2 \). The 1-dimensional unitary representation \(V_k \) for \(k \in \mathbb{Z}/t \) has as underlying vector space \(\mathbb{C} \) and \(l \in \mathbb{Z}/t \) acts on it by multiplication with \(\exp(2\pi ik/t) \). Note that \(V_k \) is free if and only if \(k \in (\mathbb{Z}/t)^\times \), and is trivial if and only if \(k = 0 \) in \(\mathbb{Z}/t \). Define the lens space \(L(t; k_1, \ldots, k_c) \) for an integer \(c \geq 1 \) and elements \(k_1, \ldots, k_c \) in \((\mathbb{Z}/t)^\times\) by \(L(\oplus_{i=1}^c V_{k_i}) \).

Lens spaces form a very interesting family of manifolds which can be completely classified as we will see. Two lens spaces \(L(V) \) and \(L(W) \) of the same dimension \(n \geq 3 \) have the same homotopy groups, namely, their fundamental group is \(G \) and their \(p \)-th homotopy group is isomorphic to \(\pi_p(S^n) \). They also have the same homology with integral coefficients, namely \(H_p(L(V)) \cong \mathbb{Z} \) for \(p \in \{0, n\} \), \(H_p(L(V)) \cong G \) for \(p \) odd and \(1 \leq p < n \), and \(H_p(L(V)) = 0 \) for all other values of \(p \). Also their cohomology groups agree. Nevertheless not all of them are homotopy equivalent. Moreover, there are homotopy equivalent lens spaces which are not diffeomorphic, see Example 3.59.

We state without proof the following result.

Theorem 3.56 (Homotopy Classification of Lens Spaces). The lens spaces \(L(t; k_1, \ldots, k_c) \) and \(L(t; l_1, \ldots, l_c) \) are homotopy equivalent if and only if there is \(e \in (\mathbb{Z}/t)^\times \) such that we get \(\prod_{i=1}^c k_i = \pm e \cdot \prod_{i=1}^c l_i \) in \((\mathbb{Z}/t)^\times\).

The lens spaces \(L(t; k_1, \ldots, k_c) \) and \(L(t; l_1, \ldots, l_c) \) are oriented homotopy equivalent if and only if there is \(e \in (\mathbb{Z}/t)^\times \) such that we get \(\prod_{i=1}^c k_i = e^c \cdot \prod_{i=1}^c l_i \) in \((\mathbb{Z}/t)^\times\).

Theorem 3.57 (Diffeomorphism Classification of Lens Spaces).

(i) Let \(G \) be a finite cyclic group. Let \(L(V) \) and \(L(W) \) be two lens spaces of the same dimension \(n \geq 3 \). Then the following statements are equivalent:

(a) There is an automorphism \(\alpha : G \to G \) such that \(V \) and \(\alpha^* W \) are isomorphic as orthogonal \(G \)-representations;

(b) There is an isometric diffeomorphism \(L(V) \to L(W) \);

(c) There is a diffeomorphism \(L(V) \to L(W) \);

(d) There is a homeomorphism \(L(V) \to L(W) \);
(e) There is a simple homotopy equivalence $L(V) \to L(W)$:

$$\rho(L(W); U) = \rho(L(V); \alpha^* U)$$

holds;

(f) There is an automorphism $\alpha: G \to G$ such that for any orthogonal finite dimensional representation U with $U^G = 0$

$$\rho(L(W); U) = \rho(L(V); \alpha^* U)$$

holds, where the orthogonal representation $\text{res} U$ is obtained from U by restricting the scalar multiplication from \mathbb{C} to \mathbb{R};

(g) There is an automorphism $\alpha: G \to G$ such that for any non-trivial 1-dimensional unitary G-representation U

$$\rho(L(W); \text{res} U) = \rho(L(V); \alpha^* \text{res} U)$$

holds, where the orthogonal representation $\text{res} U$ is obtained from U by restricting the scalar multiplication from \mathbb{C} to \mathbb{R}.

(ii) Two lens spaces $L(t; k_1, \ldots, k_c)$ and $L(t; l_1, \ldots, l_c)$ are homeomorphic if and only if there are $e \in (\mathbb{Z}/t)^\times$, signs $\epsilon_i \in \{\pm 1\}$ and a permutation $\sigma \in \Sigma_c$ such that $k_i = \epsilon_i \cdot e \cdot l_{\sigma(i)}$ holds in $(\mathbb{Z}/t)^\times$ for $i = 1, 2, \ldots, c$.

Proof. We give only a sketch of the proof of assertion (i). Assertion (ii) is a direct consequence of assertion (i).

The implications (ia) \Rightarrow (ib) \Rightarrow (ic) \Rightarrow (id) and (if) \Rightarrow (ig) are obvious. The implication (id) \Rightarrow (ie) follows from Theorem 3.35. The implication (ie) \Rightarrow (if) follows from Lemma 3.52. The hard part of the proof is the implication (ig) \Rightarrow (ia). It involves proving the formula

$$\rho(L(V \oplus W); \text{res} U) = \rho(L(V); \text{res} U) \cdot \rho(L(W); \text{res} U)$$

for two free unitary G-representations V and W and then directly computing $\rho(L(V); \text{res} U)$ for every free 1-dimensional unitary representation V. Finally one has to show that the values of the Reidemeister torsion do distinguish the unitary representations V and W up to automorphisms of G. This proof is based on the following number theoretic result mentioned below whose proof can be found for instance in Franz [361] or in [266].

\square

Lemma 3.58 (Franz’ independence Lemma). Let $t \geq 2$ be an integer and $S = \{j \in \mathbb{Z} | 0 < j < t, (j, t) = 1\}$. Let $(a_j)_{j \in S}$ be a sequence of integers indexed by S such that $\sum_{j \in S} a_j = 0$, $a_j = a_{t-j}$ for $j \in S$ and $\prod_{j \in S} (\zeta^j - 1)^{a_j} = 1$ holds for every t-th root of unity $\zeta \neq 1$. Then $a_j = 0$ for $j \in S$.

Example 3.59. We conclude from Theorem 3.56 and Theorem 3.57 the following facts:

(i) Any homotopy equivalence $L(7; k_1, k_2) \to L(7; k_1, k_2)$ has degree 1. Thus $L(7; k_1, k_2)$ possesses no orientation reversing selfdiffeomorphism;

(ii) $L(5; 1, 1)$ and $L(5; 2, 1)$ have the same homotopy groups, homology groups and cohomology groups, but they are not homotopy equivalent.
(iii) $L(7; 1, 1)$ and $L(7; 2, 1)$ are homotopy equivalent, but not homeomorphic.

Example 3.60 (h-cobordisms between lens spaces). The rigidity of lens spaces is illustrated by the following fact. Let (W, L, L') be an h-cobordism of lens spaces which is compatible with the orientations and the identifications of $\pi_1(L)$ and $\pi_1(L')$ with G. Then W is diffeomorphic relative L to $L \times [0, 1]$ and L and L' are diffeomorphic, see [651, Corollary 12.13 on page 410].

Remark 3.61 (Differential geometric characterization of lens spaces). Lens spaces with their preferred Riemannian metric have constant positive sectional curvature. A closed Riemannian manifold with constant positive sectional curvature and cyclic fundamental group is isometrically diffeomorphic to a lens space after possibly rescaling the Riemannian metric with a constant 927.

Remark 3.62 (de Rham’s Theorem). The results above when interpreted as statements about unit spheres in free representations are generalized by De Rham’s Theorem [265], see also [577, Proposition 3.2 on page 478], [580, page 317], and [791, section 4], as follows. It says for a finite group G and two orthogonal G-representations V and W whose unit spheres SV and SW are G-diffeomorphic that V and W are isomorphic as orthogonal G-representations. This remains true if one replaces G-diffeomorphic by G-homeomorphic provided that G has odd order, see [451], [629], but not for any finite group G, see [182, 184, 410, 412, 413].

We refer to [219], [583, Chapter 2] and [651] for more information about Reidemeister torsion and lens spaces.

Remark 3.63 (Further appearance of Reidemeister torsion). The Alexander polynomial of a knot can be interpreted as a kind of Reidemeister torsion of the canonical infinite cyclic covering of the knot complement, see [649], [872]. Reidemeister torsion appears naturally in surgery theory [625]. Counterexamples to the (polyhedral) Hauptvermutung that two homeomorphic simplicial complexes are already PL-homeomorphic are given by Milnor [648], see also [759], and detected by Reidemeister torsion. Seiberg-Witten invariants for 3-manifolds are closely related to torsion invariants, see Turaev [871].

Remark 3.64 (Analytic Reidemeister torsion). Ray-Singer [762] defined the analytic counterpart of topological Reidemeister torsion using a regularization of the zeta-function. Ray and Singer conjectured that the analytic and topological Reidemeister torsion agree. This conjecture was proved independently by Cheeger [211] and Müller [676]. Manifolds with boundary and manifolds with symmetries, sum (= gluing) formulas and fibration formulas are treated in [155, 245, 577, 580, 614, 879]. For a survey on analytic and topological torsion we refer for instance to [596]. There are also L^2-versions of these notions, see for instance [167, 187, 575, 589, Chapter 3], [612, 635].
3.7 The Bass-Heller-Swan Theorem for K_1

In the section we want to compute $K_1(R[\mathbb{Z}])$ for a ring R. This computation, the so called Bass-Heller-Swan decomposition, marks the beginning of the (long) way towards the final formulation of the Farrell-Jones Conjecture for algebraic K-theory.

3.7.1 The Bass-Heller-Swan Decomposition for K_1

We need some preparation to formulate it. In the sequel we write $R[\mathbb{Z}]$ as the ring $R[t,t^{-1}]$ of finite Laurent polynomials in t with coefficients in R. Define the ring homomorphisms

$\epsilon: R[t] \to R, \quad \sum_{n \in \mathbb{Z}} r_n t^n \mapsto \sum_{n \in \mathbb{Z}} r_n$;

$i': R \to R[t], \quad r \mapsto r \cdot t^0$;

$i: R \to R[t,t^{-1}], \quad r \mapsto r \cdot t^0$.

The ring homomorphism ϵ is the one induced by the group homomorphism $\mathbb{Z} \to \{1\}$, whereas i is the one induced by the inclusion of groups $\{1\} \to \mathbb{Z}$.

Definition 3.65 ($NK_n(R)$). Define for $n = 0, 1$

$NK_n(R) := \ker(\epsilon_*: K_n(R[t]) \to K_n(R))$.

Example 3.66. Let F be a field. Put $R = F[t]/(t^2)$. Every element in R can be uniquely written as $a + bt$ for $a, b \in F$. We have $(1+bt) \cdot (1-bt) = 1-b^2t^2 = 1$ in R. Hence the element $a + bt \in R$ is a unit if and only if $a \neq 0$. We conclude that R is a local ring with $(t) = \{bt | b \in F\}$ as the unique maximal ideal. Since R is commutative, the homomorphism

$i_R: R^\times \xrightarrow{\sim} K_1(R), \quad [x] \mapsto [rx: R \to R]$ is bijective by Theorem 3.6. Let $\epsilon: R \to F$ be the ring homomorphism sending $a+bt$ to a. Its kernel is (t). It induces a group homomorphism $R[x]^{\times} \to F[x]^{\times}$. Since $F[x]^{\times}$ is the multiplicative group of non-trivial polynomials over F of degree 0 and $(1 + tvx) \cdot (1 - tvx) = 1 - v^2 t^2 x^2 = 1$ holds in $R[x]$ for all $v \in F[x]$, we obtain an isomorphism of abelian groups

$\phi: R^\times \oplus F[x] \xrightarrow{\cong} R[x]^{\times}, \quad (u, v) \mapsto u \cdot (1 + tvx)$.

Since $R[x]$ is commutative, the map $i_{R[x]}: R[x]^{\times} \xrightarrow{\sim} K_1(R[x])$ is injective, a retraction is given by the determinant. We conclude that the following composition is an injection of abelian groups
\[F[x] \xrightarrow{\partial F[x]} \text{coker } (R^\times \to R[x]^\times) \xrightarrow{i} \text{coker } (K_1(R) \to K_1(R[x])) \cong NK_1(R), \]

where \(i\) is the map induced by \(i_R\) and \(i_{R[x]}\). This implies that \(NK_1(R)\) is an abelian group which is not finitely generated.

Example 3.66 illustrates the following fact. If \(R\) is any ring, then \(NK_1(R)\) is either trivial or infinitely generated as abelian group, see Theorem 6.20. So in general \(NK_1(R)\) is hard to compute. At least we have the following useful results. If \(R\) is a ring of finite characteristic \(\mathbb{N}\), then we get \(NK_n(R) \cong 0\) for \(n = 0, 1\), see Theorem 6.17. If \(NK_n(R) = 0\) and \(G\) is finite, then \(NK_n(RG) \cong 0\) for \(n = 0, 1\), see Theorem 6.18.

Recall that an endomorphism \(f: P \to P\) of an \(R\)-module \(P\) is called nilpotent if there exists a positive integer \(n\) with \(f^n = 0\).

Definition 3.67 (Nil-group Nil_0(R)). Define the 0-th Nil-group \(\text{Nil}_0(R)\) to be the abelian group, whose generators are conjugacy classes \([f]\) of nilpotent endomorphisms \(f: P \to P\) of finitely generated projective \(R\)-modules with the following relation. Given a commutative diagram of finitely generated projective \(R\)-modules

\[
\begin{array}{ccc}
0 & \xrightarrow{i} & P_1 & \xrightarrow{p} & P_3 & \xrightarrow{0} \\
& \downarrow{f_1} & \downarrow{f_2} & \downarrow{f_3} & \\
0 & \xrightarrow{i} & P_2 & \xrightarrow{p} & P_3 & \xrightarrow{0}
\end{array}
\]

with exact rows and nilpotent endomorphisms as vertical arrows, we get

\([f_1] + [f_3] = [f_2]\).

Let \(\iota: K_0(R) \to \text{Nil}_0(R)\) be the homomorphism sending the class \([P]\) of a finitely generated projective \(R\)-module \(P\) to the class \([0: P \to P]\) of the trivial endomorphism of \(P\).

Definition 3.68 (Reduced Nil-group \(\widetilde{\text{Nil}}_0(R)\)). Define the reduced 0-th Nil-groups \(\widetilde{\text{Nil}}_0(R)\) by the cokernel of the map \(\iota\).

The homomorphism \(\text{Nil}_0(R) \to K_0(R),\ [f: P \to P] \mapsto [P]\) is a retraction of the map \(\iota\). So we get a natural splitting

\[
\text{Nil}_0(R) \xrightarrow{\cong} \widetilde{\text{Nil}}_0(R) \oplus K_0(R).
\]

Denote by

\[
j: NK_1(R) \to K_1(R[t])
\]

the inclusion. Let

\[
\tau_{\pm}: R[t] \to R[t, t^{-1}]
\]

be the inclusion of rings sending \(t\) to \(t^{\pm 1}\). Define
The homomorphism
\[B : K_0(R) \to K_1(R[t, t^{-1}]) \]
sends the class \([P]\) of a finitely generated projective \(R\)-module \(P\) to the class \([r_t \otimes_R \text{id}_P]\) of the \(R[t, t^{-1}]\)-automorphism \(r_t \otimes_R \text{id}_P : R[t, t^{-1}] \otimes_R P \to R[t, t^{-1}] \otimes_R P\) which maps \(u \otimes p\) to \(ut \otimes p\). The homomorphism
\[N' : \tilde{\text{Nil}}_0(R) \to K_1(R[t]) \]
sends the class \([f]\) of the nilpotent endomorphism \(f : P \to P\) of the finitely generated projective \(R\)-module \(P\) to the class \([\text{id} - r_{t^{-1}} \otimes_R f]\) of the \(R[t, t^{-1}]\)-automorphism
\[
\text{id} - r_{t^{-1}} \otimes_R f : R[t, t^{-1}] \otimes_R P \to R[t, t^{-1}] \otimes_R P,
\]
\[u \otimes p \mapsto u \otimes p - u(t^{-1}) \otimes f(p). \]

This is indeed an automorphism. Namely, if \(f^{n+1} = 0\), then an inverse is given by \(\sum_{k=0}^n (r_{t^{-1}} \otimes_R f)^k\). The composition of \(N'\) with both \(\epsilon_* : K_1(R[t]) \to K_1(R)\) and \(\iota : K_0(R) \to \tilde{\text{Nil}}_0(R)\) is trivial. Hence \(N'\) induces a homomorphism
\[N : \tilde{\text{Nil}}_0(R) \to NK_1(R). \]

The proof of the following theorem can be found for instance in [93] (for regular rings), [90] Chapter XII, [775] Theorem 3.2.22 on page 149 and [909] 3.6 on page 225.

Theorem 3.69 (Bass-Heller-Swan decomposition for \(K_1\)). The following maps are isomorphisms of abelian groups, natural in \(R\),
\[
N : \tilde{\text{Nil}}_0(R) \xrightarrow{\cong} NK_1(R);
\]
\[
j \oplus \iota' : NK_1(R) \oplus K_1(R) \xrightarrow{\cong} K_1(R[t]);
\]
\[
B \oplus \iota' \oplus j_+ \oplus j_- : K_0(R) \oplus K_1(R) \oplus NK_1(R) \oplus NK_1(R) \xrightarrow{\cong} K_1(R[t^{-1}]).
\]

One easily checks that Theorem 3.69 applied to \(R = \mathbb{Z}G\) implies the following reduced version

Theorem 3.70 (Bass-Heller-Swan decomposition for \(\text{Wh}(G \times \mathbb{Z})\)). Let \(G\) be a group. Then there is an isomorphism of abelian groups, natural in \(G\)
\[
\overline{B} \oplus \overline{i}_* \oplus \overline{j}_+ \oplus \overline{j}_- : \tilde{K}_0(\mathbb{Z}G) \oplus \text{Wh}(G) \oplus NK_1(\mathbb{Z}G) \oplus NK_1(\mathbb{Z}G) \xrightarrow{\cong} \text{Wh}(G \times \mathbb{Z}).
\]

Example 3.71 (\(\tilde{K}_0(\mathbb{Z}G)\) affects \(\text{Wh}(G)\)). The Whitehead group \(\text{Wh}(S_n)\) of the symmetric group \(S_n\) is trivial, see Theorem 3.113 [51], whereas \(\tilde{K}_0(\mathbb{Z}[S_n])\) is a finite non-trivial group for \(n \geq 5\), see Theorem 2.97 [4]. In the sequel we
let \(n \geq 5 \). We conclude from Theorem 3.70 that \(\text{Wh}(S_n \times \mathbb{Z}) \) is non-trivial for \(n \geq 5 \), whereas the obvious map

\[
\operatorname{colim}_{H \in \text{Sub}_{FIN}(S_n \times \mathbb{Z})} \text{Wh}(H) \to \text{Wh}(S_n \times \mathbb{Z})
\]

is the zero map and hence not surjective. Also the map

\[
\operatorname{colim}_{H \in \text{Sub}_{FIN}(G)} K_1(\mathbb{Z}H) \to K_1(\mathbb{Z}[S_n \times \mathbb{Z}])
\]

cannot be surjective. Hence there is no hope that a formula, where one computes a specific \(K \)-group in terms of its values on all finite subgroups (such as appearing in Conjecture 2.57) is true in general. The general picture will be that a computation of a \(K \) or \(L \)-group in dimension \(n \) does involve \(K \) and \(L \)-groups in all dimensions \(\leq n \).

Denote by

\[
k_\pm : R \to R[t^\pm 1]
\]

the ring homomorphism sending \(r \) to \(r \cdot t^0 \). Obviously \(\tau_\pm \circ k_\pm = i \). Define a map

\[
C : K_1(R[t,t^{-1}]) \to K_0(R)
\]

by sending the class \([f]\) of an \(R[t,t^{-1}] \)-automorphism \(f : R[t,t^{-1}]^n \to R[t,t^{-1}]^n \) to the element \([P(f,k)] - k \cdot [R]\), where \(k \) is a large enough positive integer and \(P(f,k) \) is the finitely generated projective \(R \)-module \(f(t^k \cdot R[t^{-1}] \cap R[t]) \). We omit the proof that \(P(f,k) \) is a finitely generated projective \(R \)-module for large enough \(k \), that the class \([P(f,k)] - k \cdot [R]\) is independent of \(k \) and depends only on \([f]\), and that the map \(C \) is a well-defined homomorphism of abelian groups.

Theorem 3.72 (Fundamental Theorem of \(K \)-theory in dimension 1).

The following sequence is natural in \(R \) and exact

\[
0 \to K_1(R) \xrightarrow{(k_+) \circ (-)_{-}} K_1(R[t]) \oplus K_1(R[t^{-1}]) \xrightarrow{(\tau_+) \circ (-)_{-}} K_1(R[t,t^{-1}]) \xrightarrow{C} K_0(R) \to 0.
\]

If we regard it as an acyclic \(\mathbb{Z} \)-chain complex, there exists a chain contraction, natural in \(R \).

Proof. One checks \(C \circ B = \text{id}_{K_0(R)} \) and \(C \circ i_+ = C \circ j_- = C \circ j_+ = 0 \). Now apply Theorem 3.69 \(\square \)
3.7 The Bass-Heller-Swan Theorem for K_1

3.7.2 The Grothendieck Decomposition for G_0 and G_1

There is also a G-theory version of the Bass-Heller-Swan decomposition which is due to Grothendieck. Its proof can be found in [93] or [775, Theorem 3.2.12 on page 141, Theorem 3.2.16 on page 143 and Theorem 3.2.19 on page 147].

Theorem 3.73 (Grothendieck decomposition for G_0 and G_1). Let R be a Noetherian ring. Then

(i) The inclusions $R \to R[t]$ and $R \to R[t, t^{-1}]$ induce isomorphisms of abelian groups

$$G_0(R) \xrightarrow{\cong} G_0(R[t]);$$

$$G_0(R) \xrightarrow{\cong} G_0(R[t, t^{-1}]);$$

(ii) There are natural isomorphism

$$i'_*: G_1(R) \xrightarrow{\cong} G_1(R[t]);$$

$$B \oplus i_*: G_0(R) \oplus G_1(R) \xrightarrow{\cong} G_1(R[t, t^{-1}]),$$

where i'_*, B and i_* are defined analogously to the maps appearing in Theorem 3.69.

Exercise 3.74. Show that the map $\mathbb{Z} \xrightarrow{\cong} G_0(R[\mathbb{Z}^n])$ sending n to $n \cdot [R[\mathbb{Z}^n]]$ is an isomorphism for a principal ideal domain R and $n \geq 0$.

3.7.3 Regular Rings

Theorem 3.75 (Hilbert Basis Theorem). If R is Noetherian, then $R[t]$ and $R[t, t^{-1}]$ are Noetherian.

Proof. See for instance [775, Theorem 3.2.1 on page 133 and Corollary 3.2.2 on page 134]. □

Let (P) be a property of groups, e.g., being finite or being cyclic. A group G is called virtually (P) if G contains a subgroup $H \subset G$ of finite index such that H has property (P). A group G is poly-(P) if there is a finite sequence of subgroups $\{1\} = G_0 \subset G_1 \subset G_2 \subset \ldots G_r = G$ such that G_i is normal in G_{i+1} and the quotient G_{i+1}/G_i has property (P) for $i = 0, 1, 2, \ldots, r - 1$. Thus the notions of virtually finitely generated abelian, virtually free, virtually nilpotent, poly-cyclic, poly-\mathbb{Z}, and virtually poly-cyclic are defined.

Theorem 3.76 (Noetherian group rings). If R is a Noetherian ring and G is a virtually poly-cyclic group, then RG is Noetherian.
No counterexample is known to the conjecture that CG is Noetherian if and only if G is virtually poly-cyclic.

Theorem 3.77 (Regular group rings).

(i) The rings $R[t]$ and $R[t,t^{-1}]$ are regular, if R is regular;
(ii) The ring RG is regular, if R is regular and G is poly-\mathbb{Z};
(iii) The ring RG is regular, if R is regular, $\mathbb{Q} \subseteq R$ and G is virtually poly-cyclic;

Proof.

(i) This is proved for instance in [775, Theorem 3.2.3 on page 134 and Corollary 3.2.4 on page 136].

(ii) This follows from [795, Theorem 8.2.2 on page 533 and Theorem 8.2.18 on page 537] in the case, where R is a field.

(iii) This follows from [795, Theorem 8.2.2 on page 533 and Theorem 8.2.20 on page 538] in the case, where R is a field. □

A ring is called *semihereditary*, if every finitely generated ideal is projective, or, equivalently, if every finitely generated submodule of a projective R-module is projective, see [192, Proposition 6.2 in Chapter I.6 on page 15].

Theorem 3.78 (Bass-Heller-Swan decomposition for K_1 for regular rings). Suppose that R is semihereditary or regular. Then

$$\tilde{\text{Nil}}_0(R) = NK_1(R) = 0,$$

and the Bass-Heller-Swan decomposition of Theorem 3.69 reduces to the isomorphism

$$B \oplus i_* : K_0(R) \oplus K_1(R) \xrightarrow{\cong} K_1(R[t,t^{-1}]).$$

Proof. The proof for regular R can be found for instance in [775, Exercise 3.2.25 on page 152] or [553, Corollary 16.5 on page 226].

Suppose that R is semihereditary. Consider a nilpotent endomorphism $f : P \to P$ of the finitely generated projective R-module P. Define $I_1(f) = \text{im}(f)$ and $K_1(f) = \text{ker}(f)$. Let $f|_{I_1(f)} : I_1(f) \to I_1(f)$ be the endomorphism induced by f. Since R is semihereditary, $I_1(f)$ is a finitely generated projective R-module. We obtain a commutative diagram

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & K_1(f) & \overset{i}{\longrightarrow} & P & \overset{f}{\longrightarrow} & I_1(f) & \longrightarrow & 0 \\
& & | & | & | & | & | & | & | \\
0 & \longrightarrow & K_1(f) & \overset{i}{\longrightarrow} & P & \overset{f}{\longrightarrow} & I_1(f) & \longrightarrow & 0 \\
\end{array}
\]

with exact rows and nilpotent endomorphisms of finitely generated projective R-modules as vertical arrows. Hence we get $[f : P \to P] = [I_1(f) : I_1(f) \to$
3.7 The Bass-Heller-Swan Theorem for \(K \)

Define inductively \(I_{n+1}(f) = I_1(f|_{I_n(f)} \)\). Hence we get for all \(n \geq 1 \)

\[
[f: P \to P] = [f|_{I_n(f)}: I_n(f) \to I_n(f)].
\]

Since \(f \) is nilpotent, there exists some \(n \) with \(I_n(f) = 0 \). This implies \([f] = 0 \) in \(\tilde{\text{Nil}}_0(R) \). Now apply Theorem [3.69]. \(\square \)

Exercise 3.79. Prove that \(\tilde{K}_0(\mathbb{Z}[\mathbb{Z}^n]) = \text{Wh}(\mathbb{Z}^n) = 0 \) for all \(n \geq 0 \).

Remark 3.80 (Glimpse of a homological behavior of \(K \)-theory). In the case that \(R \) is regular, Theorem 3.78 shades some homological flavour on \(K \)-theory. Just observe the analogy between the two formulas

\[
K_1(R[\mathbb{Z}]) \cong K_0(R[[1]]) \oplus K_0(R[\{1\}]);
\]

\[
H_1(\mathbb{Z}; A) \cong H_0(\{1\}; A) \oplus H_1(\{1\}; A),
\]

where in the second line we consider group homology with coefficients in some abelian group \(A \) which corresponds to the role of \(R \) in the first line.

Remark 3.81 (Von Neumann algebras are semihereditary but not Noetherian). Note that any von Neumann algebra is semihereditary. This follows from the facts that any von Neumann algebra is a Baer \(* \)-ring and hence in particular a Rickart \(C^* \)-algebra [109, Definition 1, Definition 2 and Proposition 9 in Chapter 1.4] and that a \(C^* \)-algebra is semihereditary if and only if it is Rickart [37, Corollary 3.7 on page 270]. The group von Neumann algebra \(\mathcal{N}(G) \) is Noetherian if and only if \(G \) is finite, see [585, Exercise 9.11 on page 367].

Lemma 3.82. If \(R \) is regular, then the canonical homomorphism

\[
f: K_0(R) \xrightarrow{\cong} G_0(R), \quad [P] \mapsto [P]
\]

is a bijection.

Proof. We have to define an inverse homomorphism

\[
r: G_0(R) \to K_0(R).
\]

Given a finitely generated \(R \)-module \(M \), we can choose a finite projective resolution \(P_* = (P_*, \phi) \) since \(R \) is by assumption regular. We want to define

\[
r([M]) := \sum_{n \geq 0} (-1)^n \cdot [P_n].
\]

The *Fundamental Lemma of Homological Algebra* implies for two projective resolutions \(P_* \) and \(Q_* \) of \(M \) the existence of an \(R \)-chain homotopy equivalence
We conclude from Exercise 2.39
\[
\sum_{n \geq 0} (-1)^n \cdot [P_n] = o(P_\ast) = o(Q_\ast) = \sum_{n \geq 0} (-1)^n \cdot [Q_n].
\]
Hence the choice of projective resolution does not matter in the definition of \(r([M]) \). It remains to show for an exact sequence of finitely generated \(R \)-modules \(0 \to M \to M' \to M'' \to 0 \) that \(r(M) - r(M') + r(M'') = 0 \) holds. This follows again from Exercise 2.39 since we can construct from finite projective \(R \)-resolutions \(P_\ast \) of \(M \) and \(P''_\ast \) of \(M'' \) a finite projective \(R \)-resolution \(P'_\ast \) of \(M' \) such that there exists a short exact sequence of \(R \)-chain complexes \(0 \to P_\ast \to P'_\ast \to P''_\ast \to 0 \). Hence \(r \) is well-defined. One easily checks that \(r \) and \(f \) are inverse to one another.

\[\square\]

3.8 The Mayer-Vietoris K-Theory Sequence of a Pullback of Rings

In this section we want to explain

Theorem 3.83 (Mayer-Vietoris sequence for middle \(K \)-theory of a pullback of rings). Consider a pullback of rings

\[
\begin{array}{ccc}
R & \xrightarrow{i_1} & R_1 \\
\downarrow{i_2} & & \downarrow{j_1} \\
R_2 & \xrightarrow{j_2} & R_0
\end{array}
\]

such that \(j_1 \) or \(j_2 \) is surjective. Then there exists a natural exact sequence of six terms

\[
K_1(R) \xrightarrow{(i_1)_\ast \oplus (i_2)_\ast} K_1(R_1) \oplus K_1(R_2) \xrightarrow{(j_1)_\ast - (j_2)_\ast} K_1(R_0) \\
\xrightarrow{\partial_1} K_0(R) \xrightarrow{(i_1)_\ast \oplus (i_2)_\ast} K_0(R_1) \oplus K_0(R_2) \xrightarrow{(j_1)_\ast - (j_2)_\ast} K_0(R_0).
\]

Its construction and its proof requires some preparation. In particular we need the following basic construction due to Milnor [652, page 20]. Let \(j_k: P_k \to (j_k)_\ast P_k \) be the map sending \(x \in P_k \) to \(1 \otimes x \in R_0 \otimes j_k \) \(P_k \) for \(k = 1, 2 \). Define a ring homomorphism \(i_0 = j_1 \circ i_1 = j_2 \circ i_2: R \to R_0 \). Given \(R_k \)-modules \(P_k \) for \(k = 0, 1, 2 \) and isomorphisms of \(R_0 \)-modules \(f_k: (j_k)_\ast P_k \xrightarrow{\cong} P_0 \) for \(k = 1, 2 \), define an \(R \)-module \(M = M(P_1, P_2, f_1, f_2) \) by the pullback of abelian groups
3.8 The Mayer-Vietoris K-Theory Sequence of a Pullback of Rings

\[M \xrightarrow{f_1 \circ j_1} P_1 \]
\[P_2 \xrightarrow{f_2 \circ j_2} P_0 \]

together with the R-multiplication on M induced by the R-actions on P_k which comes from the ring homomorphisms $i_k: R \to R_k$ for $k = 0, 1, 2$.

Lemma 3.84. (i) The R-module M is projective if P_0 and P_1 are projective. The R-module M is finitely generated projective if P_0 and P_1 are finitely generated projective;
(ii) Every projective R-module P can be realized up to isomorphism as M for appropriate projective R_k-modules P_k for $k = 0, 1, 2$ and isomorphisms of R_0-modules $f_k: (j_k)_*P_k \cong \to P_0$ for $k = 1, 2$;
(iii) The R_k-modules $(i_k)_*M$ and P_k are isomorphic for $k = 1, 2$.

Proof. This is proved in Milnor [652, Theorems 2.1, 2.2 and 2.3 on page 20] or in [830, Proposition 59 on page 155, Proposition 60 on page 157, Proposition 61 on page 158].

Now we can give the proof of Theorem 3.83

Proof. The main step is to construct the boundary homomorphism ∂_1. Given an element $x \in K_1(R_0)$, we can find an automorphism $f: R^n_0 \xrightarrow{\cong} R^n_0$ of a finitely generated free R-module with $x = [f]$, see Lemma 3.10. The R_0-module $M(R^n_1, R^n_2, \text{id}_{R^n_0}, f)$ is a finitely generated projective R_0-module by Lemma 3.84. Define

\[\partial_1(x) := [M(R^n_1, R^n_2, \text{id}_{R^n_0}, f)] - [R^n_0]. \]

This is a well-defined homomorphism of abelian groups, see [830, page 164]. The elementary proof of the exactness of the sequence of six terms can be found in [830, Proposition 63 on page 164].

Now we are ready to give the promised proof of Rim’s Theorem 2.90

Proof. Consider the pullback of rings

\[\mathbb{Z}[\mathbb{Z}/p] \xrightarrow{i_1} \mathbb{Z}[\exp(2\pi i/p)] \]
\[i_2 \]
\[\mathbb{Z} \xrightarrow{j_2} \mathbb{F}_p \]

where here and in the sequel \mathbb{F}_q denotes the field with q elements, i_1 sends the generator of \mathbb{Z}/p to $\exp(2\pi i/p)$, the map i_2 sends the generator of \mathbb{Z}/p to $1 \in \mathbb{Z}$, the map j_2 is the projection and the homomorphism j_1 sends $\exp(2\pi i/p)$
to 1. Obviously j_1 and j_2 are surjective. Hence we get from Theorem 3.83 an exact sequence

$$K_1(\mathbb{Z}[\mathbb{Z}/p]) \xrightarrow{(i_1)\circ (i_2)_*} K_1(\mathbb{Z}[\exp(2\pi i/p)]) \oplus K_1(\mathbb{Z}) \xrightarrow{(j_1)_*-(j_2)_*} K_1(\mathbb{F}_p) \xrightarrow{\partial_1}$$

$$K_0(\mathbb{Z}[\mathbb{Z}/p]) \xrightarrow{(i_1)\circ (i_2)_*} K_0(\mathbb{Z}[\exp(2\pi i/p)]) \oplus K_0(\mathbb{Z}) \xrightarrow{(j_1)_*-(j_2)_*} K_0(\mathbb{F}_p).$$

The map $(j_2)_*: K_0(\mathbb{Z}) \to K_0(\mathbb{F}_p)$ is bijective by Example 2.4. Hence it remains to prove that $(j_1)_*: K_1(\mathbb{Z}[\exp(2\pi i/p)]) \to K_1(\mathbb{F}_p)$ is surjective. Because of Theorem 3.17 we have to find for each integer k with $1 \leq k \leq p-1$ a unit $u \in \mathbb{Z}[\exp(2\pi i/p)]^\times$ satisfying $j_1(u) = k$. Put $\xi = \exp(2\pi i/p)$. Choose an integer l such that $kl = 1 \mod p$. Define

$$u := 1 + \xi + \xi^2 + \cdots + \xi^{k-1};$$

$$v := 1 + \xi^k + \xi^{2k} + \cdots + \xi^{(l-1)k}.$$

Since $(\xi - 1)u = \xi^k - 1$ and $(\xi^k - 1) \cdot v = \xi - 1$ and $\mathbb{Z}[\exp(2\pi i/p)]$ is an integral domain, we get $uv = 1$ and hence $u \in \mathbb{Z}[\exp(2\pi i/p)]^\times$. Obviously $j_1(u) = k$.

\[\square\]

3.9 The K-Theory Sequence of a Two-Sided Ideal

Let $I \subseteq R$ be a two-sided ideal in the ring R. The double of the ring R along the ideal I is the subring $D(R,I)$ of $R \times R$ consisting of pairs (r_1, r_2) satisfying $r_1 - r_2 \in I$. Let $p_k: D(R,I) \to R$ send (r_1, r_2) to r_k for $k = 1, 2$.

Definition 3.85 ($K_n(R,I)$). Define for $n = 0, 1$ the abelian group $K_n(R,I)$ to be the kernel of the homomorphism

$$(p_1)_*: K_n(D(R,I)) \to K_n(R).$$

Theorem 3.86 (Exact sequence of a two-sided ideal for middle K-theory). We obtain an exact sequence, natural in $I \subseteq R$

$$K_1(R,I) \xrightarrow{j_1} K_1(R) \xrightarrow{pr_2} K_1(R/I) \xrightarrow{\partial_1} K_0(R,I) \xrightarrow{j_1} K_0(R) \xrightarrow{pr_2} K_0(R/I).$$

Proof. We obtain a pullback of rings

$$\begin{array}{ccc}
D(R,I) & \xrightarrow{p_1} & R \\
\downarrow{p_2} & & \downarrow{pr} \\
R & \xrightarrow{pr} & R/I
\end{array}$$
such that pr is surjective. We get from Theorem 3.83 the exact sequence

$$K_1(D(R, I)) \xrightarrow{(p_1)\ast \oplus (p_2)\ast} K_1(R) \oplus K_1(R) \xrightarrow{-pr\ast + pr\ast} K_1(R/I) \xrightarrow{\partial} K_0(D(R, I)) \xrightarrow{(p_1)\ast \oplus (p_2)\ast} K_0(R) \oplus K_0(R) \xrightarrow{-pr\ast + pr\ast} K_0(R/I).$$

This yields the desired exact sequence if we define $j_n: K_n(R, I) \to K_n(R)$ to be the restriction of $(p_2)\ast: K_n(D(R, I)) \to K_n(R/I)$ to $K_n(R/I)$ for $n = 0, 1$ and let ∂_1 be the map induced by ∂.

Next we give alternative descriptions of $K_0(R, I)$.

Let S be a ring, but now for some time we do not require that it has a unit. If we want to emphasize that we do not require this, we say that S is a ring without unit although it may have one. The point is that a homomorphism of rings without units $f: S \to S'$ is a map compatible with the abelian group structure and the multiplication but no requirement about the unit is made.

The ring obtained from S by adjoining a unit

$$(3.87) \quad S_+$$

has a underlying group $S \oplus \Z$. The multiplication is given by

$$(s_1, n_1) \cdot (s_2, n_2) := (s_1s_2 + n_1s_2 + n_2s_1, n_1n_2).$$

The unit in S_+ is given by $(0, 1)$. We obtain a natural embedding $i_S: S \to S_+$ by sending s to $(s, 0)$. Let $p_S: S_+ \to \Z$ be the homomorphism of rings with unit sending (s, n) to n. We obtain an exact sequence of rings without unit

$$0 \to S \xrightarrow{i_S} S_+ \xrightarrow{p_S} \Z \to 0.$$

If $f: S \to S'$ is a homomorphism of rings without unit, we obtain a homomorphism $f_+: S_+ \to S'_+$ of rings with unit by sending (s, n) to $(f(s), n)$. If S does has a unit 1_S, then we obtain an isomorphism of rings with unit $u_S: S_+ \xrightarrow{\cong} S \times \Z$ by sending (s, n) to $(s + n \cdot 1_S, n)$.

Definition 3.88 (K$_n$(S) for rings without unit). Let S be a ring without unit. Define for $n = 0, 1$

$$K_n(S) := \ker ((p_S)\ast: K_n(S_+) \to K_n(\Z)).$$

Given a homomorphism $f: S \to S'$ of rings without unit, the homomorphism $(f_+)\ast: K_n(S_+) \to K_n(S'_+)$ induces a homomorphism of abelian groups $f_+: K_n(S) \to K_n(S')$. Thus we obtain a covariant functor from the category of rings without unit to the category of abelian groups by sending S to $K_n(S)$.

If S happens to have already a unit, we get back the old definition (up to natural isomorphism). Namely, the isomorphism $K_0(u_S): K_0(S_+) \xrightarrow{\cong} K_0(S \times \Z)$ sends $\ker ((p_S)\ast)$ to the kernel of the map $(p\Z)\ast: K_0(S \times \Z) \to K_0(\Z)$ given by the projection $p\Z: S \times \Z \to \Z$ and the inclusion $j: S \to \Z$.

\[\]
$S \times \mathbb{Z}$, \(s \mapsto (s,0) \) induces an isomorphism of \(K_n(S) \) to the kernel of the map \(pr_{\mathbb{Z}} \) by Theorem 2.12 and Theorem 3.9.

Lemma 3.89. Let \(I \) be a two-sided ideal in the ring \(R \). Let \(K_0(I) \) be the projective class group of the ring \(I \) without unit, see Definition 3.88. Then there is a natural isomorphism

$$K_0(I) \cong K_0(R, I).$$

In particular \(K_0(R, I) \) depends only on the ring without unit \(I \) but not on \(R \).

Proof. The isomorphism is induced by the homomorphism of rings with unit \(I + \rightarrow D(R, I) \) sending \((s,n) \) to \((n \cdot 1_R , n \cdot 1_R + s) \). The proof that it is bijective can be found for instance in [775, Theorem 1.5.9 on page 30]. ☐

Exercise 3.90. Let \(n \) be a positive integer. Compute

$$K_0((n)) \cong \begin{cases} 0 & \text{if } n = 2; \\ \left(\mathbb{Z}/n\right)^\times / \{\pm 1\} & \text{if } n \geq 3, \end{cases}$$

for the ideal \((n) = \{mn \mid m \in \mathbb{Z}\} \subseteq \mathbb{Z}\). Prove for the ideal \((N_{\mathbb{Z}/2}) \subseteq \mathbb{Z}[\mathbb{Z}/2]\) generated by the norm element that \((N_{\mathbb{Z}/2}) \) and \((2\mathbb{Z})\) are isomorphic as rings without unit. Conclude

$$\tilde{K}_0(\mathbb{Z}[\mathbb{Z}/2]) = 0.$$

Next we give an alternative description of \(K_1(R, I) \). Define \(GL(R, I) \) to be the kernel of the map \(GL(R) \rightarrow GL(R/I) \) induced by the projection \(R \rightarrow R/I \). Let \(E(R, I) \) be the smallest normal subgroup of \(E(R) \) which contains all matrices of the shape \(I_n + r \cdot E_i^n \) for \(n \in \mathbb{Z}, n \geq 1, i,j \in \{1,2,\ldots,n\}, i \neq j, r \in I \). Note that \(E(R, I) \subseteq GL(R, I) \). The proof of the next result can be found for instance in [775, Theorem 2.5.3 on page 93].

Theorem 3.91 (Relative Whitehead Lemma). Let \(I \subseteq R \) be a two-sided ideal. Then

(i) The subgroup \(E(R, I) \) of \(GL(R) \) is normal;

(ii) There is an isomorphism, natural in \((R,I)\)

$$GL(R, I)/E(R, I) \cong K_1(R, I);$$

(iii) The center of \(GL(R)/E(R, I) \) is \(GL(R, I)/E(R, I); \)

(iv) We have \(E(R, I) = [E(R), E(R, I)] = [GL(R), E(R, I)]. \)

Example 3.92 (\(K_1(R, I) \) depends on \(R \)). In contrast to \(K_0(R, I) \) it is not true that \(K_1(R, I) \) is independent of \(R \) as shown by Swan [855, Section 1]. Let \(S \) be a ring and put
Then $K_1(R, I) = \{0\}$ and $K_1(R', I) \cong S$.

Remark 3.93 (Congruence Subgroup Problem). Given a commutative ring R, the *Congruence Subgroup Problem* asks if every normal subgroup of $\text{GL}(R)$ is of the form $\text{SL}(R, I) := \{A \in \text{GL}(R, I) \mid \det(A) = 1\}$ for some two-sided ideal $I \subseteq R$. Bass has shown that for any normal subgroup $H \subseteq \text{GL}(R)$ there exists an ideal $I \subseteq R$ satisfying $\text{E}(R, I) \subseteq H \subseteq \text{GL}(R, I)$, see [90, Theorem 2.1 (a) on page 229] or [774, Exercise 2.5.21 on page 106]. Hence the Congruence Subgroup Problem has a positive answer if and only for every two-sided ideal $I \subseteq R$ we have $\text{E}(R, I) = \text{SL}(R, I)$, see [774, Exercise 2.5.21 on page 106]. More information about this problem can be found for instance in [94].

Exercise 3.94. Show that the Congruence Subgroup Problem has a positive answer for every field F.

3.10 Swan Homomorphisms

3.10.1 The Classical Swan Homomorphism

The definitions and results of this subsection are taken from Swan [851]. This paper marked the beginning of a development which finally leads to a solution of the spherical space form problem mentioned before in Section 2.5. It presents a nice and illuminating interaction between geometry, group theory and algebraic K-theory.

Let G be a finite group. Let $N_G \in ZG$ be the *norm element*, i.e., $N_G := \sum_{g \in G} g$. Consider the following pullback of rings

$$
\begin{array}{ccc}
ZG & \xrightarrow{i_1} & ZG/(N_G) \\
\downarrow{j_1} & & \downarrow{j_2} \\
Z & \xrightarrow{j_2} & Z/|G|
\end{array}
$$
where \((N_G) \subseteq ZG\) is the ideal generated by \(N_G\), \(i_1\) and \(j_2\) are the obvious projections, \(i_2\) is induced by the group homomorphism \(G \to \{1\}\) and \(j_1\) is the unique ring homomorphism for which the diagram above commutes. One easily checks that it is a pullback and that the maps \(i_1\) and \(j_1\) are surjective. Hence we can apply Theorem 3.83 and obtain a boundary homomorphism \(\partial: K_1(Z/|G|) \to K_0(ZG)\). The obvious homomorphism \(i: Z/|G|^\times \to K_1(Z/|G|)\) is an isomorphism by Theorem 3.6 since the commutative finite ring \(Z/|G|\) is a commutative semilocal ring and hence the determinant \(\text{det}: K_1(Z/|G|) \to Z/|G|^\times\) is an inverse of \(i\).

Definition 3.95 (Swan homomorphism). The (classical) Swan homomorphism is the composition

\[
\text{sw}^G: Z/|G|^\times \xrightarrow{i} K_1(Z/|G|) \xrightarrow{\partial} K_0(ZG).
\]

Lemma 3.96. Let \(n \in Z/|G|^\times\) be an element represented by \(n \in Z\). Then the ideal \((n, N_G) \subseteq ZG\) generated by \(n\) and \(N_G\) is a finitely generated projective \(ZG\)-module and

\[
\text{sw}(\pi) = [(n, N_G)] - [ZG].
\]

Proof. Let \(P_1\) be the \(Z\)-module \(Z\), \(P_2\) be the \(ZG/(N_G)\)-module \(ZG/(N_G)\) and \(P_0\) be the \(Z/|G|\)-module \(Z/|G|\). Consider the automorphism \(r_\pi: Z/|G| \to Z/|G|\) given by multiplication with \(n\). Define a \(ZG\)-module \(P\) by the pullback

\[
\begin{array}{ccc}
P & \longrightarrow & ZG/(N_G) \\
\downarrow i_2 & & \downarrow \partial j_1 \\
Z & \xrightarrow{j_2} & Z/|G|,
\end{array}
\]

One easily checks that the \(ZG\) maps \((n, N_G) \to Z\), which sends \(n\) to \(n\) and \(N_G\) to \(|G|\), and \((n, N_G) \to ZG/(N_G)\), which sends \(n\) to the class of 1 and \(N_G\) to 0, induce an isomorphism of \(ZG\)-modules \((n, N_G) \xrightarrow{\cong} P\). We conclude from Lemma 3.84 that \((n, N_G)\) is a finitely generated projective \(ZG\)-module and that \(\text{sw}^G(\pi) = [(n, N_G)] - [ZG]. \)

Remark 3.97 (Another description of the Swan homomorphism). For any \(n \in Z\) with \((n, |G|) = 1\), the abelian group \(Z/n\) with the trivial \(G\)-action is a \(ZG\)-module which possesses a finite projective resolution \(P_\ast\), see [49] Theorem VI.8.12 on page 152. Since two finite projective resolutions of \(Z/n\) are \(ZG\)-chain homotopic, their finiteness obstructions agree, see Exercise 2.39. Thus we can define \([Z/n] \in K_0(ZG)\) by \(o(P_\ast) = \sum_{n \geq 0} (-1)^n \cdot [P_n]\) for any finite projective resolution \(P_\ast\). We get

\[
\text{sw}^G(\pi) = -[Z/n]
\]

for any integer \(n \in Z\) with \((n, |G|) = 1\). This follows essentially from [851] Lemma 6.2 and Lemma 3.96.
Exercise 3.98. Show that sw^G is trivial for a finite cyclic group G.

3.10.2 The Classical Swan Homomorphism and Free Homotopy Representations

Let G be a finite group. A free d-dimensional G-homotopy representation X is a d-dimensional CW-complex X together with a G-action such that for any open cell e we have $ge \cap e \neq \emptyset \Rightarrow g = 1$, the space X is homotopy equivalent to S^d and $G\backslash X$ is a finitely dominated CW-complex. Let $f : X \to Y$ be a G-map of free d-dimensional G-homotopy representations for $d \geq 2$.

Let $n \geq 0$ be the integer such that the homomorphism of infinite cyclic groups $H_d(f) : H_d(X) \to H_d(Y)$ sends a generator of $H_d(X)$ to $\pm n$-times the generator of $H_d(Y)$. Let $o(G\backslash X), o(G\backslash Y) \in K_0(\mathbb{Z}G)$ be the finiteness obstructions of X and Y with respect to the obvious identification $G = \pi_1(X) = \pi_1(Y)$.

Lemma 3.99. Let G be a finite group of order ≥ 3.

(i) The G-action on $H_n(X)$ is trivial for $n \geq 0$ and d is odd;
(ii) We have $n \geq 1, (n, |G|) = 1$, and

$$sw^G(\pi) = o(G\backslash Y) - o(G\backslash X),$$

Proof. Let $C_*(X)$ be the cellular $\mathbb{Z}G$-chain complex. The conditions about the G-actions imply that $C_*(X)$ is a free $\mathbb{Z}G$-chain complex and is the same as $C_*(\hat{G}\backslash X)$. Since $G\backslash X$ is finitely dominated, we can find a finite projective $\mathbb{Z}G$-chain complex P_* which is $\mathbb{Z}G$-chain homotopy equivalent to $C_*(X)$. Since $\mathbb{C}G$ is semisimple, every submodule of a finitely generated $\mathbb{C}G$-module is finitely generated projective again. This implies the following equality in $K_0(\mathbb{C}G) = R_{\mathbb{C}}(G)$:

$$\sum_{m \geq 0} (-1)^m \cdot [P_m \otimes_{\mathbb{Z}G} \mathbb{C}G] = [H_0(X; \mathbb{C})] + (-1)^d \cdot [H_d(X; \mathbb{C})].$$

The Bass Conjecture for integral domains [2,85] has been proved for finite groups and $R = \mathbb{Z}$ by Swan [850] Theorem 8.1]. This implies that $P_n \otimes_{\mathbb{Z}G} \mathbb{C}G$ is a finitely generated free $\mathbb{C}G$-module for every n. Since $P_* \otimes_{\mathbb{Z}G} \mathbb{Z} \simeq C_*(G\backslash X)$, we conclude $\sum_{m \geq 0} (-1)^m \cdot [P_m \otimes_{\mathbb{Z}G} \mathbb{C}G] = \chi(G\backslash X) \cdot [\mathbb{C}G]$. Hence we get the following equality in $R_{\mathbb{C}}(G)$

$$\chi(G\backslash X) \cdot [\mathbb{C}G] = [H_0(X; \mathbb{C})] + (-1)^d \cdot [H_d(X; \mathbb{C})].$$

Obviously $H_0(X; \mathbb{C})$ is $\mathbb{C}G$-isomorphic to the trivial 1-dimensional G-representation $[\mathbb{C}]$. Since $H_d(X) \cong \mathbb{Z}$, there is a group homomorphism $w : G \to \{\pm 1\}$
such that $H_d(X; \mathbb{C})$ is the 1-dimensional G-representation \mathbb{C}^w for which $g \in G$ acts by multiplication with $w(g)$. Thus we get in $R_{\mathbb{C}}(G)$

$$\chi(G\setminus X) \cdot [CG] = [\mathbb{C}] + (-1)^d \cdot [\mathbb{C}^w].$$

Computing the characters on both sides yields the following equalities for $g \in G$

$$\chi(G\setminus X) \cdot |G| = 1 + (-1)^d;$$

$$0 = 1 + (-1)^d \cdot w(g) \quad \text{for } g \neq 1.$$

Since we assume $|G| \geq 3$ and $\chi(G\setminus X)$ is an integer, the first equality implies that d is odd. The second inequality implies that $w(g) = 1$ for all $g \in G$. Hence G acts trivially on $H_n(X)$ for all $n \geq 0$.

\[\text{[1]} \] Let $C_*(X)$ and $C_*(Y)$ be the free cellular $\mathbb{Z}G$-module complexes. Choose finite projective $\mathbb{Z}G$-module complexes P_* and Q_* together with $\mathbb{Z}G$-module homotopy equivalences $u_* : P_* \to C_*(X)$ and $v_* : Q_* \to C_*(Y)$. The map $f : X \to Y$ induces a $\mathbb{Z}G$-module map $C_*(f) : C_*(X) \to C_*(Y)$. Choose a $\mathbb{Z}G$-module map $h_* : P_* \to Q_*$ satisfying $v_* \circ h_* \simeq C_*(f) \circ u_*$. Let $\text{cone}_* = \text{cone}_*(h_*)$ be the mapping cone of h_*. It is a $(d+1)$-dimensional free $\mathbb{Z}G$-module complex such that $H_n(\text{cone}_*) = 0$ for $n \neq d$ and $H_d(\text{cone}_*(f))$ is \mathbb{Z}G-isomorphic to \mathbb{Z}/n with the trivial G-action. This follows from the long exact homology sequence associated to the short exact sequence of $\mathbb{Z}G$-module complexes $0 \to Q_* \to \text{cone}(h_*) \to \Sigma P_* \to 0$ and assertion \[\text{[1]} \]. Let D_* be the $\mathbb{Z}G$-module subcomplex of cone_* such that $D_{d+1} = \text{cone}_{d+1}$, D_d is the kernel of the d-th differential of cone_* and $D_k = 0$ for $k \neq d, d+1$. Then D_* is a projective $\mathbb{Z}G$-module complex and the inclusion $D_* \to \text{cone}_*$ induces an isomorphism on homology and hence is a $\mathbb{Z}G$-module homotopy equivalence. In particular we get a short exact sequence $0 \to D_{d+1} \to D_d \to \mathbb{Z}/n \to 0$. This excludes $n = 0$ since the cohomological dimension of a non-trivial finite group is ∞. Suppose that $(n, |G|) = 1$ is not true. Then we can find a prime number p such that \mathbb{Z}/p is a subgroup of G and \mathbb{Z}/p^l is a direct summand in \mathbb{Z}/n for some $l \geq 1$. This implies that the cohomological dimension of the trivial $\mathbb{Z}[\mathbb{Z}/p]$-module \mathbb{Z}/p^l is bounded by 1. An easy computation shows that $\text{Ext}^n_{\mathbb{Z}[\mathbb{Z}/p]}(\mathbb{Z}, \mathbb{Z}/p^l)$ does not vanish for all $n \geq 2$, a contradiction. Hence $(n, |G|) = 1$.

We conclude from Exercise 2.39

$$(-1)^d \cdot [\mathbb{Z}/n] = (-1)^{d+1} \cdot [D_{d+1}] + (-1)^d \cdot [D_d] = o(D_*) = o(\text{cone}_*) = [Q_*] - [P_*] = o(G\setminus Y) - o(G\setminus X).$$

Since d is odd by assertion \[\text{[1]} \], we conclude $\text{sw}(\pi) = o(G\setminus Y) - o(G\setminus X)$ from Remark 3.97 \square
Exercise 3.100. Let X be a free d-dimensional G-homotopy representation of the finite cyclic group G. Then $G \setminus X$ is homotopy equivalent a finite CW-complex.

3.10.3 The Generalized Swan Homomorphism

In this subsection we briefly introduce the generalized Swan homomorphism. For proofs and more information we refer to [579, Chapter 19].

Fix a finite group G. Let m be its order $|G|$. We obtain a pullback of rings

$$
\begin{array}{c}
\mathbb{Z}G \\
\downarrow \\
\mathbb{Z}/(m)G
\end{array}
\rightarrow
\begin{array}{c}
\mathbb{Z}[1/m]G \\
\downarrow \downarrow \\
\mathbb{Q}G.
\end{array}
$$

Despite the fact that neither the right horizontal arrow nor the lower vertical arrow are surjective, one obtains a long exact sequence which is an example of a localization sequence

$$(3.101) \quad K_1(\mathbb{Z}G) \to K_1(\mathbb{Z}[1/m]G) \oplus K_1(\mathbb{Z}/(m)G) \to K_1(\mathbb{Q}G) \overset{\partial}{\to} K_0(\mathbb{Z}G) \oplus K_0(\mathbb{Z}/(m)G) \to K_0(\mathbb{Q}G).$$

We denote in the sequel by $K_1(\mathbb{Q}G)/K_1(\mathbb{Z}/(m)G)$ the cokernel of the change of rings homomorphism $K_1(\mathbb{Z}/(m)G) \to K_1(\mathbb{Q}G)$.

Definition 3.102 (Generalized Swan homomorphism). The generalized Swan homomorphism

$$
\text{sw}^G : \mathbb{Z}/m^\times \to K_1(\mathbb{Q}G)/K_1(\mathbb{Z}/(m)G)
$$

sends r to element in $K_1(\mathbb{Q}G)/K_1(\mathbb{Z}/(m)G)$ which is given by the element in $K_1(\mathbb{Q}G)$ represented by the $\mathbb{Q}G$-automorphism $r \cdot \text{id} : \mathbb{Q} \to \mathbb{Q}$ of the trivial $\mathbb{Q}G$-module \mathbb{Q}.

This is well-defined by the argument in [579, page 381]. The following result is taken from [579, Theorem 19.4 on page 381]

Theorem 3.103 (The generalized Swan homomorphism). Let G be a finite group of order m.

(i) The composite of the generalized Swan homomorphism $\text{sw}^G : \mathbb{Z}/m^\times \to K_1(\mathbb{Q}G)/K_1(\mathbb{Z}/(m)G)$ introduced in Definition 3.102 with the homomorphism $\overline{\partial} : K_1(\mathbb{Q}G)/K_1(\mathbb{Z}/(m)G) \to K_0(\mathbb{Z}G)$ induced by the boundary hom-
morphism of the localization sequence \(3.101\) is the classical Swan homomorphism \(\sw^G : \mathbb{Z}/m^\infty \to K_0(\mathbb{Z}G)\) of Definition \(3.95\).

(ii) The generalized Swan homomorphism \(\sw^G : \mathbb{Z}/m^\infty \to K_1(\mathbb{Q}G)/K_1(\mathbb{Z}_{(m)}G)\) is injective.

3.104 The Generalized Swan Homomorphism and Free Homotopy Representations

In this subsection we briefly discuss Reidemeister torsion for free homotopy representations. For proofs and more information we refer to [579, Chapter 20].

Let \(G\) be a finite group of order \(m = |G|\). Let \(X\) be a free \(d\)-dimensional \(G\)-homotopy representation. Suppose that we have fixed an orientation, i.e., a generator of \(H_d(X; \mathbb{Z})\). Then we can define a kind of Reidemeister torsion of \(X\)

\[
\overline{\rho}^G(X) \in K_1(\mathbb{Q}G)/K_1(\mathbb{Z}_{(m)}G)
\]

as follows. The change of rings map \(\widetilde{K}_0(\mathbb{Z}G) \to \widetilde{K}_0(\mathbb{Z}_{(m)}G)\) is trivial, see [850, Theorem 7.1 and Theorem 8.1]. Hence there is a finite free \(\mathbb{Z}_{(m)}G\)-chain complex \(F_*\) together with a \(\mathbb{Z}_{(m)}G\)-chain homotopy equivalence \(f_* : F_* \to C_*(X) \otimes_{\mathbb{Z}G} \mathbb{Z}_{(m)}G\). Choose a \(\mathbb{Z}_{(m)}G\)-basis for \(F_*\). Then \(F_* \otimes_{\mathbb{Z}_{(m)}G} \mathbb{Q}G\) is a finite based free \(\mathbb{Q}G\)-chain complex. Note that we have preferred isomorphisms of abelian group \(H_0(X) \cong \mathbb{Z}\) and \(H_d(X) \cong \mathbb{Z}\) and \(G\) acts trivially on \(H_0(X)\) and \(H_d(X)\). This induces preferred \(\mathbb{Q}G\)-isomorphisms \(H_i(F_* \otimes_{\mathbb{Z}_{(m)}G} \mathbb{Q}G) \cong \mathbb{Q}\) for \(i = 0, d\), where we equip \(\mathbb{Q}\) with the trivial \(G\)-action. This enables us to define a torsion invariant \(\tau(F_* \otimes_{\mathbb{Z}_{(m)}G} \mathbb{Q}G) \in \widetilde{K}_1(\mathbb{Q}G)\) although \(F_* \otimes_{\mathbb{Z}_{(m)}G} \mathbb{Q}G\) is not acyclic. Define \(\overline{\rho}^G(X)\) to be its image under the projection \(\widetilde{K}_1(\mathbb{Q}G) \to K_1(\mathbb{Q}G)/K_1(\mathbb{Z}_{(m)}G)\).

One easily checks that \(\overline{\rho}^G(X)\) is independent of the choice of \(F_*\), \(f_*\) and the choice of the \(\mathbb{Z}_{(m)}G\)-basis for \(F_*\). The proof of the following result is a special case of the results in [579, Theorem 20.37 on page 403 and Corollary 20.39 on page 404].

Theorem 3.105 (Torsion and free homotopy representations). Let \(G\) be a finite group of order \(m = |G| \geq 3\). Let \(X\) and \(Y\) be free oriented \(G\)-homotopy representations.

(i) The homomorphism \(\overline{\rho} : K_1(\mathbb{Q}G)/K_1(\mathbb{Z}_{(m)}G) \to K_0(\mathbb{Z}G)\) sends the torsion \(\overline{\rho}^G(X)\) to the finiteness obstruction \(o(G\setminus X)\);

(ii) Let \(f : X \to Y\) be a \(G\)-map which always exists. Then its degree \(\deg(f)\) is prime to \(m\) and

\[
\sw^G(\deg(f)) = \overline{\rho}^G(Y) - \overline{\rho}^G(X);
\]

(iii) The free \(G\)-homotopy representations \(X\) and \(Y\) are oriented \(G\)-homotopy equivalent if and only if \(\overline{\rho}^G(X) = \overline{\rho}^G(Y)\).
3.11 Variants of the Farrell-Jones Conjecture for $K_1(RG)$

Theorem 3.105 gives an interesting relation between torsion invariants and finite obstructions and generalizes the homotopy classification of lens spaces to free G-homotopy representations.

All this can be extended to not necessarily free G-homotopy representations [579, Section 20]. The theory of homotopy representations was initiated by tom Dieck-Petrie [868].

3.11 Variants of the Farrell-Jones Conjecture for $K_1(RG)$

In this section we state variants of the Farrell-Jones Conjecture for $K_1(RG)$. The Farrell-Jones Conjecture itself will give a complete answer for arbitrary rings but to formulate the full version some additional effort will be needed. If one assumes that R is regular and G is torsionfree, the conjecture reduces to an easy to formulate statement which we will present next. Moreover, this special case is already very interesting.

Conjecture 3.106 (Farrell-Jones Conjecture for $K_0(RG)$ and $K_1(RG)$ for regular R and torsionfree G). Let G be a torsionfree group and let R be a regular ring. Then the maps defined in (3.25) and (3.26)

$$A_0 : K_0(R) \xrightarrow{\cong} K_0(RG);$$
$$A_1 : G/[G, G] \otimes \mathbb{Z} K_0(R) \oplus K_1(R) \xrightarrow{\cong} K_1(RG),$$

are both isomorphisms. In particular the groups $Wh_R^0(G)$ and $Wh_R^1(G)$ introduced in Definition 3.27 vanish.

We mention the following important special case of Conjecture 3.106.

Conjecture 3.107 (Farrell-Jones Conjecture for $\tilde{K}_0(ZG)$ and $Wh(G)$ for torsionfree G). Let G be a torsionfree group. Then $\tilde{K}_0(ZG)$ and $Wh(G)$ vanish.

We have already discussed the K_0-part of the two conjectures above in Section 2.8. The following exercise shows that we cannot expect to have an analogue for $K_1(RG)$ of the Conjecture 2.57.

Exercise 3.108. Let G be a group and let R be a ring. Suppose that the map

$$\text{colim}_{H \in \text{Sub}_{\mathbb{Z}^N}(G \times \mathbb{Z})} K_1(RH) \to K_1(R[G \times \mathbb{Z}]),$$

is surjective. Show that then $K_0(RG) = 0$ and hence $K_0(R) = 0$. In particular, R cannot be a commutative integral domain.
Remark 3.109 (Relevance of Conjecture 3.107). In view of Remark 3.13, Conjecture 3.107 predicts for a torsionfree group G that any matrix $A \in \text{GL}_n(\mathbb{Z}G)$ can be transformed by a sequence of the operations mentioned in Remark 3.13 to a $(1,1)$-matrix of the form $(\pm g)$ for some $g \in G$. This is the algebraic relevance of this conjecture. Its geometric meaning comes from the following conclusion of the s-Cobordism Theorem 2.37. Namely, if G is a finitely presented torsionfree group, and n an integer with $n \geq 6$, then it implies that every compact n-dimensional h-cobordism is trivial.

3.12 Survey on Computations of $K_1(\mathbb{Z}G)$ for Finite Groups

In contrast to $K_0(\mathbb{Z}G)$ for finite groups G, the Whitehead group $\text{Wh}(G)$ of a finite group is very well understood. The key source for the computation of $\text{Wh}(G)$ for finite groups G is the book written by Oliver [696].

Definition 3.110 ($SK_1(\mathbb{Z}G)$ and $\text{Wh}'(G)$). Let G be a finite group. Define

$$SK_1(\mathbb{Z}G) := \ker((K_1(\mathbb{Z}G) \to K_1(\mathbb{Q}G))) ;$$

$$\text{Wh}'(G) = \text{Wh}(G)/\text{tors}(\text{Wh}(G)).$$

Remark 3.111 ($SK_1(\mathbb{Z}G)$ and reduced norms). Let G be a finite group. The reduced norm on $\mathbb{C}G$ is defined as the composite of isomorphisms of abelian groups

$$\text{nr}_{\mathbb{C}G} : K_1(\mathbb{C}G) \xrightarrow{\phi} K_1 \left(\prod_{i=1}^{k} M_{r_i}(\mathbb{C}) \right) \xrightarrow{\cong} \prod_{i=1}^{k} K_1(M_{r_i}(\mathbb{C})) \xrightarrow{\cong} \prod_{i=1}^{k} K_1(\mathbb{C}) \xrightarrow{\prod_{i=1}^{k} \text{det}} \prod_{i=1}^{k} \mathbb{C}^\times,$$

where the isomorphism of rings $\phi : \mathbb{C}G \xrightarrow{\cong} \prod_{i=1}^{k} M_{r_i}(\mathbb{C})$ comes from Wedderburn’s Theorem applied to the semisimple ring $\mathbb{C}G$ and the remaining three isomorphisms come from Theorem 3.6, Lemma 3.8 and Lemma 3.9. The reduced norm on RG for $R = \mathbb{Z}, \mathbb{Q}$ is defined as the composite

$$\text{nr}_{RG} : K_1(RG) \xrightarrow{i_R} K_1(\mathbb{C}G) \xrightarrow{\text{nr}_{\mathbb{C}G}} \prod_{i=1}^{k} \mathbb{C}^\times,$$

where i_R is the obvious change of rings homomorphism. The map $i_\mathbb{Q}$ is injective, see [696, Theorem 2.5 on page 43]). Thus we can identify
3.12 Survey on Computations of $K_1(\mathbb{Z}G)$ for Finite Groups

$$SK_1(\mathbb{Z}G) = \ker \left(nr_{\mathbb{Z}G}: K_1(\mathbb{Z}G) \to \prod_{i=1}^{k} \mathbb{C}^\times \right).$$

This identification is useful for investigating $SK_1(\mathbb{Z}G)$ and $\text{Wh'}(G)$. We conclude that for abelian groups the two definitions of $SK_1(\mathbb{Z}G)$ appearing in Definition 3.15 and Definition 3.110 agree.

We denote by $r_F(G)$, the number of isomorphism classes of irreducible representations of the finite G over the field F. Recall that $r_F = |\text{con}_F(G)|$ by Lemma 2.75. The proof of the next result can be found for instance in [696, Theorem 2.5 on page 48] and is based on the Dirichlet Unit Theorem 3.21.

Theorem 3.112 ($SK_1(\mathbb{Z}G) = \text{tors(WH}(G))$). Let G be a finite group. Then the abelian group $SK_1(\mathbb{Z}G)$ is finite and agrees with the torsion subgroup $\text{tors(WH}(G))$ of $\text{WH}(G)$. The group $\text{WH'}(G) = \text{WH}(G)/\text{tors(WH}(G))$ is a finitely generated free abelian group of rank $r_{\mathbb{Q}}(G) - r_{\mathbb{Q}}(G)$.

Hence the next step is to compute $SK_1(\mathbb{Z}G)$. This is done using localization sequences, see [696, Theorem 1.17 on page 36 and Section 3c], which also involve the second algebraic K-group, see Chapter 6 and are consequences of the general result of Quillen stated in Theorem 6.43. Define

$$SK_1(\mathbb{Z}_pG) := \ker \left(K_1(\mathbb{Z}_pG) \to K_1(\mathbb{Q}_pG) \right).$$

Put

$$\text{Cl}_1(\mathbb{Z}G) := \ker \left(SK_1(\mathbb{Z}G) \to \prod_{p | |G|} SK_1(\mathbb{Z}_pG) \right),$$

where p runs over all prime numbers dividing $|G|$. Then one obtains an exact sequence

$$0 \to \text{Cl}_1(\mathbb{Z}G) \to SK_1(\mathbb{Z}G) \to \prod_{p | |G|} SK_1(\mathbb{Z}_pG) \to 0.$$

The analysis of $\text{Cl}_1(\mathbb{Z}G)$ and $SK_1(\mathbb{Z}_pG)$ is carried out independently and with different methods. Besides localization sequences p-adic logarithms play a key role. Details can be found in Oliver [696].

Given a groups G and Q the wreath product $G \wr Q$ is defined to be the semidirect product $\prod_Q G \rtimes Q$, where Q acts on $\prod_Q G$ by permuting the factors.

Theorem 3.113 (Finite groups with vanishing $\text{WH}(G)$ or $SK_1(\mathbb{Z}G)$). Let G be a finite group.

(i) Let p be a prime number. If the p-Sylow subgroup S_pG of G is isomorphic to \mathbb{Z}/p^n or $\mathbb{Z}/p^n \times \mathbb{Z}/p$ for some $n \geq 0$, then $SK_1(\mathbb{Z}G)(p) = 0$, i.e., the finite abelian group $SK_1(\mathbb{Z}G)$ contains no p-torsion;
(ii) Let G be a finite abelian group. Then $SK_1(ZG) = 0$ if and only if for every prime p the p-Sylow subgroup S_pG is isomorphic to \mathbb{Z}/p^n or $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ for some $n \geq 0$ or if $G = (\mathbb{Z}/2)^n$ for some $n \geq 1$;

(iii) Let C_{Wh} be the smallest class of groups which is closed under finite products and wreath products with S_n for every $n \geq 2$ and contains the trivial group. Let C_{SK_1} be the smallest class of groups which is closed under finite products and wreath products with S_n for every $n \geq 2$ and contains the dihedral groups D_n for $n \geq 2$.

Then $Wh(G) = 0$ for $G \in C_{Wh}$ and $SK_1(ZG) = 0$ if $G \in C_{SK_1}$;

(iv) We have $SK_1(ZG) = 0$ if G is one of the following groups

(a) G is finite cyclic;
(b) $\mathbb{Z}/p^n \times \mathbb{Z}/p^n$ for some prime p and $n \geq 1$;
(c) $(\mathbb{Z}/2)^n$ for $n \geq 1$;
(d) G is any symmetric group;
(e) G is any dihedral group;
(f) G is any semidihedral 2-group.

Proof. [i] See Oliver [696, Theorem 14.2 (i) on page 330].
[ii] See Oliver [696, Theorem 14.2 (iii) on page 330].
[iii] See Oliver [696, Theorem 14.1 on page 328].
(iv) This follows essentially from the other assertions. See Oliver [696] Examples 1 and 2 on page 14.

The group $SK_1(ZG)$ can be computed for many examples. We mention the following example taken from [696] Theorem 14.6 on page 336.

Example 3.114 ($SK_1(Z[A_n])$). We have $SK_1(Z[A_n]) \cong \mathbb{Z}/3$ if we can write $n = \sum_{i=1}^{r} 3^{m_i}$, such that $m_1 > m_2 > \cdots > m_r > 0$ and $\sum_{i=1}^{r} m_i$ is odd. Otherwise we get $SK_1(Z[A_n]) = \{0\}$.

Exercise 3.115. Show that the Whitehead group $Wh(Z/m)$ of the finite cyclic group Z/m of order m is a free abelian group of rank $|m/2| + 1 - \delta(m)$, where $|m/2|$ is the greatest integer less or equal to $m/2$ and $\delta(m)$ is the number of divisors of m.

Let p be a prime. Show that $Wh(Z/p)$ is isomorphic to $\mathbb{Z}/(p-1)/2-1$ if p is odd and is trivial if $p = 2$.

3.13 Survey on Computations of Algebraic $K_1(C^*_r(G))$ and $K_1(N(G))$

Define $SL(R) := \{ A \in GL(R) | \det(A) = 1 \}$. Let B be a commutative Banach algebra. Then $GL_n(B)$ inherits a topology, namely the subspace topology
for the obvious embedding $GL_n(B) \subseteq M_n(B) = \prod_{n=1}^\infty B$. Equip $GL(B) = \bigcup_{n \geq 1} GL_n(B)$ with the weak topology, i.e., a subset $A \subseteq GL(B)$ is closed if and only if $A \cap GL_n(R)$ is a closed subset of $GL_n(B)$ for all $n \geq 1$. Equip $SL(B) \subseteq GL(R)$ with the subspace topology.

The following results are due to Milnor [652, Corollary 7.2 on page 57 and Corollary 7.3 on page 58].

Theorem 3.116 (K1(B) of a commutative Banach algebra). Let B be a commutative Banach algebra. Then there is a natural isomorphism

$$K_1(B) \xrightarrow{\cong} B^\times \times \pi_0(SL(B)).$$

Define the infinite special orthogonal group $SO = \bigcup_{n \geq 1} SO(n)$ and infinite special unitary group $SU = \bigcup_{n \geq 1} SU(n)$ where $SO(n) = \{ A \in GL_n(R) \mid AA^t = I, \det(A) = 1 \}$ is the special n-th orthogonal group and $SU(n) = \{ A \in GL_n(C) \mid AA^* = I, \det(A) = 1 \}$ is the special n-th unitary group. Denote by $[X,SO]$ and $[X,SU]$ respectively the set of homotopy classes of maps from X to SO and SU respectively.

Theorem 3.117 (K1(C(X)) of a commutative C*-algebra C(X)). Let X be compact space. Then there are natural isomorphisms

$$K_1(C(X,\mathbb{R})) \xrightarrow{\cong} C(X,\mathbb{R})^\times \times [X,SO];$$
$$K_1(C(X,\mathbb{C})) \xrightarrow{\cong} C(X,\mathbb{C})^\times \times [X,SU];$$

The sets $[X,SO]$ and $[X,SU]$ are closely related to the topological K-groups $KO^{-1}(X)$ and $K^{-1}(X)$.

If B is a group C^*-algebra $C^*_r(G)$, then not much is known about the algebraic K-group $K_1(B)$ in general. However, the algebraic K_1-group of a von Neumann algebra is fully understood, see [585, Section 9.3], [610]. We mention the special case, see [585, Example 9.34 on page 353], that for a finitely generated group G which is not virtually finitely generated abelian the Fuglede-Kadison determinant induces an isomorphism

$$K_1(\mathcal{N}(G)) \xrightarrow{\cong} Z(\mathcal{N}(G))^{+,\text{inv}},$$

where $Z(\mathcal{N}(G))^{+,\text{inv}}$ consists of the elements of the center of $\mathcal{N}(G)$ which are both positive and invertible.

The connection between the algebraic and the topological K-theory of a C^*-algebra will be discussed in Section 9.7.

3.14 Notes

A universal property describing the Whitehead group and the Whitehead torsion similar to the description of the finiteness obstruction in Section 2.7 is presented in [579, Theorem 6.11].

Geometric versions or analogues of maps related to the Bass-Heller-Swan decomposition are described in [321], [343], [579, (7.34) on page 130], and [757, § 10].

Given two groups G_1 and G_2, let $G_1 * G_2$ by the amalgamated free product. Then the natural maps $G_k \to G_0 * G_1$ for $k = 1, 2$ induce an isomorphism, see [839],

\begin{equation}
\text{Wh}(G_1) \oplus \text{Wh}(G_2) \cong \text{Wh}(G_1 * G_2).
\end{equation}

(3.119)

Compare this with the analog for the reduced projective class groups stated in (2.109).

Exercise 3.120. Show that the projections $pr_k : G_1 \times G_2 \to G_k$ for $k = 1, 2$ do not in general induce an isomorphism

$$\text{Wh}(G_1 \times G_2) \not\cong \text{Wh}(G_1) \times \text{Wh}(G_2).$$

There are also equivariant versions of the Whitehead torsion, see for instance [579, Chapter 4 and Chapter 12], where more references can be found.

Finally we mention

Conjecture 3.121 (Unit-Conjecture). Let R be an integral domain and G be a torsion-free group. Then every unit in RG is trivial, i.e., of the form $r \cdot g$ for some unit $r \in R^\times$ and $g \in G$.

For more information about it we refer for instance to [551, page 95].

Remark 3.122 (Status of the Unit Conjecture and its stable version). Actually, Gardam found an explicite counterexample to the Unit Conjecture, see [375, Theorem A]. His group G is given by the presentation

$$\langle a, b \mid ba^2b^{-1} = a^{-2}, ab^2a^{-1} = b^{-2} \rangle.$$

It can be written as a non-split extension extension $1 \to \mathbb{Z}^3 \to G \to \mathbb{Z}/2 \times \mathbb{Z}/2 \to 1$ and is a crystalographic group. The underlying coefficient ring is the field of two elements \mathbb{F}_2. Note that Gardam found his counterexample using computer algebra, but in his paper he presents a short human-readable proof.

Fortunately, Conjecture 3.106 does not imply the Unit Conjecture 3.121. At least the bijectivity of the map A_1 implies the stable version of the Unit Conjecture that the class $[x]$ of any unit x in RG in $K_1(RG)$ is represented by the class $[u]$ of some trivial unit u, or, equivalently, by a sequence of
elementary row and columns operation and (de-)stabilization one can transform the $(1, 1)$-matrix (x) to the $(1, 1)$-matrix (u), see Remark 3.13, provided that $\tilde{K}_0(R)$ vanishes.

Note, that the map $(ZG)^\times \to K_1(ZG)$ sending a unit to its class in the K_1-group is in general not injective and in general not every unit is a trivial unit, as the following example shows. If G is a finite group, then a result of Hartley-Pickels [HI8, Theorem 2] says that exactly one of the following cases occurs:

- G is abelian and $(ZG)^\times$ is abelian;
- G is a Hamiltonian 2-group and $(ZG)^\times = \{\pm g \mid g \in G\};$
- $(ZG)^\times$ contains a free subgroup of rank 2.

Hence for the symmetric group S_n for $n \geq 3$, the group of units $\mathbb{Z}[S_n]^\times$ is infinite, whereas $\text{Wh}(S_n)$ vanishes, see Theorem 3.113 (iii), and hence $K_1(\mathbb{Z}[S_n])$ and $\{\pm g \mid g \in S_n\}$ are finite. This implies that the map $(\mathbb{Z}[S_n]^\times \to K_1(\mathbb{Z}[S_n]))$ has an infinite kernel for $n \geq 3$ and that there are infinitely many elements in $(\mathbb{Z}[S_n]^\times$ which are not trivial units.
Chapter 4
Negative Algebraic K-Theory

4.1 Introduction

In this chapter we introduce negative K-groups. They are designed such that the Bass-Heller-Swan decomposition and the long exact sequence of a pullback of rings and of a two-sided ideal extend beyond K_0. We give a geometric interpretation of negative K-groups of group rings in terms of bounded h-cobordisms. We state variants of the Farrell-Jones Conjecture for negative K-groups and give a survey of computations for group rings of finite groups.

4.2 Definition and Basic Properties of Negative K-Groups

Recall that we get from Theorem 3.72 an isomorphism

$$K_0(R) = \text{coker} \left(K_1(R[t]) \oplus K_1(R[t^{-1}]) \to K_1(R[t,t^{-1}]) \right).$$

This motivates the following definition of negative K-groups due to Bass.

Definition 4.1. Given a ring R, define inductively for $n = -1, -2, \ldots$

$$K_n(R) := \text{coker} \left(K_{n+1}(R[t]) \oplus K_{n+1}(R[t^{-1}]) \to K_{n+1}(R[t,t^{-1}]) \right).$$

Define for $n = -1, -2, \ldots$

$$NK_n(R) := \text{coker} \left(K_n(R) \to K_n(R[t]) \right).$$

The Bass-Heller-Swan decomposition 3.69 for $K_1(R[t,t^{-1}])$ extends to negative K-theory.

Theorem 4.2 (Bass-Heller-Swan decomposition for middle and lower K-theory). There are isomorphisms of abelian groups, natural in R, for $n = 1, 0, -1, -2, \ldots$

$$NK_n(R) \oplus K_n(R) \cong K_n(R[t]);$$

$$K_n(R) \oplus K_{n-1}(R) \oplus NK_n(R) \oplus NK_n(R) \cong K_n(R[t,t^{-1}]).$$
The following sequence is natural in \(R \) and exact for \(n = 1, 0, -1, \ldots \)

\[
0 \to K_n(R) \xrightarrow{(k_+, \oplus - (k_-)_*)} K_n(R[t]) \oplus K_n(R[t^{-1}]) \xrightarrow{(\tau_+)_* \oplus (\tau_-)_*} K_n(R[t, t^{-1}]) \xrightarrow{C_n} K_{n-1}(R) \to 0.
\]

If we regard it as an acyclic \(\mathbb{Z} \)-chain complex, there exists a chain contraction, natural in \(R \).

Proof. We give the proof only for \(n = 0 \), then an iteration of the argument proves the claim for all \(n \leq 0 \). Take \(S = R[\mathbb{Z}] = R[x, x^{-1}] \). We obtain a commutative diagram

\[
\begin{array}{cccccccc}
0 & \downarrow & 0 & \downarrow & 0 & \downarrow & 0 & \downarrow & 0 \\
K_0(R) & \xrightarrow{f_1} & K_1(S) & \xrightarrow{f_2} & K_1(S[t]) & \oplus & K_1(S[t^{-1}]) & \xrightarrow{f_3} & K_1(S[t, t^{-1}]) \\
(k_+, \oplus - (k_-)_*) & \downarrow & (k_+, \oplus - (k_-)_*) & \downarrow & (\tau_+)_* \oplus (\tau_-)_* & \downarrow & (\tau_+)_* \oplus (\tau_-)_* & \downarrow & (\tau_+)_* \oplus (\tau_-)_* \\
K_0(R[t]) \oplus K_0(R[t^{-1}]) & \xrightarrow{f_2} & K_1(S[t]) & \oplus & K_1(S[t^{-1}]) & \xrightarrow{f_3} & K_1(S[t, t^{-1}]) & \xrightarrow{C'} & K_{-1}(S) \\
C' & \downarrow & C & \downarrow & C & \downarrow & C & \downarrow & C \\
K_{-1}(R) & \xrightarrow{f_4} & K_0(S) & \xrightarrow{f_1} & K_0(S) & \xrightarrow{f_2} & K_0(S) & \xrightarrow{f_3} & K_0(S) \\
0 & \downarrow & 0 & \downarrow & 0 & \downarrow & 0 & \downarrow & 0
\end{array}
\]

where the right column is the exact sequence appearing in Theorem 3.72, the map \(C' \) is the canonical projection, the maps \(f_1, f_2 \) and \(f_3 \) come from the Bass-Heller-Swan decompositions for \(S = R[x, x^{-1}], S[t] = R[t][x, x^{-1}], S[t^{-1}] = R[t^{-1}][x, x^{-1}] \) and \(S[t, t^{-1}] = R[t, t^{-1}][x, x^{-1}] \) and the map \(f_4 \) is the unique map which makes the diagram commutative. There are natural retractions \(r_k \) of \(f_k \) for \(k = 1, 2, 3 \) for which the diagram remains commutative, and a natural chain contraction of the right column, see Theorem 3.69. Let \(r_4 : K_0(S) \to K_{-1}(R) \) be the unique map which satisfies \(r_4 \circ C = C' \circ r_3 \). An easy diagram shows that \(r_4 \) is well-defined since \(C' \circ r_3 \) sends the kernel of \(C \) to zero. One easily checks \(r_4 \circ f_4 = \text{id} \). Since the right column is exact and all vertical maps have retractions for which the diagram remains commutative, the left column is exact as well. This establishes the exact sequence. Since the chain contraction of the right column is also compatible with the left vertical arrows and the retractions, we obtain a natural chain contraction for the left column as well.

\(\square \)
Remark 4.3 (Extending exact sequences to negative K-theory). The Mayer-Vietoris sequence of a pullback of rings, see Theorem 3.83, can be extended to negative K-theory and also to K_2 as we will explain in Theorem 5.5. Similarly, the long exact sequence of a two-sided ideal appearing in Theorem 3.86 can be extended to negative K-theory and also to K_2, as we will explain in Theorem 5.11.

Exercise 4.4. Let R and S be rings. Show for $n \leq 1$ that the projections induce an isomorphism

$$K_n(R \times S) \xrightarrow{\cong} K_n(R) \times K_n(S).$$

Definition 4.5. Define for $n \leq 1$ inductively for $p = 0, 1, 2, \ldots$

$$N^0_n(R) := K_n(R);$$
$$N^{p+1}_n(R) := \text{coker}(N^p_n(R) \to N^p_n(R[t])).$$

Obviously $N^1_n(R)$ agrees with $NK_n(R)$.

Theorem 4.6 (Bass-Heller-Swan decomposition for lower and middle K-theory for regular rings). Suppose that R is regular. Then

$$K_n(R) = 0 \quad \text{for } n \leq -1;$$
$$N^p_n(R) = 0 \quad \text{for } n \leq 1 \text{ and } p \geq 1,$$

and the Bass-Heller-Swan decomposition appearing in Theorem 4.2 reduces for $n \leq 1$ to the natural isomorphism

$$K_{n-1}(R) \oplus K_n(R) \xrightarrow{\cong} K_n(R[t, t^{-1}]).$$

Proof. The Bass-Heller-Swan decomposition, see Theorem 4.2 applied to R and $R[t]$ together with the obvious maps $i: R \to R[t]$ and $\epsilon: R[t] \to R$ satisfying $\epsilon \circ i = \text{id}_R$ yield a natural Bass-Heller-Swan decomposition

$$(4.7) \quad NK_{n-1}(R) \oplus NK_n(R) \oplus N^2K_n(R) \oplus N^2K_n(R) \xrightarrow{\cong} NK_n(R[Z]).$$

Hence $NK_{n-1}(R) = 0$ if $NK_n(R[Z]) = 0$. If R is regular, then $R[Z]$ is regular by Theorem 3.77 [4]. Hence $NK_{n-1}(R)$ vanishes for all regular rings R if $NK_n(R)$ vanishes for all regular rings. We have shown in Theorem 3.78 that $NK_1(R)$ vanishes for all regular rings R. We conclude by induction over n that $NK_n(R)$ vanishes for all regular rings R and $n \leq 1$. Obviously $N^pK_n(R)$ is a direct summand in $NK_n(R[t])$ and $R[t]$ is regular by Theorem 3.77 [4]. Hence $N^pK_n(R)$ vanishes for $p \geq 1$ and $n \leq 1$ if R is a regular ring.

Next we show that $K_{-1}(R) = 0$ for every regular ring. It suffices to show that the obvious map $K_0(R[t]) \to K_0(R[t, t^{-1}])$ is surjective. The homomorphism
\[\alpha: G_0(R[t]) \to G_0(R[t, t^{-1}]), \quad [M] \to [M \otimes_{R[t]} R[t, t^{-1}]]\]

is well-defined since \(R[t, t^{-1}]\) is a localization of \(R[t]\) and hence flat as \(R[t]\)-module. Since \(R\) by assumption and hence \(R[t]\) and \(R[t, t^{-1}]\) by Theorem 3.77 (i) are regular, we conclude from Lemma 3.82 that it remains to prove surjectivity of \(\alpha\). Let \(M\) be a finitely generated \(R[t, t^{-1}]\)-module. Since \(R[t, t^{-1}]\) is Noetherian, we can find a matrix \(A \in M_{m, n}(R[t, t^{-1}])\) such that there exists an exact sequence of \(R[t, t^{-1}]\)-modules \(R[t, t^{-1}]^m \xrightarrow{\Delta} R[t, t^{-1}]^n \to M \to 0\). Since \(t\) is invertible in \(R[t, t^{-1}]\), the sequence remains exact if we replace \(A\) by \(t^k A\) for some \(k \geq 1\). Hence we can assume without loss of generality that \(A \in M_{m, n}(R[t])\). Define the \(R[t]\)-module \(N\) to be the cokernel of \(R[t, t^{-1}]^m \xrightarrow{\Delta} R[t, t^{-1}]^n\). Then \(N \otimes_{R[t]} R[t, t^{-1}]\) is \(R[t, t^{-1}]\)-isomorphic to \(M\) and hence \(\alpha([N]) = [M]\).

Now \(K_n(R) = 0\) follows inductively for \(n \leq -1\) for every regular ring from Theorem 3.77 (i) and the Bass-Heller-Swan decomposition 4.2.

Finally apply Theorem 4.2.

Exercise 4.8. Let \(R\) be a regular ring. Prove

\[K_1(R[Z^k]) = K_1(R) \oplus \bigoplus_{i=1}^k K_0(R);\]

\[K_0(R[Z^k]) \cong K_0(R);\]

\[K_n(R[Z^k]) \cong 0 \text{ for } n \leq -1.\]

Example 4.9 (\(K_n(Z/Z[p \times Z^k])\) for \(n \leq 0\) and a prime \(p\)). Let \(p\) be a prime number. We want to show

\[K_n(Z/Z[p \times Z^k]) = 0 \text{ for } n \leq -1 \text{ and } k \geq 0,\]

and that \(K_0(Z/Z[p \times Z^k])\) is finitely generated for \(k \geq 0\). Consider the pullback of rings appearing in the proof of Rim’s Theorem in Section 3.8

\[\begin{array}{cccc}
Z/Z[p] & \xrightarrow{i_1} & Z[\exp(2\pi i/p)] \\
i_2 & & j_1 & \\
Z & \xrightarrow{j_2} & F_p
\end{array}\]

If we apply \(\otimes_Z Z[Z^k]\), we obtain the pullback of rings.
The ring $\mathbb{Z}[\exp(2\pi i/p)]$ is a Dedekind domain, see Theorem 2.23, and in particular regular. The rings \mathbb{Z} and \mathbb{F}_p are regular as well. Hence the rings $\mathbb{Z}[\exp(2\pi i/p)][\mathbb{Z}^k]$, $\mathbb{Z}[\mathbb{Z}^k]$ and $\mathbb{F}_p[\mathbb{Z}^k]$ are regular by Theorem 3.77 (i). The negative K-groups of $\mathbb{Z}[\exp(2\pi i/p)][\mathbb{Z}^k]$, $\mathbb{Z}[\mathbb{Z}^k]$ and $\mathbb{F}_p[\mathbb{Z}^k]$ vanish by Theorem 4.6. The obvious maps

$$K_0(\mathbb{Z}) \xrightarrow{\cong} K_0(\mathbb{Z}[\mathbb{Z}^k]);$$

$$K_0(\mathbb{Z}[\exp(2\pi i/p)]) \xrightarrow{\cong} K_0(\mathbb{Z}[\exp(2\pi i/p)][\mathbb{Z}^k]);$$

$$K_0(\mathbb{F}_p) \xrightarrow{\cong} K_0(\mathbb{F}_p[\mathbb{Z}^k]),$$

are bijective because of Theorem 4.6. Hence the associated long exact Mayer-Vietoris sequence, see Remark 4.3, implies that $K_n(\mathbb{Z}[\mathbb{Z}^k]) = 0$ holds for $n \leq -2$ and that we get the exact sequence

$$K_1(\mathbb{F}_p[\mathbb{Z}^k]) \to K_0(\mathbb{Z}[\mathbb{Z}^k]) \to K_0(\mathbb{Z}[\exp(2\pi i/p)]) \to K_0(\mathbb{F}_p) \to K_{-1}(\mathbb{Z}[\mathbb{Z}^k]) \to 0.$$

Since \mathbb{F}_p is a field and hence $K_0(\mathbb{F}_p)$ is generated by $[\mathbb{F}_p]$, see Example 2.4, we conclude $K_{-1}(\mathbb{Z}[\mathbb{Z}^k]) = 0$. Example 2.4, Theorem 3.17 and Theorem 4.6 imply $K_1(\mathbb{F}_p[\mathbb{Z}^k]) \cong K_1(\mathbb{F}_p) \oplus K_0(\mathbb{F}_p)^k \cong (\mathbb{F}_p)^k \oplus \mathbb{Z}^k$. The abelian group $K_0(\mathbb{Z}) \oplus K_0(\mathbb{Z}[\exp(2\pi i/p)])$ is finitely generated by Theorem 2.23. Hence $K_0(\mathbb{Z}[\mathbb{Z}^k])$ is finitely generated.

Exercise 4.10. Show for $k \geq 0$ and $n \leq 0$ that $\tilde{K}_n(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) = 0$. Prove that $N^p K_n(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) = 0$ holds for $n \leq -1$ and $p \geq 0$ and for $n = 0$ and $p \geq 1$.

Example 4.11 (Negative K-theory of $\mathbb{Z}[\mathbb{Z}/6]$). We want to show

$$K_n(\mathbb{Z}[\mathbb{Z}/6]) \cong \begin{cases} \mathbb{Z} & n = -1; \\ 0 & n \leq -2. \end{cases}$$

Consider the pullback of rings

$$\begin{array}{ccc}
Z[\mathbb{Z}/p \times \mathbb{Z}^k] & \xrightarrow{i_1} & Z[\exp(2\pi i/p)][\mathbb{Z}^k] \\
i_2 & \downarrow & \downarrow j_1 \\
Z[\mathbb{Z}^k] & \xrightarrow{j_2} & \mathbb{F}_p[\mathbb{Z}^k]
\end{array}$$
\[\mathbb{Z} \langle \mathbb{Z}/2 \rangle \xrightarrow{i_1} \mathbb{Z} \]
\[\downarrow \quad \downarrow \quad \downarrow \]
\[\mathbb{Z} \xrightarrow{j_1} \mathbb{Z}/2 \]
where \(i_1 \) sends \(a + bt \) to \(a - b \) and \(i_2 \) sends \(a + bt \) to \(a + b \) for \(t \in \mathbb{Z}/2 \) the generator and the two maps from \(\mathbb{Z} \) to \(\mathbb{Z}/2 \) are the canonical projections. Since \(\mathbb{Z} \langle \mathbb{Z}/3 \rangle \)
is free as abelian group, this remains to be a pullback of rings if we apply \(- \otimes_{\mathbb{Z}} \mathbb{Z} \langle \mathbb{Z}/3 \rangle \). We have isomorphisms of rings \(\mathbb{Z} \langle \mathbb{Z}/2 \rangle \otimes_{\mathbb{Z}} \mathbb{Z} \langle \mathbb{Z}/3 \rangle = \mathbb{Z} \langle \mathbb{Z}/6 \rangle \) and \(\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \langle \mathbb{Z}/3 \rangle = \mathbb{Z} \langle \mathbb{Z}/3 \rangle \). From the pullback for \(p = 3 \) appearing in Example 4.9 we obtain an isomorphism of rings
\[\mathbb{F}_2 \otimes_{\mathbb{Z}} \mathbb{Z} \langle \mathbb{Z}/3 \rangle \cong \mathbb{F}_2 \times (\mathbb{F}_2 \otimes_{\mathbb{Z}} \mathbb{Z} \langle \exp(2\pi i/3) \rangle). \]
The ring \(\mathbb{Z} \langle \exp(2\pi i/3) \rangle \) is as abelian group free with two generators \(1 \) and \(\omega = \exp(2\pi i/3) \) and the multiplication is uniquely determined by \(\omega^2 = -1 - \omega \). Hence \(\mathbb{F}_2 \otimes_{\mathbb{Z}} \mathbb{Z} \langle \exp(2\pi i/3) \rangle \) contains four elements, namely \(0, 1, 1 \otimes \omega \) and the sum \(1 + 1 \otimes \omega \). Since \((1 \otimes \omega) \cdot (1 + 1 \otimes \omega) = 1 \), it is the field \(\mathbb{F}_4 \) consisting of four elements. Hence we obtain a pullback of rings
\[\mathbb{Z} \langle \mathbb{Z}/6 \rangle \xrightarrow{i_1} \mathbb{Z} \langle \mathbb{Z}/3 \rangle \]
\[\downarrow \quad \downarrow \quad \downarrow \]
\[\mathbb{Z} \langle \mathbb{Z}/3 \rangle \xrightarrow{j_1} \mathbb{F}_2 \times \mathbb{F}_4 \]
Since \(K_n(\mathbb{F}_2 \times \mathbb{F}_4) \cong K_n(\mathbb{F}_2) \times K_n(\mathbb{F}_4) \) vanishes for \(n \leq -1 \) and \(K_n(\mathbb{Z} \langle \mathbb{Z}/3 \rangle) \) vanishes for \(n \leq -1 \) by Example 4.9, the associated long exact Mayer-Vietoris sequence, see Remark 4.3, implies that \(K_n(\mathbb{Z} \langle \mathbb{Z}/6 \rangle) = 0 \) holds for \(n \leq -2 \) and there is an exact sequence
\[K_0(\mathbb{Z} \langle \mathbb{Z}/3 \rangle) \oplus K_0(\mathbb{Z} \langle \mathbb{Z}/3 \rangle) \to K_0(\mathbb{F}_2 \times \mathbb{F}_4) \to K_{-1}(\mathbb{Z} \langle \mathbb{Z}/6 \rangle) \to 0. \]
Since \(K_0(\mathbb{Z} \langle \mathbb{Z}/3 \rangle) \) is trivial, see Example 2.91 and the projections induce an isomorphism \(K_0(\mathbb{F}_2 \times \mathbb{F}_4) \cong K_0(\mathbb{F}_2) \times K_0(\mathbb{F}_4) \cong \mathbb{Z} \oplus \mathbb{Z} \), we conclude \(K_{-1}(\mathbb{Z} \langle \mathbb{Z}/6 \rangle) \cong \mathbb{Z} \).

Exercise 4.12. Consider \(k \in \{0, 1, 2, \ldots \} \). Compute
\[K_n(\mathbb{Z} \langle \mathbb{Z}/k \times \mathbb{Z}/6 \rangle) \cong \begin{cases}
\mathbb{Z}^{k+1} & \text{for } n = 0; \\
\mathbb{Z} & \text{for } n = -1; \\
0 & \text{for } n \leq -2,
\end{cases} \]
and prove \(\nu^p K_n(\mathbb{Z} \langle \mathbb{Z}/6 \times \mathbb{Z}/k \rangle) = 0 \) for \(p \geq 1 \) and \(n \leq 0 \).
The Bass-Heller-Swan decomposition can be used to show that certain results about the K-groups in a fixed degree m have implications to all the K-groups in degree $n \leq m$, as illustrated by the next result.

Lemma 4.13. Consider a ring R and $m \in \mathbb{Z}$ with $m \leq 1$. Suppose that for every $k \geq 1$ the map $K_m(R) \to K_m(R[\mathbb{Z}^k])$ induced by the inclusion $R \to R[\mathbb{Z}^k]$ is bijective.

Then $K_n(R[\mathbb{Z}^k]) = 0$ for $n \leq m - 1$ and $NK_n(R[\mathbb{Z}^k]) = 0$ for $n \leq m$ hold for all $l \geq 0$.

Proof. Since the bijectivity of $K_m(R) \to K_m(R[\mathbb{Z}^k])$ for all $k \geq 1$ implies the bijectivity of $K_m(R[\mathbb{Z}^l]) \to K_m((R[\mathbb{Z}^l])[\mathbb{Z}^l]))$ for all $k, l \geq 0$ because of the identification $(R[\mathbb{Z}^l])[\mathbb{Z}^l] = R[\mathbb{Z}^{l+1}]$, it suffices to treat the case $l = 0$.

Consider any integer $k \geq 1$. The assumptions in Lemma 4.13 imply that the map $K_m(R[\mathbb{Z}^{k-1}]) \to K_m(R[\mathbb{Z}^k])$ induced by the inclusion $R[\mathbb{Z}^{k-1}] \to R[\mathbb{Z}^k]$ is bijective. Theorem 4.2 applied to the ring $R[\mathbb{Z}^{k-1}]$ together with the identity $R[\mathbb{Z}^k] = (R[\mathbb{Z}^{k-1}])[\mathbb{Z}^k]$ shows that $K_{m-1}(R[\mathbb{Z}^{k-1}]) = 0$ and $NK_m(R[\mathbb{Z}^{k-1}]) = 0$. Using Theorem 4.2 and Bass-Heller-Swan-decomposition for NK, see [4.7], one shows inductively for $i = 0, 1, \ldots, (k-1)$ that $K_{m-i}(R[\mathbb{Z}^{k-i-1}]) = 0$ and $NK_{m-i}(R[\mathbb{Z}^{k-i-1}]) = 0$ holds for $j = 0, 1, \ldots, i$. Then the case $i = k - 1$ shows that $K_n(R) = 0$ for $m - k \leq n \leq m - 1$ and $NK_n(R) = 0$ for $m - k + 1 \leq n \leq m$. Since $k \geq 1$ was arbitrary, Lemma 4.13 follows.

Exercise 4.14. Consider a ring R and $m \in \mathbb{Z}$ with $m \leq 1$. Suppose that $K_m(R[\mathbb{Z}^k]) = 0$ for every $k \geq 1$. Then $K_i(R[\mathbb{Z}^l]) = NK_i(R[\mathbb{Z}^l]) = 0$ holds for $i \leq m$ and $l \geq 0$.

Theorem 4.15 (The middle and lower K-theory of RG for finite G and Artinian R). Let G be a finite group and let R be an Artinian ring. Then:

(i) For every $k \geq 0$ the map

$$K_0(RG) \xrightarrow{\cong} K_0(RG[\mathbb{Z}^k])$$

induced by the inclusion is bijective;

(ii) Given any $k \geq 0$, we have $K_n(RG[\mathbb{Z}^k]) = 0$ for $n \leq -1$ and $NK_n(RG[\mathbb{Z}^k]) = 0$ for $n \leq 0$.

Proof.

(i) Denote by $J = \text{rad}(RH) \subseteq RH$ the Jacobson radical of RH. Since R and hence RH are Artinian, there exists a natural number l with $JJ^l = J^l$. By Nakayama’s Lemma, see [5.30] Proposition 8 in Chapter 2 on page 20, J^l is $\{0\}$, in other words, J is nilpotent. The ring RH/J is a semisimple Artinian ring, see [5.31] Definition 20.3 on page 311 and (20.3) on page 312, and in particular regular. Theorem [3.77][ii] implies that $(RH/J)[\mathbb{Z}^l]$ is regular for
all \(k \geq 1 \). We derive from Theorem 4.6 that \(K_n((RH/J)[\mathbb{Z}^k]) = 0 \) for \(n \leq -1 \) and \(NK_n((RH/J)[\mathbb{Z}^k]) \) for \(n \leq 0 \) hold for all \(k \geq 0 \). We conclude from Theorem 4.6 by induction over \(k = 0, 1, 2 \ldots \) that the inclusion \(RH/J \to (RH/J)[\mathbb{Z}^k] \) induces an isomorphism

\[
K_0(RH/J) \xrightarrow{\cong} K_0((RH/J)[\mathbb{Z}^k])
\]

for all \(n \geq 0 \).

The following diagram

\[
\begin{array}{ccc}
K_0(RH) & \xrightarrow{\cong} & K_0(RH[\mathbb{Z}^k]) \\
\downarrow & & \downarrow \\
K_0(RH/J) & \xrightarrow{\cong} & K_0((RH/J)[\mathbb{Z}^k])
\end{array}
\]

commutes. Since \(J \) is a nilpotent two-sided ideal of \(RH \), \(J[\mathbb{Z}^k] \) is a nilpotent two-sided ideal of \(RH[\mathbb{Z}^k] \). Obviously \((RH/J)[\mathbb{Z}^k] \) can be identified with \((RH[\mathbb{Z}^k])/J[\mathbb{Z}^k] \). Hence the vertical arrows in the diagram above are bijective by Lemma 2.108. Since the lower horizontal arrow is bijective for every \(k \geq 1 \), the upper horizontal arrow is bijective for every \(k \geq 1 \).

\[\square\] This follows from assertion (i) and Lemma 4.13 applied in the case \(m = 0 \) to the ring \(RG \).

4.3 Geometric Interpretation of Negative K-Groups

One possible geometric interpretation of negative \(K \)-groups is in terms of bounded h-cobordisms.

We consider manifolds \(W \) parametrized over \(\mathbb{R}^k \), i.e., manifolds which are equipped with a surjective proper map \(p: W \to \mathbb{R}^k \). Recall that proper means that preimages of compact subsets are compact again. We will always assume that the fundamental group(oid) is bounded, see [716, Definition 1.3]. A map \(f: W \to W' \) between two manifolds parametrized over \(\mathbb{R}^k \) is bounded if \(\{ p' \circ f(x) - p(x) \mid x \in W \} \) is a bounded subset of \(\mathbb{R}^k \).

A bounded cobordism \((W; M_0, f_0, M_1, f_1) \) is defined just as in Section 3.5 but compact manifolds are replaced by manifolds parametrized over \(\mathbb{R}^k \) and the parametrization for \(M_i \) is given by \(p_W \circ f_i \). If we assume that the inclusions \(i_1: \partial_0 W \to W \) are homotopy equivalences, then there exist deformations \(r_1: W \times I \to W \) such that \(r_1|_{W \times \{0\}} = \text{id}_W \) and \(r_1(W \times \{1\}) \subseteq \partial_1 W \). A bounded cobordism is called a bounded h-cobordism if the inclusions \(i_1 \) are homotopy equivalences and additionally the deformations can be chosen such that the two sets
are bounded subsets of \mathbb{R}^k.

The following theorem, see \cite{716} and \cite{910, Appendix}, contains the s-Cobordism Theorem \ref{thm:scobordism} as a special case, gives another interpretation of elements in $\tilde{K}_0(\mathbb{Z}\pi)$ and explains one aspect of the geometric relevance of negative K-groups.

Theorem 4.16 (Bounded h-Cobordism Theorem). Suppose that M_0 is parametrized over \mathbb{R}^k and satisfies $\dim M_0 \geq 5$. Let π be its fundamental group(oid). Equivalence classes of bounded h-cobordisms over M_0 modulo bounded diffeomorphism relative M_0 correspond bijectively to elements in $\kappa_{1-k}(\pi)$, where

\[
\kappa_{1-k}(\pi) = \begin{cases}
\text{Wh}(\pi) & \text{if } k = 0; \\
\tilde{K}_0(\mathbb{Z}\pi) & \text{if } k = 1; \\
K_{1-k}(\mathbb{Z}\pi) & \text{if } k \geq 2.
\end{cases}
\]

4.4 Variants of the Farrell-Jones Conjecture for Negative K-Groups

In this section we state variants of the Farrell-Jones Conjecture for negative K-theory. The Farrell-Jones Conjecture itself will give a complete answer for arbitrary rings but to formulate the full version some additional effort will be needed. If one assumes that R is regular and G torsionfree or that $R = \mathbb{Z}$, the conjecture reduces to an easy to formulate statement which we will present next.

Conjecture 4.17 (The Farrell-Jones Conjecture for negative K-theory and regular coefficient rings). Let R be a regular ring and G be a group such that for every finite subgroup $H \subseteq G$ the element $|H| \cdot 1_R$ of R is invertible in R. Then

\[K_n(RG) = 0 \quad \text{for} \quad n \leq -1.\]

Exercise 4.18. Prove that Conjecture 4.17 is true if G is finite.

Conjecture 4.19 (The Farrell-Jones Conjecture for negative K-theory of the ring of integers in an algebraic number field). Let R be of integers in an algebraic number field. Then, for every group G, we have

\[K_{-n}(RG) = 0 \quad \text{for} \quad n \geq 2,\]

and the map

\[S_t = \{p_W(r_I(x,t)) - p_W(r_I(x,1)) \mid x \in W, t \in [0,1]\}\]
\[
\colim_{H \in \text{Sub}_F(Z^*(G))} K_{-1}(RH) \cong K_{-1}(RG)
\]

is an isomorphism.

Conjecture 4.20 (The Farrell-Jones Conjecture for negative \(K\)-theory and Artinian rings as coefficient rings). Let \(G\) be a group and let \(R\) be an Artinian ring. Then

\[
K_n(RG) = 0 \quad \text{for} \quad n \leq -1.
\]

4.5 Survey on Computations of Negative \(K\)-Groups for Finite Groups

The following result is due to Carter [194]. See also [90, Theorem 10.6 on page 695].

Theorem 4.21 (Negative \(K\)-theory of \(RG\) for finite groups \(G\) and Dedekind domains of characteristic zero \(R\)). Let \(R\) be a Dedekind domain of characteristic zero. Let \(k\) be its fraction field. For any maximal ideal \(P\) of \(R\), let \(k_P\) be the \(P\)-adic completion. Let \(G\) be a finite group of order \(n\).

For a field \(F\) we denote by \(r_F(G)\) the number of isomorphism classes of irreducible representations of \(G\) over the field \(F\). Then

(i) \(K_m(RG) = 0\) for \(m \leq -2\);

(ii) \(K_{-1}(RG)\) is a finitely generated group;

(iii) Suppose that no prime divisor of \(n\) is invertible in \(R\). Then the rank \(r\) of the finitely generated abelian group \(K_{-1}(RG)\) is given by

\[
 r = 1 - r_k(G) + \sum_{p|n} r_{k_p}(G) - r_{R/P}(G),
\]

where the sum runs over all maximal (= non-zero prime) ideals \(P\) dividing \(nR\);

(iv) If \(R\) is the ring of integers in an algebraic number field \(k\), then

\[
K_{-1}(RG) = \mathbb{Z}^r \oplus \mathbb{Z}/2^s
\]

There is an explicit description of the integer \(s\) in terms of global and local Schur indices.

If \(G\) contains a normal abelian subgroup of odd index, then \(s = 0\);

(v) Let \(A\) be a finite abelian group. Then \(K_{-1}(Z^*A)\) vanishes if and only if \(|A|\) is a prime power.

If \(R = \mathbb{Z}\), then \(r = 1 - r_{\mathbb{Q}}(G) + \sum_{p|n} r_{\mathbb{Q}P}(G) - r_{\mathbb{F}_p}(G)\), where \(p\) runs through the prime numbers dividing \(n\).
4.6 Notes

More information about $NK_n(RG)$ for all $n \in \mathbb{Z}$ will be given in Theorem 6.17, Theorem 6.18, Theorem 6.19 and Theorem 6.21.

More information about negative K-groups can be found for instance in [23, 90, 133, 154, 334, 475, 617, 618, 630, 715, 716, 713, 732, 733].

last edited on 24.11.2021
last compiled on March 21, 2022
name of texfile: ic
Chapter 5
The Second Algebraic K-Group

5.1 Introduction

This chapter is devoted to the second algebraic K-group. We give two equivalent definitions, namely, in terms of the Steinberg group and in terms of the universal central extension of $E(R)$. We extend the long exact sequence associated to a pullback of rings and to a two-sided ideal beyond K_1 to K_2. The long exact sequence associated to a pullback of rings cannot be extended to the left to higher algebraic K-groups, whereas this will be done for the long exact sequence associated to a two-sided ideal later.

We will introduce the second Whitehead group and state a variant of the Farrell-Jones Conjecture for it, namely, that it vanishes for torsionfree groups. Finally we give some information about computations of the second algebraic K-group.

5.2 Definition and Basic Properties of $K_2(R)$

Definition 5.1 (n-th Steinberg group). For $n \geq 3$ and a ring R define its n-th Steinberg group $St_n(R)$ to be the group given by generators and relations as follows. The set of generators is

$$\{x_{i,j}^r \mid i, j \in \{1, 2, \ldots, n\} \text{ and } r \in R\}.$$

The relations are

(i) $x_{i,j}^r \cdot x_{s,i,j}^s = x_{i,j}^{r+s}$ for $i, j \in \{1, 2, \ldots, n\}$ and $r, s \in R$;
(ii) $[x_{i,j}^r, x_{s,i,k}^s] = x_{i,k}^{rs}$ for $i, j, k \in \{1, 2, \ldots, n\}$ with $i \neq k$ and $r, s \in R$;
(iii) $[x_{i,j}^r, x_{k,l}^s] = 1$ for $i, j, k, l \in \{1, 2, \ldots, n\}$ with $i \neq k$, $j \neq l$ and $r, s \in R$,

where $[a, b]$ denotes the commutator $aba^{-1}b^{-1}$.

The idea behind the Steinberg group is that for every ring R the corresponding relations hold in $GL_n(R)$ if we replace $x_{i,j}^r$ by the matrix $I_n + r \cdot E_n(i, j)$ appearing in Section 3.2. Hence we get a canonical group homomorphism

$$\phi_n^R: St_n(R) \to GL_n(R), \quad x_{i,j}^r \mapsto I_n + r \cdot E_n(i, j).$$
The image of $\phi_r^R_n$ is by definition the subgroup of $GL_n(R)$ generated by all elements of the form $I_n + r \cdot E_{n(i,j)}$ for $i, j \in \{1, 2, \ldots, n\}$ and $r \in R$. There is an obvious inclusion $St_n(R) \to St_{n+1}(R)$ sending a generator $x_{i,j}^r$ to $x_{i,j}^r$.

Definition 5.2 (Steinberg group). Define the Steinberg group $St(R)$ to be the union of the groups $St_n(R)$.

The set of maps $\{\phi_n^R | n \geq 3\}$ defines a homomorphism of groups

$$\phi^R: St(R) \to GL(R)$$

The image of ϕ^R is just the group $E(R)$ which agrees with $[GL(R), GL(R)]$, see Lemma 3.11.

Definition 5.4 ($K_2(R)$). Define the algebraic K_2-group $K_2(R)$ of a ring R to be the kernel of the group homomorphism $\phi^R: St(R) \to GL(R)$ of (5.3).

Exercise 5.5. Show that there is a natural exact sequence

$$0 \to K_2(R) \to St(R) \to GL(R) \to K_1(R) \to 0.$$

5.3 The Steinberg Group as Universal Extension

A central extension of a group Q is a surjective group homomorphism $\phi: G \to Q$ with Q as target such that the kernel of ϕ is contained in the center $\{g \in G \mid g'g = gg' \text{ for all } g' \in G\}$ of G. A central extension $\phi: U \to Q$ of a group Q is called universal if for every central extension $\psi: G \to Q$ there is precisely one group homomorphism $f: U \to G$ with $\psi \circ f = \phi$. If a group Q admits a universal central extension, it is unique up to unique isomorphism. A group Q possesses a universal central extension if and only if it is perfect, i.e., it is equal to its commutator subgroup, see [652, Theorem 5.7 on page 44] or [775, Theorem 4.1.3 on page 163]. In this case the kernel of the universal central extension $\phi: U \to Q$ is isomorphic to the second homology $H_2(Q; \mathbb{Z})$ of Q, see [652, Corollary 5.8 on page 46] or [775, Theorem 4.1.3 on page 163].

A central extension $\phi: G \to Q$ of a group Q is universal if and only if G is perfect and every central extension $\psi: H \to G$ of G splits, i.e., there is a homomorphism $s: G \to H$ with $\psi \circ s = \text{id}_G$, see [652, Theorem 5.3 on page 43] or [775, Theorem 4.1.3 on page 163]. A central extension $\phi: G \to Q$ of a perfect group Q is universal if and only if $H_1(G; \mathbb{Z}) = H_2(G; \mathbb{Z}) = 0$, see [775, Corollary 4.1.18 on page 177]. The proof of the next result can be found in [652, Theorem 5.10 on page 47] or [775, Theorem 4.2.7 on page 190].

Theorem 5.6 ($K_2(R)$ and universal central extensions of $E(R)$). The canonical epimorphism $\phi^R: St(R) \to E(R)$ coming from the map (5.3) is the universal central extension of $E(R)$.
5.4 Extending Exact Sequences of Pullbacks and Ideals

Exercise 5.7. Prove $K_2(R) \cong H_2(E(R); \mathbb{Z})$.

5.4 Extending Exact Sequences of Pullbacks and Ideals

Theorem 5.8 (Mayer-Vietoris sequence for K-theory in degree ≤ 2 of a pullback of rings). Consider a pullback of rings

\[
\begin{array}{ccc}
R & \xrightarrow{i_1} & R_1 \\
\downarrow i_2 & & \downarrow j_1 \\
R_2 & \xrightarrow{j_2} & R_0
\end{array}
\]

such that both j_1 and j_2 are surjective. Then there exists a natural exact sequence, infinite to the right,

\[
\begin{array}{c}
K_2(R) \xrightarrow{(i_1)_*, (i_2)_*} K_2(R_1) \oplus K_2(R_2) \xrightarrow{(j_1)_*, -(j_2)_*} K_2(R_0) \\
\partial_2 : K_1(R) \xrightarrow{(i_1)_*, (i_2)_*} K_1(R_1) \oplus K_1(R_2) \xrightarrow{(j_1)_*, -(j_2)_*} K_1(R_0) \\
\partial_1 : K_0(R) \xrightarrow{(i_1)_*, (i_2)_*} K_0(R_1) \oplus K_0(R_2) \xrightarrow{(j_1)_*, -(j_2)_*} K_0(R_0) \\
\partial_0 : K_{-1}(R) \xrightarrow{(i_1)_*, (i_2)_*} K_{-1}(R_1) \oplus K_{-1}(R_2) \xrightarrow{(j_1)_*, -(j_2)_*} K_{-1}(R_0) \\
\partial_{-1} \cdots
\end{array}
\]

Proof. See [652, Theorem 6.4 on page 55] for the extension to K_2. The extension for negative K-theory follows for example from the fact that the passage going from R to $R[\mathbb{Z}]$ sends a pullback of rings to a pullback of rings. □

Remark 5.9 (Surjectivity assumption is necessary). Swan [855, Corollary 1.2] has shown that the assumption that both j_1 and j_2 are surjective in Theorem 5.8 is necessary. It is not enough that j_1 or j_2 is surjective, in contrast to the weaker Theorem 3.83.

Remark 5.10 (No exact sequence for pullbacks in higher degrees). Swan [855, Corollary 6.9] has shown that it is not possible to define a functor K_3 so that the exact sequence appearing in Theorem 5.8 can be extended to K_3.

Theorem 5.11 (Exact sequence of a two-sided ideal K-theory in degree ≤ 2). Given a two-sided ideal $I \subseteq R$, we obtain an exact sequence, natural in $I \subseteq R$ and infinite to the right,
The Second Algebraic K-Group

\[K_2(R) \overset{pr}{\longrightarrow} K_2(R/I) \overset{\partial_2}{\longrightarrow} K_1(R, I) \overset{j_1}{\longrightarrow} K_1(R) \overset{pr}{\longrightarrow} K_1(R/I) \]
\[\overset{\partial_1}{\longrightarrow} K_0(R, I) \overset{j_0}{\longrightarrow} K_0(R) \overset{pr}{\longrightarrow} K_0(R/I) \overset{\partial_0}{\longrightarrow} K_{-1}(R, I) \overset{j_{-1}}{\longrightarrow} K_{-1}(R) \overset{pr}{\longrightarrow} \cdots \]

where \(pr: R \to R/I \) the projection.

Proof. See [652, Theorem 6.2 on page 54], [775, Theorem 3.3.4. on page 155 and Theorem 4.3.1 on page 200] or [909, Theorem 5.7.1 on page 243] \(\square \)

Remark 5.12 (Dependence of \(K_n(R, I) \) on \(R \)). The group \(K_n(R, I) \) can be identified for \(n \leq 0 \) with \(K_n(I) \), see Definition 3.88 and hence depends only on the structure of \(I \) as a ring without unit but not on the embedding \(I \subseteq R \). But for \(n \geq 1 \) the group \(K_n(R, I) \) does depend on the embedding \(I \subseteq R \), see Example 3.92.

The sequence appearing in Theorem 5.11 is indeed an extension of the long exact sequence appearing in Theorem 3.86.

Often one wants to get information about \(K_2 \) in order to compute \(K_1 \)-groups using for instance Theorem 5.11. This is illustrated by the following example.

Example 5.13. Let \(R \) be the ring of integers in an algebraic number field and let \(P \) be a non-zero prime ideal. Then the exact sequence appearing in Theorem 5.11 induces an exact sequence

\[K_2(R/P) \to SK_1(R, P) \to SK_1(R) \to SK_1(R/P), \]

where \(SK_1(R) \) has been defined in Definition 3.15 and we put:

\[SK_1(R, P) := (SL(R) \cap GL(R, P))/E(R, P) \]
\[\cong \ker(\det: GL(R, P) \to \{ r \in R \mid r \equiv 1 \mod P \}). \]

Since \(R/P \) is a finite field, \(SK_1(R/P) \) and \(K_2(R/P) \) vanish by Theorem 3.17 and Theorem 5.17 (v). Hence we obtain an isomorphism

\[SK_1(R, P) \cong SK_1(R). \]

The group \(SK_1(R) \) vanishes by [652, Corollary 16.3]. Hence also \(SK_1(R, P) \) vanishes.

Example 5.14 (\(K_n(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) \) for \(n \leq 1 \) and a prime \(p \)). Let \(p \) be a prime number. We want to show

\[K_n(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) = 0 \quad \text{for } n \leq -1 \text{ and } k \geq 0, \]

and that \(K_0(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) \) and \(K_1(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) \) are finitely generated. All of these statements except the claim for \(K_1(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) \) have already been
proved in Example 4.9. The same method of proof applies to this case since Theorem 5.8 yields the exact sequence

\[K_2(\mathbb{F}_p[\mathbb{Z}^k]) \to K_1(\mathbb{Z}[\mathbb{Z}^k]) \to K_1(\mathbb{Z}[\mathbb{Z}^k]) \oplus K_1(\mathbb{Z}[\exp(2\pi i/p)][\mathbb{Z}^k]) \]

and \(K_2(\mathbb{F}_p[\mathbb{Z}^k]), K_1(\mathbb{Z}[\mathbb{Z}^k]), \) and \(K_1(\mathbb{Z}[\exp(2\pi i/p)]) \) are finitely generated abelian groups by Theorem 4.6, as \(K_m(\mathbb{F}_p) \) for \(m = 0, 1, 2 \), \(K_m(\mathbb{Z}) \) for \(m = 0, 1 \), and \(K_m(\mathbb{Z}[\exp(2\pi i/p)]) \) vanish for \(m \leq -1 \) because of Example 2.4, Theorem 2.23, Theorem 3.17, Theorem 3.21, Theorem 3.75, Theorem 4.6 and Theorem 5.17 (iv).

5.5 Steinberg Symbols

Let \(R \) be a commutative ring and \(u, v \in R^\times \). Consider the elements \(d_{1,2}(u), d_{1,3}(v) \in E(R) \) given by the invertible \((3,3)\)-matrices

\[
\begin{pmatrix}
u & 0 & 0 \\
0 & u^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix} \quad \text{and} \quad
\begin{pmatrix}
v & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & v^{-1}
\end{pmatrix}
\]

\(d_{1,2}(u) \) and \(d_{1,3}(v) \) be any preimages of \(d_{1,2}(u) \) and \(d_{1,3}(v) \) under the canonical map \(\phi^R \colon \text{St}(R) \to E(R) \). Then the commutator \([d_{1,2}(u), d_{1,3}(v)] \in \text{St}(R) \) defines an element in the kernel of \(\phi^R \colon \text{St}(R) \to E(R) \) and hence in \(K_2(R) \). It depends only on \(u \) and \(v \). The proof of the facts above can be found for instance in [775, page 192].

Definition 5.15 (Steinberg symbol). Let \(R \) be a commutative ring and \(u, v \in R^\times \). The element in \(K_2(R) \) given by the construction above is called the *Steinberg symbol* of \(u \) and \(v \) and is denoted by \(\{u, v\} \).

Exercise 5.16. Prove that the Steinberg symbol of Definition 5.15 is well-defined.

Theorem 5.17 (Properties of the Steinberg symbol). Let \(R \) be a commutative ring. Then:

(i) The Steinberg symbol defines a bilinear skew-symmetric pairing \(R^\times \times R^\times \to K_2(R), \quad (u, v) \mapsto \{u, v\} \),

i.e., \(\{u_1 \cdot u_2, v\} = \{u_1, v\} + \{u_2, v\} \) and \(\{u, v\} = -\{v, u\} \) for all \(u_1, u_2, u, v \in R^\times \);

(ii) For \(u \in R^\times \) we have \(\{u, -u\} = 0 \);
(iii) If \(u \in \mathbb{R}^\times \) also \(1 - u \in \mathbb{R}^\times \), then \(\{ u, 1 - u \} = 0 \);
(iv) (Matsumoto’s Theorem) If \(F \) is a field, then \(K_2(F) \) is isomorphic to the abelian group given by the generators \(\{ u, v \} \) for \(u, v \in F^\times \) and the relations:
(a) \(\{ u, 1 - u \} = 0 \) for \(u \in F \) with \(u \neq 0,1 \);
(b) \(\{ u_1 \cdot u_2, v \} = \{ u_1, v \} + \{ u_2, v \} \) for \(u_1, u_2, v \in F^\times \);
(c) \(\{ u, v_1 \cdot v_2 \} = \{ u, v_1 \} + \{ u, v_2 \} \) for \(u, v_1, v_2 \in F^\times \);
(v) If \(F \) is a finite field, then \(K_2(F) = 0 \);
(vi) We have \(K_2(\mathbb{Z}) = \mathbb{Z}/2 \). A generator is given by the Steinberg symbol \(\{-1, -1\} \);
(vii) Let \(m \geq 2 \) be an integer. If \(m \neq 0 \mod 4 \), then \(K_2(\mathbb{Z}/m) = \{0\} \). If \(m = 0 \mod 4 \), then \(K_2(\mathbb{Z}/m) = \mathbb{Z}/2 \) and a generator is given by the Steinberg symbol \(\{1, 1\} \);
(viii) (Tate) We have \(K_2(\mathbb{Q}) = \mathbb{Z}/2 \times \prod_p \mathbb{F}_p^\times \), where \(p \) runs through the odd prime numbers;
(ix) (Bass, Tate) Let \(R \) be a Dedekind domain with quotient field \(F \). Then there is an exact sequence
\[
K_2(F) \rightarrow \bigoplus_P K_1(R/P) \rightarrow K_1(R) \rightarrow K_1(F) \\
\rightarrow \bigoplus_P K_0(R/P) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow 0,
\]

where \(P \) runs through the maximal ideals of \(R \).

Proof. (i) See [652, Theorem 8.2 on page 64] or [775, Lemma 4.2.14 on page 194].
(ii) and (iii) See [652, Theorem 9.8 on page 74] or [775, Theorem 4.2.17 on page 197].
(iv) See [652, Theorem 11.1 on page 93] or [775, Theorem 4.3.15 on page 214].
(v) See [652, Theorem 9.13 on page 78] or [775, Theorem 4.3.13 and Remark 4.3.14 on page 213].
(vi) See [652, Corollary 10.2 on page 81].
(vii) See [652, Corollary 10.8 on page 92], [278, Theorem 5.1], and [775, Exercise 4.3.19 on page 217].
(viii) See [652, Theorem 11.6 on page 101].
(ix) See [652, Corollary 13.1 on page 123] and [90, pages 702, 323]. \(\square \)
5.6 The Second Whitehead Group

Let R be a ring. Consider $u \in R^\times$ and integers $i, j \geq 1$. If $x_{i,j}^u$ is the canonical generator of $St(R)$, see Definition 5.1, then define

$$w_{i,j}^u := x_{i,j}^u x_{j,i}^{-u-1} x_{i,j}^u \in St(R).$$

Let G be a group. Let W_G be the subgroup of $St(ZG)$ generated by all elements of the shape $w_{i,j}^g$ for $g \in G$ and integers $i, j \geq 1$. Recall that we can think of $K_2(ZG)$ as a subgroup of $St(ZG)$.

Definition 5.18 (The second Whitehead group). Let G be a group. Define the second Whitehead group of G by

$$Wh_2(G) := K_2(ZG)/ (K_2(ZG) \cap W_G).$$

Exercise 5.19. Show that the second Whitehead group of the trivial group vanishes using the fact, see [775, Example 4.2.19 on page 198], that $w_{1,2}(1)^4 = \{-1, -1\}$ holds in $St(Z)$.

Let I denote the unit interval $[0, 1]$. Let M be a closed smooth manifold. A smooth pseudoisotopy of M is a diffeomorphism $h: M \times I \to M \times I$, which restricted to $M \times \{0\} \subseteq M \times I$ is the obvious inclusion. The group $PDiff(M)$ of smooth pseudoisotopies is the group of all such diffeomorphisms under composition. Pseudoisotopies play an important role if one tries to understand the homotopy type of the group $Diff(M)$ of self-diffeomorphisms of M. Two selfdiffeomorphisms $f_0, f_1: M \to M$ are called isotopic if there is a smooth map $h: M \times [0, 1] \to M$ called isotopy such that $h_t: M \to M, x \mapsto h(x, t)$ is a selfdiffeomorphism for each $t \in [0, 1]$ and $h_t = f_k$ for $k = 0, 1$. They are called pseudoisotopic if there exists a diffeomorphism $H: M \times [0, 1] \to M \times [0, 1]$ such that $H(x, k) = (f_k(x), k)$ for all $x \in M$ and $k = 0, 1$. If h is an isotopy, then we obtain a pseudoisotopy by $H(x, k) = (h(x, k), k)$. Hence isotopic selfdiffeomorphisms are pseudoisotopic. The converse is not true in general, there is no reason why a pseudoisotopy is level preserving, i.e., sends $M \times \{t\}$ to $M \times \{t\}$ for every $t \in [0, 1]$.

In order to decide whether two selfdiffeomorphisms are isotopic, it is often very useful to firstly decide whether they are pseudoisotopic what is in general easier.

The set of path components $\pi_0(Diff(M))$ of the space $Diff(M)$ agrees with the set of isotopy classes of selfdiffeomorphisms of M. The group $PDiff(M)$ acts on $Diff(M)$ by $h \cdot f := h_1 \circ f$. If $PDiff(M)$ is path-connected, then two pseudoisotopic diffeomorphisms $M \to M$ are isotopic since the orbit of the identity $id_M: M \to M$ under the $PDiff(M)$-action consists of the diffeomorphisms $M \to M$ that are pseudoisotopic to the identity. If M is simply connected, $PDiff(M)$ is known to be path connected by a result of Cerf [196, 197] if dim(M) ≥ 5.

The relevance of the second Whitehead group comes from the following result of Hatcher-Wagoner [419].

Theorem 5.20 (Pseudoisotopy and the second Whitehead group). Let M be a smooth closed manifold of dimension ≥ 5. Then there is an epimorphism

$$\pi_0(P^{Diff}(M)) \rightarrow \text{Wh}_2(\pi_1(M)).$$

More information about pseudoisotopy and its relation to algebraic K-theory will be given in Chapter 7. The Farrell-Jones Conjecture for pseudoisotopy will be stated as Conjecture [14.61]

5.7 A Variant of the Farrell-Jones Conjecture for the Second Whitehead group

Conjecture 5.21 (Farrell-Jones Conjecture for $\text{Wh}_2(G)$ for torsion-free G). Let G be a torsionfree group. Then $\text{Wh}_2(G)$ vanishes.

5.8 The Second Whitehead Group of Some Finite Groups

We give some information about $K_2(\mathbb{Z}G)$ and $\text{Wh}_2(G)$ for some finite groups. We have

$$\text{Wh}_2(G) = 0, \text{ for } G = \{1\}, \mathbb{Z}/2, \mathbb{Z}/3, \mathbb{Z}/4;$$

$$|\text{Wh}_2(\mathbb{Z}/6)| \leq 2;$$

$$\text{Wh}_2(D_6) \cong \mathbb{Z}/2,$$

where D_6 is the dihedral group of order six. The claim for the finite cyclic groups follow from [289] page 482 and [841] pages 218 and 221. We get $K_2(\mathbb{Z}D_6) \cong (\mathbb{Z}/2)^3$ from [841] Theorem 3.1. This implies $\text{Wh}_2(D_6) \cong \mathbb{Z}/2$ as explained in [615] Theorem 3.2.d.iii.

The 2-rank of the finite abelian group $\text{Wh}_2((\mathbb{Z}/2)^n)$ is at least $(n - 1) \cdot 2^n - \frac{(n+2)(n-1)}{2}$ by [273] Corollary 7. If p is an odd prime, then the p-rank of $\text{Wh}_2((\mathbb{Z}/p)^n)$ is at least $(n - 1) \cdot (p^n - 1) - \frac{(p^{n+1} - 1)}{p} - \frac{n(n-1)}{2}$ by [273] Corollary 8. In particular $\text{Wh}_2((\mathbb{Z}/p)^n)$ is non-trivial for a prime p and $n \geq 2$.

Exercise 5.22. Determine all integers $n \geq 1$ for which $\tilde{K}_i(\mathbb{Z}[\mathbb{Z}/n])$ for all $i \leq 0$, $\text{Wh}(\mathbb{Z}/n)$ and $\text{Wh}_2(\mathbb{Z}/n)$ vanish.
5.9 Notes

We have already mentioned that often computations involving K_1 use information about K_2 since there are various long exact sequences relating K-groups of different rings. Examples of such sequences have been given in Theorem 5.8, Theorem 5.11, and Theorem 5.17 (ix). Another important class of such exact sequences are given by localization sequences, see [696, Chapter 3].

The second algebraic K-group of fields plays also a role in number theory, as for instance explained in [652, Chapters 11, 15, 16], [834, Chapter 8] and [774, Chapter 4, Section 4]. Keywords are Hilbert symbols, Gauss’ laws of quadratic reciprocity, Brauer groups and the Mercurjev-Suslin Theorem. Relations to operator theory are discussed in [652, Chapter 7], and [774, Chapter 4, Section 4].

Further references to K_2 and the second Whitehead group are [23, 274, 275, 276, 277, 278, 420, 842].

last edited on 24.11.2021
last compiled on March 21, 2022
name of texfile: ic
Chapter 6
Higher Algebraic K-Theory

6.1 Introduction

In this chapter we extend the definition of the algebraic K-groups $K_n(R)$ to all integers $n \in \mathbb{Z}$.

We first present the plus-construction to define higher algebraic K-theory and record the basic properties. We introduce algebraic K-theory with coefficients in \mathbb{Z}/k. We discuss other constructions of K-theory which apply to more general situations such as to exact categories or Waldhausen categories. The previous constructions lead only to spaces and one can find deloopings which result in spectra whose homotopy groups are the algebraic K-groups also in negative degrees. We present the K-theoretic Farrell-Jones Conjecture for torsionfree groups and regular rings. We introduce Mayer-Vietoris sequences for amalgamated free products and Wang sequence for HNN extensions for the algebraic K-theory of group rings. The appearance of Nil-terms in these exact sequences is responsible for some complications concerning algebraic K-theory and the Farrell-Jones Conjecture. We discuss homotopy K-theory, a theory which is on the one hand close to algebraic K-theory and on the other hand is free of Nil-phenomena. We briefly explain relations between algebraic K-theory and cyclic homology.

6.2 The Plus-Construction

Let R be a ring. So far the algebraic K-groups $K_n(R)$ for $n \leq 2$ have been described in a purely algebraic fashion by generators and relations. The definition of the higher algebraic K-groups $K_n(R)$ for $n \geq 3$ has been achieved topologically, namely, one assigns to a ring R a space $K(R)$ and defines $K_n(R)$ by the n-th homotopy group $\pi_n(K(R))$ for $n \geq 0$. This will coincide with the previous definitions. There are various definitions of the space $K(R)$ which extend to more general settings as explained below and are appropriate in different situations. We briefly recall the technically less demanding one, the plus-construction.

A space Z is called acyclic if it has the homology of a point, i.e., the singular homology with integer coefficients $H_n(Z)$ vanishes for $n \geq 1$ and is isomorphic to \mathbb{Z} for $n = 0$.
Exercise 6.1. Prove that an acyclic space is path connected and that its fundamental group π is perfect and satisfies $H_2(\pi; \mathbb{Z}) = 0$.

In the following we will suppress choices of and questions about base points. The homotopy fiber $\text{hofib}(f)$ of a map $f: X \to Y$ of path connected spaces has the property that it is the fiber of a fibration $p_f: X \to E_f$ which comes with a homotopy equivalence $h: E_f \to X$ satisfying $p_f = f \circ h$, see [916, Theorem 7.30 in Chapter I.7 on page 42]. The long exact homotopy sequence associated to f, see [916, Corollary 8.6 in Chapter IV.8 on page 187], looks like

$$\cdots \overset{\partial_2}{\longrightarrow} \pi_2(\text{hofib}(f)) \overset{\pi_2(f)}{\longrightarrow} \pi_2(X) \overset{\partial_2}{\longrightarrow} \pi_1(\text{hofib}(f)) \overset{\pi_1(f)}{\longrightarrow} \pi_1(X) \overset{\partial_1}{\longrightarrow} \pi_0(\text{hofib}(f)) \overset{\pi_0(f)}{\longrightarrow} \pi_0(X) \overset{\partial_0}{\longrightarrow} \pi_0(Y) \to \{0\}.$$

Definition 6.3 (Acyclic map). Let X and Y be path connected CW-complexes. A map $f: X \to Y$ is called acyclic if its homotopy fiber $\text{hofib}(f)$ is acyclic.

We conclude for an acyclic map $f: X \to Y$ from the long exact homotopy sequence (6.2) that $f_!: \pi_1(X) \to \pi_1(Y)$ is surjective and its kernel is a perfect subgroup P of $\pi_1(X)$ since P is a quotient of the perfect group $\pi_1(\text{hofib}(f))$ and $\pi_0(\text{hofib}(f))$ consists of one element. Obviously a space Z is acyclic if and only if the map $Z \to \{\bullet\}$ is acyclic.

Definition 6.4 (Plus-construction). Let X be a connected CW-complex and $P \subseteq \pi_1(X)$ be a perfect subgroup. A map $f: X \to X^+$ to a CW-complex is called a plus-construction of X relative to P if f is acyclic and the kernel of $f_!: \pi_1(X) \to \pi_1(X^+)$ is P.

The next result is due to Quillen. A proof can be found for instance in [775, Theorem 5.2.2 on page 266 and Proposition 5.2.4 on page 268].

Theorem 6.5 (Properties of the plus-construction). Let X be a connected CW-complex and let $P \subseteq \pi_1(X)$ be a perfect subgroup. Then:

(i) There exists a plus-construction $f: X \to X^+$ relative to P. (One can construct X^+ by attaching 2- and 3-cells to X);

(ii) Let $f: X \to X^+$ be a plus-construction relative to P and let $g: X \to Y$ be a map such that the kernel of $\pi_1(g): \pi_1(X) \to \pi_1(Y)$ contains P. Then there is a map $\overline{f}: X^+ \to Y$ which is up to homotopy uniquely determined by the property that $\overline{f} \circ f$ is homotopic to g;

(iii) If $f_1: X \to X_1^+$ and $f_2: X \to X_2^+$ are two plus-constructions for X relative to P, then there exists a homotopy equivalence $g: X_1^+ \to X_2^+$ which is up to homotopy uniquely determined by the property $g \circ f_1 \simeq f_2$;
(iv) If \(f: X \to X^+ \) is a plus-construction relative to \(P \), then \(\pi_1(f): \pi_1(X) \to \pi_1(X^+) \) can be identified with the canonical projection \(\pi_1(X) \to \pi_1(X)/P \);
(v) If \(f: X \to X^+ \) is a plus-construction, then \(H_n(f; M): H_n(X; f^*M) \to H_n(X^+; M) \) is bijective for all \(n \geq 0 \) and all local coefficient systems \(M \) on \(X^+ \).

Remark 6.6 (Perfect radical). Every group \(G \) has a unique largest perfect subgroup \(P \subseteq G \), called the **perfect radical** of \(G \). In the following we will always use the perfect radical of \(G \) for \(P \) unless explicitly stated differently.

Exercise 6.7. Show that every group has a unique largest perfect subgroup.

Exercise 6.8. Show that \(E(R) = [\text{GL}(R), \text{GL}(R)] \) is the perfect radical of \(\text{GL}(R) \).

Definition 6.9 (Higher algebraic \(K \)-groups of a ring). Let \(B\text{GL}(R) \to B\text{GL}(R)^+ \) be a plus-construction in the sense of Definition 6.4 for the classifying space \(B\text{GL}(R) \) of \(\text{GL}(R) \) (relative to the perfect radical of \(\text{GL}(R) \) which is \(E(R) \)). Define the **\(K \)-theory space associated to \(R \)**

\[
K(R) := K_0(R) \times B\text{GL}(R)^+,
\]

where we view \(K_0(R) \) with the discrete topology. Define the \(n \)-th algebraic \(K \)-group

\[
K_n(R) := \pi_n(K(R)) \quad \text{for } n \geq 0.
\]

This definition makes sense because of Theorem 6.5 (i) and (iii). Note that for \(n \geq 1 \) we have \(K_n(R) = \pi_n(B\text{GL}(R)^+) \).

Exercise 6.10. Show that the Definition 6.9 of \(K_n(R) \) for \(n = 0, 1 \) is compatible with the one of Definitions 2.1 and 3.1.

For \(n = 0, 1, 2 \) Definition 6.9 is compatible with the previous Definitions 2.1, 3.1 and 5.3 and we have \(K_3(R) \cong H_3(\text{St}(R)) \) and \(K_n(R) = \pi_n(B\text{St}(R)^+) \) for \(n \geq 3 \), see \cite[Corollary 5.2.8 on page 273]{774}, \cite[380]{380}.

A ring homomorphism \(f: R \to S \) induces maps \(\text{GL}(R) \to \text{GL}(S) \) and hence maps \(B\text{GL}(R) \to B\text{GL}(S) \) and \(B\text{GL}(R)^+ \to B\text{GL}(S)^+ \). We have a map \(K_0(R) \to K_0(S) \). Therefore \(f \) induces a map \(K(f): K(R) \to K(S) \).

Definition 6.11 (Relative \(K \)-groups). Define for a two-sided ideal \(I \subseteq R \) and \(n \geq 0 \)

\[
K_n(R, I) := \pi_n(\text{hofib}(\text{pr}(K(R) \to K(R/I))))
\]

for \(\text{pr}: R \to R/I \) the projection.
The long exact homotopy sequence associated to $K(pr): K(R) \rightarrow K(R/I)$ together with Theorem 5.11 implies

Theorem 6.12 (Long exact sequence of a two-sided ideal for higher algebraic K-theory). Let $I \subseteq R$ be a two-sided ideal. Then there is a long exact sequence, infinite to both sides

\[
\cdots \xrightarrow{\partial_3} K_2(R, I) \xrightarrow{j_2} K_2(R) \xrightarrow{pr} K_2(R/I) \xrightarrow{\partial_2} K_1(R, I) \xrightarrow{j_1} K_1(R) \xrightarrow{pr} K_1(R/I) \xrightarrow{\partial_1} K_0(R, I) \xrightarrow{j_0} K_0(R) \xrightarrow{pr} K_0(R/I) \xrightarrow{\partial_0} K_{-1}(R, I) \xrightarrow{j_{-1}} K_{-1}(R) \xrightarrow{pr} K_{-1}(R/I) \xrightarrow{\partial_{-1}} \cdots.
\]

The existence of the long exact sequence of a two-sided ideal of Theorem 6.12 has been one important requirement of an extension of middle and lower algebraic K-theory to higher degrees. It is indeed an extension of the long exact sequences appearing in Theorem 3.86 and Theorem 5.11.

For more information about the plus-construction we refer for instance to [114], [774, Chapter 5], [835, Chapter 2].

6.3 Survey on Main Properties of Algebraic K-Theory of Rings

6.3.1 Compatibility with Finite Products

The basic idea of the proof of the following result can be found in [739] (8) in §2 on page 20).

Theorem 6.13 (Algebraic K-theory and finite products). Let R_0 and R_1 be rings. Denote by $pr_i: R_0 \times R_1 \rightarrow R_i$ for $i = 0, 1$ the projection. Then we obtain for $n \in \mathbb{Z}$ isomorphisms

\[
(pr_0)_n \times (pr_1)_n: K_n(R_0 \times R_1) \xrightarrow{\cong} K_n(R_0) \times K_n(R_1).
\]

6.3.2 Morita Equivalence

The idea of the proof of the next result is essentially the same as of Theorem 2.10

Theorem 6.14 (Morita equivalence for algebraic K-theory). For every ring R and integer $k \geq 1$ there are for all $n \in \mathbb{Z}$ natural isomorphisms

\[
\mu_n: K_n(R) \xrightarrow{\cong} K_n(M_k(R)).
\]
6.3 Survey on Main Properties of Algebraic K-Theory of Rings

6.3.3 Compatibility with Directed Colimits

We conclude from [739, (12) in §2 on page 20], [815].

Theorem 6.15 (Algebraic K-theory and directed colimits). Let $\{R_i \mid i \in I\}$ be a directed system of rings. Then the canonical map

$$\text{colim}_{i \in I} K_n(R_i) \xrightarrow{\cong} K_n(\text{colim}_{i \in I} R_i)$$

is bijective for $n \in \mathbb{Z}$.

6.3.4 The Bass-Heller-Swan Decomposition

We have already explained the following result for $n \leq 1$ in Theorem 3.69 and Theorem 4.2, Definition 3.65 of NK$_n(R)$ makes sense for every $n \in \mathbb{Z}$. The proof for higher algebraic K-theory can be found in [835, Theorem 9.8 on page 207], see also [774, Theorem 5.3.30 on page 295]. More general versions, where twistings are allowed and additive categories are considered, are presented in [387, 389, 407, 476, 478, 550, 618].

Theorem 6.16 (Bass-Heller-Swan decomposition for algebraic K-theory).

(i) There are isomorphisms of abelian groups, natural in R, for $n \in \mathbb{Z}$

$$NK_n(R) \oplus K_n(R) \xrightarrow{\cong} K_n(R[t]);$$

$$K_n(R) \oplus K_{n-1}(R) \oplus NK_n(R) \oplus NK_n(R) \xrightarrow{\cong} K_n(R[t, t^{-1}]).$$

The following sequence is exact and natural in R for all $n \in \mathbb{Z}$

$$0 \rightarrow K_n(R) \xrightarrow{(k_+, \oplus - (k_-), j_+, \oplus (j_-))} K_n(R[t]) \oplus K_n(R[t^{-1}]) \xrightarrow{(j_+, \oplus (j_-), C_n)} K_n(R[t, t^{-1}]) \rightarrow 0,$$

where k_+, k_-, j_+, and j_- are the obvious inclusions. If we regard it as an acyclic \mathbb{Z}-chain complex, there exists a chain contraction, natural in R;

(ii) If R is regular, then

$$NK_n(R) = \{0\} \text{ for } n \in \mathbb{Z};$$

$$K_n(R) = \{0\} \text{ for } n \leq -1.$$
6.3.5 Some information about NK-groups

The proof of the next result can be found in Weibel [906, Corollary 3.2].

Theorem 6.17 (NK\(_n\)(R[1/N] vanishes for characteristic N). Let R be a ring of finite characteristic N. Then we get for \(n \in \mathbb{Z} \)

\[
NK_n(R)[1/N] = 0.
\]

Theorem 6.18 (Vanishing criterion of NK\(_n\)(RG) for finite groups). Let R be a ring and let G be a finite group. Fix \(n \in \mathbb{Z} \). Suppose NK\(_n\)(R) = 0. Then

\[
NK_n(RG)[1/|G|] = 0.
\]

Proof. This follows from Hambleton-Lück [407, Theorem A]. \(\square\)

The following result is taken from Hambleton-Lück [407, Corollary B].

Theorem 6.19 (p-elementary induction for NK\(_n\)(RG)). Let R be a ring and let G be a finite group. For all \(n \in \mathbb{Z} \), the sum of the induction maps

\[
\bigoplus_E NK_n(RE)_{(p)} \to NK_n(RG)_{(p)},
\]

is surjective, where E runs through all p-elementary subgroups.

The following theorem due to Prasolov [732] is an extension of a result due to Farrell [322] for \(n = 1 \) to \(n \geq 1 \).

Theorem 6.20 (NK\(_n\)(R) is trivial or infinitely generated for \(n \geq 1 \)). Let R be a ring. Then NK\(_n\)(R) is either trivial or infinitely generated as abelian group for \(n \geq 1 \).

Theorem 6.21 (Vanishing of NK\(_n\)(\mathbb{Z}[G \times \mathbb{Z}^k]) for \(n \leq 1 \), \(k \geq 0 \) and finite G of square-free order). Let G be a finite group whose order is square-free. Then NK\(_n\)(\mathbb{Z}[G \times \mathbb{Z}^k]) = 0 for \(n \leq 1 \) and \(k \geq 0 \).

Proof. Fix a prime p. We know from Example 5.14 that \(K_1(\mathbb{Z}/p \times \mathbb{Z}^k) \) is finitely generated for every \(k \leq 0 \). We conclude from Theorem 6.10 that \(K_n(\mathbb{Z}/p \times \mathbb{Z}^k) \) is finitely generated for every \(n \leq 1 \) and \(k \geq 0 \) and hence that NK\(_n\)(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) is finitely generated for every \(n \leq 1 \) and \(k \geq 0 \). We conclude from Theorem 6.20 that NK\(_n\)(\mathbb{Z}[\mathbb{Z}/p \times \mathbb{Z}^k]) is trivial every \(n \leq 1 \) and \(k \geq 0 \).

We conclude from [407, Theorem A] that for any ring R, any finite group G, and any prime number p, there is a surjection

\[
\bigoplus_p NK_n(RP)_{(p)} \to NK_n(RG)_{(p)},
\]
6.3 Survey on Main Properties of Algebraic K-Theory of Rings

where P runs through the p-subgroups of G. This implies that $NK_n(RG)$ vanishes if $NK_n(RP)(p)$ vanishes for every prime p and every p-subgroup P of G. In particular $NK_n(RG)$ vanishes for a finite group G of square-free order if $NK_n(R[Z/p]) (p)$ vanishes for every prime number p and every p-subgroup P of G. Hence $NK_n(RG)$ vanishes for a finite group of square-free order.

Theorem 6.21 has been proved in the case $k = 0$ by Harmon [117].

Exercise 6.22. Let G be a finite group of square-free order. Show for all $k \geq 1$

$$K_n(Z[G \times Z^k]) = \begin{cases} K_1(ZG) \oplus K_0(ZG)^k \oplus K_{-1}(ZG)^{k(k-1)/2} & \text{if } n = 1; \\ K_0(ZG) \oplus K_{-1}(ZG)^k & \text{if } n = 0; \\ K_{-1}(ZG) & \text{if } n = -1; \\ \{0\} & \text{if } n \leq -2. \end{cases}$$

6.3.6 Algebraic K-Theory of Finite Fields

The following result has been proved by Quillen [738].

Theorem 6.23 (Algebraic K-theory of finite fields). Let \mathbb{F}_q be a finite field of order q. Then $K_n(\mathbb{F}_q)$ vanishes if $n = 2k$ for some integer $k \geq 1$, and is a finite cyclic group of order $q^k - 1$ if $n = 2k - 1$ for some integer $k \geq 1$.

Recall that $K_0(F) \cong \mathbb{Z}$ and $K_n(F) = \{0\}$ for $n \leq -1$ if F is a field, see Example 2.4 and Theorem 4.6.

6.3.7 Algebraic K-Theory of the Ring of Integers in a Number Field

The computation of the higher algebraic K-groups of \mathbb{Z} or, more generally, of the ring of integers R in an algebraic number field F is very hard. Quillen [738] showed that these are finitely generated as abelian group. Their ranks as abelian groups have been determined by Borel [133].

Theorem 6.24 (Rational Algebraic K-theory of ring of integers of number fields). Let R be a ring of integers in an algebraic number field. Let r_1 be the number of distinct embeddings of F into \mathbb{R} and let r_2 be the...
number of distinct conjugate pairs of embeddings of F into \mathbb{C} with image not contained in \mathbb{R}. Then

$$K_n(R) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \begin{cases}
\{0\} & n \leq -1; \\
\mathbb{Q} & n = 0; \\
\mathbb{Q}^{r_1+r_2-1} & n = 1; \\
\mathbb{Q}^{r_1+r_2} & n \geq 2 \text{ and } n \equiv 1 \text{ mod } 4; \\
\{0\} & n \geq 2 \text{ and } n \equiv 0 \text{ mod } 2.
\end{cases}$$

We have $K_n(\mathbb{Z}) = \{0\}$ for $n \leq -1$ and the first values of $K_n(\mathbb{Z})$ for $n = 0, 1, 2, 3, 4, 5, 6, 7$ are given by $\mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, \mathbb{Z}/48, \{0\}, \mathbb{Z}, \{0\}, \mathbb{Z}/240$.

The Lichtenbaum-Quillen Conjecture makes a prediction about the torsion, see [567, 568], relating the algebraic K-groups to number theory via the zeta-function. We refer to the survey article of Weibel [905], where a complete picture about the algebraic K-theory of ring of integers in algebraic number fields and in particular of $K_*(\mathbb{Z})$ is given, and a list of relevant references can be found. See also Weibel [909, VI.10 on page 579ff].

An outline how the next corollary follows from Theorem 6.43 can be found in [739, page 29] and [774, page 294]. It is a basic tool for computations.

Corollary 6.25. Let R be a Dedekind domain with quotient field F. Then there is an exact sequence

$$\cdots \to K_{n+1}(F) \to \bigoplus_p K_n(R/P) \to K_n(R) \to K_n(F) \to \bigoplus_p K_{n-1}(R/P) \to \cdots \to \bigoplus_p K_0(R/P) \to K_0(R) \to K_0(F) \to 0,$$

where P runs through the maximal ideals of R.

Exercise 6.26. Consider the part of the sequence

$$K_1(\mathbb{Z}) \to K_1(\mathbb{Q}) \xrightarrow{\partial_1} \bigoplus_p K_0(\mathbb{Z}/p) \to K_0(\mathbb{Z}) \to K_0(\mathbb{Q}) \to 0$$

of Corollary 6.25 for $R = \mathbb{Z}$. Compute the five terms appearing in it. Guess what the map ∂_1 is and determine the others.

6.4 Algebraic K-Theory with Coefficients

By invoking the Moore space associated to \mathbb{Z}/k, one can introduce K-theory mod k $K_n(R; \mathbb{Z}/k)$ for any integer $k \geq 2$. Its main feature is that there exists
6.4 Algebraic K-Theory with Coefficients

a long exact sequence

\[(6.27) \quad \cdots \rightarrow K_{n+1}(R; \mathbb{Z}/k) \rightarrow K_n(R) \xrightarrow{k \cdot \text{id}} K_n(R) \rightarrow K_n(R; \mathbb{Z}/k) \rightarrow K_{n-1}(R) \xrightarrow{k \cdot \text{id}} K_{n-1}(R) \rightarrow K_{n-1}(R; \mathbb{Z}/k) \rightarrow \cdots .\]

The next theorem is due to Suslin [847].

Theorem 6.28 (Algebraic K-theory mod k of algebraically closed fields). The inclusion of algebraically closed fields induces isomorphisms on $K_*(-; \mathbb{Z}/k)$.

Let p be a prime number. Quillen [738] has computed the algebraic K-groups for any algebraic extension of the field \mathbb{F}_p of p elements for every prime p. One can determine $K_n(\mathbb{F}_p; \mathbb{Z}/k)$ for the algebraic closure \mathbb{F}_p of \mathbb{F}_p from (6.27). Hence one obtains $K_n(F; \mathbb{Z}/k)$ for any algebraically closed field of prime characteristic p by Suslin’s Theorem 6.28.

The next theorem is due to Suslin [848]. We will explain the topological K-groups $K_n^{\text{top}}(\mathbb{R})$ and $K_n^{\text{top}}(\mathbb{C})$ of the \mathbb{C}^*-algebras \mathbb{R} and \mathbb{C} in Subsection 9.3.2.

There are mod k versions $K_n^{\text{top}}(\mathbb{R}; \mathbb{Z}/k)$ and $K_n^{\text{top}}(\mathbb{C}; \mathbb{Z}/k)$ for which a long exact sequence analogous to the one of (6.27) exists.

Theorem 6.29 (Algebraic and topological K-theory mod k for \mathbb{R} and \mathbb{C}). The comparison map from algebraic to topological K-theory induces for all integers $k \geq 2$ and all $n \geq 0$ isomorphisms

\[
\begin{align*}
K_n(\mathbb{R}; \mathbb{Z}/k) & \cong K_n^{\text{top}}(\mathbb{R}; \mathbb{Z}/k); \\
K_n(\mathbb{C}; \mathbb{Z}/k) & \cong K_n^{\text{top}}(\mathbb{C}; \mathbb{Z}/k).
\end{align*}
\]

Generalizations of Theorem 6.29 to \mathbb{C}^*-algebras will be discussed in Section 9.7.

Since $K_n^{\text{top}}(\mathbb{C})$ is \mathbb{Z} for n even and vanishes for n odd and for every algebraically closed field F of characteristic 0 we have an injection $\mathbb{Q} \rightarrow F$ for the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}, Theorem 6.28 and Theorem 6.29 imply for every algebraically closed field F of characteristic zero.

\[
K_n(F; \mathbb{Z}/k) \cong \begin{cases}
\mathbb{Z}/k & n \geq 0, n \text{ even}; \\
\{0\} & n \geq 1, n \text{ odd}. \\
\{0\} & n \leq -1.
\end{cases}
\]

Exercise 6.30. Using the fact that $K_n^{\text{top}}(\mathbb{R})$ is 8-periodic and its values for $n = 0, 1, 2, 3, 4, 5, 6, 7$ are given by $\mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, \{0\}, \mathbb{Z}, \{0\}, \{0\}, \{0\}$, compute $K_n(\mathbb{R}; \mathbb{Z}/k)$ and $K_n^{\text{top}}(\mathbb{R}; \mathbb{Z}/k)$ for $n \in \mathbb{Z}$ and $k \geq 3$ an odd natural number.
6.5 Other Constructions of Connective Algebraic
K-Theory

The plus-construction works for rings and finitely generated free or projective modules. However, it turns out that it is important to consider more general situations, where one can feed in categories with certain extra structures. The main examples are Quillen’s Q-construction, see [739, §2], [774, Chapter 4], [835, Chapter 4], designed for exact categories, the group completion construction, see [387, 821], designed for symmetric monoidal categories, and Waldhausen’s wS•-construction, see [891] and Subsection 7.3.2, designed for categories with cofibrations and weak equivalences. Given a ring \(R \), the category of finitely generated projective \(R \)-modules yields examples of the type of categories above and the appropriate construction yields always the same, namely the \(K \)-groups as defined by the plus-construction above. The Q-construction and exact categories can be used to define \(K \)-theory for the category of finitely generated \(R \)-modules (dropping projective) or the category of locally free \(\mathcal{O}_X \)-modules of finite rank over a scheme \(X \). One important feature is that the notion of exact sequences can be different from the one given by split exact sequences, or, equivalently, by direct sums. Whereas in Quillen’s setting one needs exact structures in an algebraic sense, Waldhausen’s wS•-construction is also suitable for categories, where the input are spaces and one can replace isomorphisms by weak equivalences.

We briefly recall the setup of exact categories beginning with additive categories. A category \(\mathcal{C} \) is called small if its objects form a set. An additive category \(\mathcal{A} \) is a small category \(\mathcal{A} \) such that for two objects \(A \) and \(B \) the morphism set \(\text{mor}_\mathcal{A}(A, B) \) has the structure of an abelian group, there exists a zero-object, the direct sum \(A \oplus B \) of two objects \(A \) and \(B \) exists, and the obvious compatibility conditions hold, e.g., composition of morphisms is bilinear. A functor of additive categories \(F: \mathcal{A}_0 \rightarrow \mathcal{A}_1 \) is a functor respecting the zero-objects such that for two objects \(A \) and \(B \) in \(\mathcal{A}_0 \) the map \(\text{mor}_\mathcal{A}_0(A, B) \rightarrow \text{mor}_\mathcal{A}_1(F(A), F(B)) \) sending \(f \) to \(F(f) \) respects the abelian group structures and \(F(A \oplus B) \) is a model for \(F(A) \oplus F(B) \).

A skeleton \(\mathcal{D} \) of a category \(\mathcal{C} \) is a full subcategory such that \(\mathcal{D} \) is small and the inclusion \(\mathcal{D} \rightarrow \mathcal{C} \) is an equivalence of categories, or, equivalently, for every object \(C \in \mathcal{C} \) there is an object \(D \in \mathcal{D} \) together with an isomorphism \(C \xrightarrow{\sim} D \) in \(\mathcal{C} \).

Definition 6.31 (Exact category). An exact category \(\mathcal{P} \) is a full additive subcategory of some abelian category \(\mathcal{A} \) with the following properties:

- \(\mathcal{P} \) is closed under extensions in \(\mathcal{A} \), i.e., for any exact sequence \(0 \rightarrow P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow 0 \) in \(\mathcal{A} \) with \(P_0, P_2 \) in \(\mathcal{P} \) we have \(P_1 \in \mathcal{P} \);
- \(\mathcal{P} \) has a small skeleton.

An exact functor \(F: \mathcal{P}_0 \rightarrow \mathcal{P}_1 \) is a functor of additive categories that sends exact sequences to exact sequences.
Examples of exact categories are abelian categories possessing a small skeleton, the category of finitely generated projective R-modules, the category of finitely generated R-modules, the category of vector bundles over a compact space, the category of algebraic vector bundles over a projective algebraic variety, and the category of locally free sheaves of finite rank on a scheme.

An additive category becomes an exact category in the sense of Quillen with respect to split exact sequences. On the other hand there are interesting exact categories where the exact sequences are not necessarily split exact sequences.

The Q-construction, see [739, §2], [774, Chapter 5], [835, Chapter 4], assigns to any exact category \mathcal{P} its K-theory space $K(\mathcal{P})$ and one defines $K_n(\mathcal{P}) := \pi_n(K(\mathcal{P}))$ for $n \geq 0$. If \mathcal{P} is the category of finitely generated projective R-modules, this definition coincides with the Definition 6.9 of $K_n(R)$ coming from the plus-construction.

The Q-construction allows to define algebraic K-theory for objects naturally appearing in algebraic geometry, arithmetic geometry and number theory since these give exact categories as described above.

Example 6.32 (The category of nilpotent endomorphism). Let $\text{NIL}(R)$ be the exact category whose objects are pairs (P, f) of finitely generated projective R-modules together with nilpotent endomorphisms $f: P \to P$. Its K-theory $\text{Nil}_n(R) := K_n(\text{NIL}(R))$ splits as $K_n(R) \oplus \tilde{\text{Nil}}_n(R)$ for $n \geq 0$, where $\text{Nil}_n(R)$ is the cokernel of the homomorphism $K_n(R) \to K_n(\text{NIL}(R))$ induced by the obvious functor sending a finitely generated projective R-module P to $0: P \to P$. We get for $n \geq 1$

$$NK_n(R) = \tilde{\text{Nil}}_{n-1}(R).$$

This has been considered for $n = 1$ already in Theorem 3.69. A proof, which works also for the more general context of non-connective K-theory of additive categories, where a twist with an automorphism is allows, can be found in [618, Theorem 0.4], see also [389].

6.6 Non-Connective Algebraic K-Theory of Additive Categories

The approaches mentioned in Section 6.5 will always yield spaces $K(R)$ such that the algebraic K-groups are defined to be its homotopy groups. Since a space has no negative homotopy groups, this definition will not encompass the negative algebraic K-groups. In order to take these into account, one has to find appropriate deloopings.
So the task is to replace the space $K(R)$ by a (non-connective) spectrum $K(R)$ such that one can define $K_n(R)$ by $\pi_n(K(R))$ for $n \in \mathbb{Z}$ and this definition coincides with the other definitions for all $n \in \mathbb{Z}$. For rings this has been achieved by Gersten [379] and Wagoner [885].

We would like to feed in additive categories. The category of spectra SPECTRA will be introduced in Section 11.4. Denote by ADD-CAT the category of additive categories. There is an obvious notion of the direct sum of two additive categories. We will use a construction of Pedersen-Weibel [719], see also [186], or of Lück-Steimle [616] of a functor

$$K : \text{ADD-CAT} \to \text{SPECTRA}, \quad \mathcal{A} \mapsto K(\mathcal{A}).$$

Definition 6.34 (Algebraic K-groups of additive categories). We call $K(\mathcal{A})$ the non-connective K-theory spectrum associated to an additive category. Define for $n \in \mathbb{Z}$ the n-th algebraic K-group of an additive category \mathcal{A} by

$$K_n(\mathcal{A}) := \pi_n(K(\mathcal{A})).$$

Definition 6.35 (Flasque and Eilenberg swindle). An additive category \mathcal{A} is called flasque if there exists a functor of additive categories $S : \mathcal{A} \to \mathcal{A}$ together with a natural equivalence $T : \text{id}_\mathcal{A} \oplus S \simeq S$. Sometimes the pair (S,T) is called an Eilenberg swindle.

We conclude from Pedersen-Weibel [719], see also [186], or from Lück-Steimle [616]

Theorem 6.36 (Properties of $K(\mathcal{A})$).

(i) If R is a ring and \mathcal{A} is the additive category of finitely generated projective R-modules, then $K_n(\mathcal{A})$ coincides with $K_n(R)$ for $n \in \mathbb{Z}$;

(ii) Let F_1 and F_2 be functors of additive categories. If there exists a natural equivalence of such functors from F_1 to F_2, then the maps of spectra $K(F_1)$ and $K(F_2)$ are homotopic;

In particular a functor $F : \mathcal{A} \to \mathcal{A}'$ of additive categories induces a homotopy equivalence $K(F) : K(\mathcal{A}) \to K(\mathcal{A}')$;

(iii) If \mathcal{A} is flasque, then $K(\mathcal{A})$ is weakly contractible.

Exercise 6.37. Give a definition of $K_0(\mathcal{A})$ and $K_1(\mathcal{A})$ as abelian groups in terms of generators and relations such that in the case, where R is a ring and \mathcal{A} is the category of finitely generated projective R-modules this definition coincides with the ones appearing in Definitions 2.1 and 3.1. Show that $K_0(\mathcal{A})$ and $K_1(\mathcal{A})$ are trivial if \mathcal{A} is flasque.

Exercise 6.38. Let \mathcal{A} be the category of countably generated R-modules. Show that $K_n(\mathcal{A}) = 0$ for all $n \in \mathbb{Z}$.
Remark 6.39 (Non-connective \(K\)-theory spectra for exact categories). Schlichting [815] has constructed for an exact category \(\mathcal{P}\) a delooping of the space \(K(\mathcal{P})\). Thus he can assign to an exact category \(\mathcal{P}\) a (non-connective) spectrum \(K(\mathcal{P})\) and define \(K_n(\mathcal{P}) := \pi_n(K(\mathcal{P}))\) for \(n \in \mathbb{Z}\). If \(\mathcal{P}\) is the category of finitely generated projective \(R\)-modules, this definition coincides with our previous definition of \(K_n(R)\). If the exact sequences in \(\mathcal{P}\) are given by split exact sequences, this definition agrees with the one of Definition 6.34 when we consider \(\mathcal{P}\) as an additive category.

6.7 Survey on Main Properties of Algebraic \(K\)-Theory of Categories

Although we have for simplicity mainly dealt with the algebraic \(K\)-theory of rings only, one should in general work with categories such as exact categories or categories with cofibrations and weak equivalences instead of the category of finitely generated projective \(R\)-modules only. There are some basic results about algebraic \(K\)-theory which become in particular useful if one considers categories. We mention some of them without detailed explanations.

6.7.1 Additivity

For a proof of the next result we refer for instance to [739, Corollary 1 in §3 on page 22], [835, Corollary 4.3 on page 41], (at least in the connective setting), and [815].

Theorem 6.40 (Additivity Theorem for exact categories). Let \(0 \to F_0 \xrightarrow{i} F_1 \xrightarrow{p} F_2 \to 0\) be an exact sequence of functors \(F_k: \mathcal{P}_1 \to \mathcal{P}_2\) of exact categories \(\mathcal{P}_1\) and \(\mathcal{P}_2\), i.e., \(i\) and \(p\) are natural transformations such that for each object \(P\) the sequence \(0 \to F_0(P) \xrightarrow{i(P)} F_1(P) \xrightarrow{p(P)} F_2(P) \to 0\) is exact. Then we get for the induced morphisms \((F_k)_n: K_n(\mathcal{P}_1) \to K_n(\mathcal{P}_2)\) for every \(n \in \mathbb{Z}\)

\[(F_1)_n = (F_0)_n + (F_2)_n.\]

6.7.2 Resolution Theorem

Let \(\mathcal{M}\) and \(\mathcal{P}\) be exact categories which are contained in the same abelian category \(\mathcal{A}\). Suppose that \(\mathcal{P}\) is a full subcategory of \(\mathcal{M}\). A \textit{finite resolution} of an object \(M\) of \(\mathcal{M}\) by objects in \(\mathcal{P}\) is an exact sequence \(0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0\) for some natural number \(n\). We say that \(\mathcal{P}\) is \textit{closed}
under extensions in \mathcal{M} if for any exact sequence $0 \to M_0 \to M_1 \to M_2 \to 0$ in \mathcal{M} with M_0, M_2 in \mathcal{P} we have $M_1 \in \mathcal{P}$. For a proof of the next Theorem we refer for instance to [739, Corollary 1 in §4 on page 25] or [835, Theorem 4.6 on page 41], (at least in the connective setting), and [815].

Theorem 6.41 (Resolution Theorem). Let \mathcal{M} and \mathcal{P} be exact categories which are contained in the same abelian category \mathcal{A}. Suppose that \mathcal{P} is a full subcategory of \mathcal{M} and is closed under extensions in \mathcal{M}. Suppose that every object in \mathcal{M} has a finite resolution by objects in \mathcal{P}.

Then the inclusion $\mathcal{P} \to \mathcal{M}$ induces for every $n \in \mathbb{Z}$ an isomorphism

$$K_n(\mathcal{P}) \cong K_n(\mathcal{M}).$$

6.7.3 Devissage

An object N in an abelian category is called *simple* if $N \neq 0$ and any monomorphism $M \to N$ is the zero-homomorphism or an isomorphism. For a simple object M its ring of automorphisms $\text{end}_\mathcal{A}(M)$ is a skew-field (Schur’s Lemma). An object N in an abelian category is called *semisimple* if it is isomorphic to a finite direct sum of simple objects. A zero object is called an object of length 0. Call the simple objects of an abelian category objects of type 1. We define inductively for $n \geq 2$ an object M to be of length n if there exists an exact sequence $0 \to M_1 \to M \to M_2 \to 0$ for an object M_1 of length 1 and an object M_2 of length $(n-1)$. An object is of *finite length* if it has length n for some natural number n. For a proof of the next result we refer for instance to [739, Corollary 1 in §5 on page 28], [835, Theorem 4.8 on page 42].

Theorem 6.42 (Devissage). Let \mathcal{A} be an abelian category. Suppose that there is a subset S of the set of objects of \mathcal{A} with the property that any simple object in \mathcal{A} is isomorphic to precisely one object in S. Let \mathcal{A}_{ss} be the full subcategory of \mathcal{A} consisting of semisimple objects and let \mathcal{A}_{fl} be the full subcategory consisting of objects of finite length. Then we obtain for every $n \in \mathbb{Z}, n \geq 0$ an isomorphism

$$\bigoplus_{M \in S} K_n(\text{end}_\mathcal{A}(M)) \xrightarrow{\cong} K_n(\mathcal{A}_{ss}) \xrightarrow{\cong} K_n(\mathcal{A}_{fl}).$$

If \mathcal{A} is a Noetherian abelian category, the its negative K-groups vanish and Theorem 6.42 holds also for negative K-groups of trivial reasons, see [815, Theorem 7].

In particular we get in the situation of Theorem 6.42 from Example 2.4 and Theorem 3.0.
\[K_0(A_{fl}) \cong \bigoplus_S \mathbb{Z}; \]
\[K_1(A_{fl}) \cong \prod_S \text{end}_A(S)^\times / \langle \text{end}_A(S)^\times, \text{end}_A(S)^\times \rangle. \]

6.7.4 Localization

Theorem 6.43 (Localization). Let \(A \) be a small abelian category and let \(B \) be an additive subcategory such that for any exact sequence \(0 \to M_0 \to M_1 \to M_2 \to 0 \) in \(A \) the object \(M_1 \) belongs to \(B \) if and only if both \(M_0 \) and \(M_2 \) belong to \(B \). Then there exists a well-defined quotient abelian category \(A/B \). It has the same objects as \(A \), and its morphisms are obtained from those in \(A \) by formally inverting morphisms whose kernel and cokernel belong to \(B \).

Then there are obvious functors \(B \to A \) and \(A \to A/B \) which induce a long exact sequence

\[\cdots \to K_{n+1}(A/B) \to K_n(B) \to K_n(A) \to K_n(A/B) \to \cdots. \]

A description of \(A/B \) can be found in [835, Appendix B]. A proof of the last theorem can be found in [739, Theorem 5 in §5 on page 29], [835, Theorem 4.9 on page 42], (at least in the connective setting), and [815].

6.8 The \(K \)-Theoretic Farrell-Jones Conjecture for Torsionfree Groups and Regular Rings

The Farrell-Jones Conjecture for algebraic \(K \)-theory, which we will formulate in full generality in Conjecture 12.1 reduces for a torsionfree group and a regular ring to the following conjecture. Under the additional assumption that there is a finite model for \(BG \) it appears already in [450].

Conjecture 6.44 (Farrell-Jones Conjecture for torsionfree groups and regular rings for \(K \)-theory). Let \(G \) be a torsionfree group. Let \(R \) be a regular ring. Then the assembly map

\[H_n(BG; \text{K}(R)) \to K_n(RG) \]

is an isomorphism for \(n \in \mathbb{Z} \).

Here \(H_*(-; \text{K}(R)) \) denotes the homology theory which is associated to the (non-connective) \(K \)-spectrum \(\text{K}(R) \) of (6.33). Recall that \(H_n(\{\bullet\}; \text{K}(R)) \) is \(K_n(R) \) for \(n \in \mathbb{Z} \), where here and elsewhere \(\{\bullet\} \) denotes the space consisting of one point. The space \(BG \) is the classifying space of the group \(G \), which up
to homotopy is characterized by the property that it is a CW-complex with $\pi_1(BG) \cong G$ whose universal covering is contractible. The technical details of the construction of $H_n(\ast; K(R))$ and the assembly map will be explained in a more general setting in Sections 11.4 and 11.5.

The point of Conjecture 6.44 is that on the right-hand side of the assembly map we have the group $K_n(RG)$ we are interested in, whereas the left-hand side is a homology theory and hence much easier to compute. A basic tool for the computation of a homology theory is the Atiyah-Hirzebruch spectral sequence, which in our case has as E^2-term $E^{p,q}_{2} = H^p(BG; K^q(R))$ and converges to $H^{p+q}(BG; K(R))$.

Remark 6.45 (The conditions appearing in Conjecture 6.44 are necessary). The condition that G is torsionfree and that R is regular are necessary in Conjecture 6.44. If one drops one of these conditions, one obtains counterexamples as follows.

If G is a finite group, then we obtain an isomorphism

$$K_n(R) \otimes \mathbb{Q} \cong H_n(\ast; K(R)) \otimes \mathbb{Q} \xrightarrow{\cong} H_n(BG; K(R)) \otimes \mathbb{Q}.$$

Hence Conjecture 6.44 would predict for a finite group that the change of rings homomorphism $K_n(R) \otimes \mathbb{Q} \xrightarrow{\cong} K_n(RG) \otimes \mathbb{Q}$ is bijective. This contradicts for instance Lemma 2.75.

In view of the Bass-Heller-Swan decomposition 6.16, Conjecture 6.44 is true for $G = \mathbb{Z}$ in degree n only if $NK_n(R)$ vanishes.

Exercise 6.46. Let R be a regular ring. Let $G = G_1 *_{G_0} G_2$ be an amalgamated free product of torsionfree groups, where G_0 is a common subgroup of G_1 and G_2. Suppose that Conjecture 6.44 is true for G_0, G_1, G_2, and G with coefficients in the ring R. Show that then there exists a long exact Mayer-Vietoris sequence

$$\cdots \to K_n(RG_0) \to K_n(RG_1) \oplus K_n(RG_2) \to K_n(RG) \to K_{n-1}(RG_0) \to K_{n-1}(RG_1) \oplus K_{n-1}(RG_2) \to \cdots$$

Exercise 6.47. Let R be a regular ring. Let $\phi: G \to G$ be an automorphism of the torsionfree group G. Suppose that Conjecture 6.44 is true for G and the semidirect product $G \rtimes_{\phi} \mathbb{Z}$ with coefficients in the ring R. Show that then there exists a long exact Wang sequence

$$\cdots \to K_n(RG) \xrightarrow{id-\phi} K_n(RG) \to K_n(R[G \rtimes_{\phi} \mathbb{Z}]) \to K_{n-1}(RG) \xrightarrow{id-\phi} K_{n-1}(RG) \to \cdots.$$
6.9 Mayer-Vietoris Sequences

Remark 6.48 (\(K_\ast(ZG) \otimes_\mathbb{Z} \mathbb{Q}\) for torsionfree \(G\)). Rationally the Atiyah-Hirzebruch spectral sequence always collapses and the homological Chern character gives an isomorphism

\[
\text{ch} : \bigoplus_{p+q=n} H_p(BG; \mathbb{Q}) \otimes_\mathbb{Q} (K_q(R) \otimes_\mathbb{Z} \mathbb{Q}) \xrightarrow{\cong} H_n(BG; K(R)) \otimes_\mathbb{Z} \mathbb{Q}.
\]

The Atiyah-Hirzebruch spectral sequence and the Chern character will be discussed in a much more general setting in Subsection 11.6.1 and Section 11.7.

Because of Theorem 6.24 the left hand side of the isomorphism described in Remark 6.48 specializes for \(R = \mathbb{Z}\) to \(H_n(BG; \mathbb{Q}) \oplus \bigoplus_{k=1}^{\infty} H_{n-(4k+1)}(BG; \mathbb{Q})\). Hence Conjecture 6.44 predicts for a torsionfree group \(G\)

\[
(6.49) \quad K_n(ZG) \otimes_\mathbb{Z} \mathbb{Q} \cong H_n(BG; \mathbb{Q}) \oplus \bigoplus_{k=1}^{\infty} H_{n-(4k+1)}(BG; \mathbb{Q}).
\]

Conjecture 6.50 (Nil-groups for regular rings and torsionfree groups). Let \(G\) be a torsionfree group and let \(R\) be a regular ring. Then

\[\text{NK}_n(RG) = 0 \quad \text{for all } n \in \mathbb{Z}.\]

Exercise 6.51. Show that a torsionfree group \(G\) satisfies Conjecture 6.50 for all regular rings \(R\) if it satisfies Conjecture 6.44 for all regular rings \(R\).

6.9 Mayer-Vietoris Sequences for Amalgamated Free Products and Wang Sequences for HNN-Extensions

We have seen in the introduction that for the topological \(K\)-theory of reduced group \(C^\ast\)-algebras there exist Mayer-Vietoris sequences associated to amalgamated free products, see (1.1), and long exact Wang sequences for semi-direct products of the shape \(G = H \rtimes_\phi \mathbb{Z}\), see (1.2). These lead to the final formula-

\[\text{tion of the Baum-Connes Conjecture 1.6}\]. Because of Exercises 6.46 and 6.47 one can expect similar long exact sequences to exists for algebraic \(K\)-theory of group rings for torsionfree groups and regular rings, but not in general, as one can derive for instance from the Bass-Heller-Swan decomposition 6.16.

We want to explain the more complicated general answer for algebraic \(K\)-theory of group rings which is given by Waldhausen [887] and [888]. A ring \(R\) is called regular coherent if every finitely presented \(R\)-module possesses a finite projective resolution. A ring \(R\) is regular if and only if it is regular coherent and Noetherian. A group \(G\) is called regular or regular coherent respectively, if for any regular ring \(R\) the group ring \(RG\) is regular.
or regular coherent respectively. If $G = G_1 \ast_{G_0} G_2$ for regular coherent groups G_1 and G_2 and a regular group G_0, or if $G = H \rtimes \mathbb{Z}$ for a regular group H, then G is regular coherent. In particular \mathbb{Z}^n is regular and regular coherent, whereas a non-abelian finitely generated free group is regular coherent but not regular. For proofs of the claims above and for more information about regular coherent groups we refer to [888, Theorem 19.1].

The maps of spectra appearing in the theorem below are all induced by obvious functors between categories.

Theorem 6.52 (Waldhausen’s cartesian squares for non-connective algebraic K-theory). Let $G = G_1 \ast_{G_0} G_2$ be an amalgamated free product and let R be a ring.

(i) There exists a homotopy cartesian square of spectra

\[
\begin{array}{ccc}
\text{Nil}(RG_0; RG_1, RG_2) & \xrightarrow{j} & K(RG_1) \vee K(RG_2) \\
\downarrow{i} & & \downarrow{k_1} \\
K(RG_0) & \xrightarrow{k_0} & K(RG)
\end{array}
\]

where $\text{Nil}(RG_0; RG_1, RG_2)$ is a certain non-connective Nil-spectrum associated to $G = G_1 \ast_{G_0} G_2$ and R, and K is the (non-connective) K-theory spectrum;

(ii) There is a map $f : K(RG_0) \vee K(RG_0) \to \text{Nil}(RG_0; RG_1, RG_2)$ and for $k = 1, 2$ a map $g_k : \text{Nil}(RG_0; RG_1, RG_2) \to K(RG_0)$ with the following properties. The composite $g_k \circ f : K(RG_0) \vee K(RG_0) \to K(RG_0)$ is the projection to the k-th summand, the composite

\[
K(RG_0) \vee K(RG_0) \xrightarrow{f} \text{Nil}(RG_0; RG_1, RG_2) \xrightarrow{j} K(RG_1) \vee K(RG_2)
\]

is homotopic to $K(j_1) \vee K(j_2)$ for $j_k : G_0 \to G_k$ the canonical inclusion, and $i \circ f$ is homotopic to $id \vee id : K(RG_0) \vee K(RG_0) \to K(RG_0)$;

(iii) If R is regular and G_0 is regular coherent, then $f : K(RG_0) \vee K(RG_0) \to \text{Nil}(RG_0; RG_1, RG_2)$ is a weak homotopy equivalence;

(iv) The composite of the map $\Omega K(RG) \to \text{Nil}(RG_0; RG_1, RG_2)$ associated to the homotopy cartesian square of assertion (i) with the canonical map to the homotopy cofiber of the map f induces a split surjection on homotopy groups.

Proof. All these claims are proved for connective K-theory in Waldhausen [888, 11.2, 11.3, 11.6]. In [75, Section 9 and 10] the definitions and assertions are extended to the non-connective version except for assertion (iv). Assertion (iv) can be derived from the connective version by using the Bass-Heller-Swan decomposition [6,16] \square
Theorem 6.53 (Mayer-Vietoris sequence of an amalgamated free product for algebraic K-theory). Let \(G = G_1 \ast_{G_0} G_2 \) be an amalgamated free product and let \(R \) be a ring. Denote by \(i_k : G_0 \to G_k \) and \(j_k : G_k \to G \) the obvious inclusions. Define \(NK_n(RG_0; RG_1, RG_2) \) to be the \((n-1)\)-homotopy group of the homotopy cofiber of the map \(f \) appearing in Theorem 6.52 (iii). Let \(p_n : K_n(RG) \to NK_n(RG_0; RG_1, RG_2) \) be the split surjection coming from Theorem 6.52 (iv). Then

(i) We obtain a splitting
\[
K_n(RG) \cong \ker(p_n) \oplus NK_n(RG_0; RG_1, RG_2);
\]

(ii) There exists a long exact Mayer-Vietoris sequence
\[
\cdots \xrightarrow{\partial_{n+1}} K_n(RG_0) \xrightarrow{(1_1) \ast (i_2)_*} K_n(RG_1) \oplus K_n(RG_2) \xrightarrow{(j_1)_* - (j_2)_*} \ker(p_n) \xrightarrow{\partial_n} K_{n-1}(RG_0) \xrightarrow{(1_1) \ast (i_2)_*} K_{n-1}(RG_1) \oplus K_{n-1}(RG_2) \xrightarrow{(j_1)_* - (j_2)_*} \cdots ;
\]

(iii) If \(G_0 \) is regular coherent and \(R \) is regular, then
\[
NK_n(RG_0; RG_1, RG_2) = 0 \quad \text{for } n \in \mathbb{Z}
\]
and the sequence of assertion (ii) reduces to the long exact sequence
\[
\cdots \xrightarrow{\partial_{n+1}} K_n(RG_0) \xrightarrow{(1_1) \ast (i_2)_*} K_n(RG_1) \oplus K_n(RG_2) \xrightarrow{(j_1)_* - (j_2)_*} K_n(RG) \xrightarrow{\partial_n} K_{n-1}(RG_0) \xrightarrow{(1_1) \ast (i_2)_*} K_{n-1}(RG_1) \oplus K_{n-1}(RG_2) \xrightarrow{(j_1)_* - (j_2)_*} \cdots .
\]

Exercise 6.54. Show that Theorem 6.52 implies Theorem 6.53.

Analogously one gets from Waldhausen [887] and [888] using [75, Section 9 and 10]

Theorem 6.55 (Wang sequence associated to an HNN-extension for algebraic K-theory). Let \(\alpha, \beta : H \to K \) be two injective group homomorphisms. Let \(G \) be the associated HNN-extension and let \(j : K \to G \) be the canonical inclusion. Then there are certain Nil-groups \(NK_n(RH, RK, \alpha, \beta) \) and homomorphisms \(p_n : K_n(RG) \to NK_n(RH, RK, \alpha, \beta) \) such that the following holds:

(i) There is a long exact Wang sequence
\[
\cdots \xrightarrow{\partial_{n+1}} K_n(RH) \xrightarrow{\alpha_* - \beta_*} K_n(RK) \xrightarrow{j_*} \ker(p_n) \xrightarrow{\partial_n} K_{n-1}(RH) \xrightarrow{\alpha_* - \beta_*} K_{n-1}(RK) \xrightarrow{j_*} \cdots ;
\]

(ii) The map \(p_n : K_n(RG) \to NK_n(RH, RK, \alpha, \beta) \) is split surjective.
(iii) If \(R\) is regular and \(H\) is regular coherent, then \(NK_n(RH, RK, \alpha, \beta)\) vanishes for all \(n \in \mathbb{Z}\). In this case the Wang sequence reduces to

\[
\cdots \xrightarrow{\partial_{n+1}} K_n(RH) \xrightarrow{\alpha_* - \beta_*} K_n(RK) \xrightarrow{j_*} K_n(RG) \\
\xrightarrow{\partial_n} K_{n-1}(RH) \xrightarrow{\alpha_* - \beta_*} K_{n-1}(RK) \xrightarrow{j_*} \cdots
\]

Remark 6.56 (Wang sequence of a semi-direct product \(G = K \rtimes_{\phi} \mathbb{Z}\) for algebraic K-theory). A semi-direct product \(G = K \rtimes_{\phi} \mathbb{Z}\) for a group automorphism \(\phi: K \to K\) is a special case of an HNN-extensions, namely take \(H = K, \alpha = \text{id}\) and \(\beta = \phi\). In this case the Wang sequence appearing in Theorem 6.55 (i) takes the form

\[
\cdots \xrightarrow{\partial_{n+1}} K_n(RK) \xrightarrow{\text{id} - \phi_*} K_n(RK) \xrightarrow{j_*} \ker(p_n) \\
\xrightarrow{\partial_n} K_{n-1}(RK) \xrightarrow{\text{id} - \phi_*} K_{n-1}(RK) \xrightarrow{j_*} \cdots
\]

and we get an isomorphism

\[
N_+ K_n(RK, \phi) \oplus N_- K_n(RK, \phi) \xrightarrow{\cong} NK_n(RK, RK, \text{id}, \phi).
\]

Here \(N_\pm K_n(RK, \phi)\) is the kernel of the split surjection \(K_n(RK_\phi[t^{\pm 1}]) \to K_n(RK)\) which is induced by the homomorphism \(RK_\phi[t^{\pm 1}] \to RK\) obtained by evaluation at \(t = 0\).

Such a Wang sequence is established more generally for additive categories in [618, Theorem 0.1].

We mention the following computation from [617, Theorem 9.4].

Theorem 6.57 (Vanishing of \(NK_n(RK, \phi)\)). Let \(R\) be a regular ring. Let \(K\) be a finite group of order \(r\) and let \(\phi: K \xrightarrow{\cong} K\) be an automorphism of order \(s\).

Then \(N_\pm K_n(RK, \phi)|1/rs| = 0\) holds for all \(n \in \mathbb{Z}\). In particular we get \(N_\pm K_n(RK, \phi) \otimes_{\mathbb{Z}} \mathbb{Q} = 0\) for all \(n \in \mathbb{Z}\).

6.10 Homotopy Algebraic K-Theory

Homotopy algebraic K-theory has been introduced for rings by Weibel [907]. He constructs for a ring \(R\) a spectrum \(KH(R)\) and defines

\[
KH_n(R) := \pi_n(KH(R)) \quad \text{for } n \in \mathbb{Z}.
\]

The main feature of homotopy K-theory is that it is homotopy invariant, i.e., for every ring \(R\) and every \(n \in \mathbb{Z}\) the canonical inclusion induces an isomorphism [907, Theorem 1.2 (i)]
6.10 Homotopy Algebraic K-Theory

(6.59) $KH_n(R) \xrightarrow{\cong} KH_n(R[t]).$

Note that homotopy invariance does not hold for algebraic K-theory unless R is regular, see Theorem 6.16.

A consequence of homotopy invariance is that we get for every ring R and $n \in \mathbb{Z}$ isomorphisms, see [907, Theorem 1.2 (iii)],

(6.60) $KH_n(R) \oplus KH_{n-1}(R) \xrightarrow{\cong} KH_n(R^\mathbb{Z}).$

Hence the are no Nil-terms appearing for the trivial HNN-extension $G \times \mathbb{Z}$. It turns out that there are no Nil-phenomena concerning amalgamated free products and HNN-extensions in general. Namely, we conclude from [75, Theorem 11.3]

Theorem 6.61 (Mayer-Vietoris sequence of an amalgamated free product for homotopy K-theory). Let $G = G_1 *_{G_0} G_2$ be an amalgamated free product and let R be a ring. Denote by $i_k: G_0 \to G_k$ and $j_k: G_k \to G$ the obvious inclusions.

Then there exists a Mayer-Vietoris sequence

$$\cdots \xrightarrow{\partial_{n+1}} KH_n(RG_0) \xrightarrow{(i_1)_* \oplus (i_2)_*} KH_n(RG_1) \oplus KH_n(RG_2)$$

$$\xrightarrow{(j_1)_* - (j_2)_*} KH_n(RG) \xrightarrow{\partial_n} KH_{n-1}(RG_0)$$

$$\xrightarrow{\partial_n} KH_{n-1}(RG_1) \oplus KH_{n-1}(RG_2) \xrightarrow{(j_1)_* - (j_2)_*} \cdots ;$$

Theorem 6.62 (Wang sequence associated to an HNN-extension for homotopy K-theory). Let $\alpha, \beta: H \to K$ be two injective group homomorphisms. Let G be the associated HNN-extension and let $j: K \to G$ be the canonical inclusion. Then there is a long exact Wang sequence

$$\cdots \xrightarrow{\partial_{n+1}} KH_n(RH) \xrightarrow{\alpha_* - \beta_*} KH_n(RK) \xrightarrow{j_*} KH_n(RG)$$

$$\xrightarrow{\partial_n} KH_{n-1}(RH) \xrightarrow{\alpha_* - \beta_*} KH_{n-1}(RK) \xrightarrow{j_*} \cdots .$$

There is a natural map of (non-connective) spectra $K(R) \to KH(R)$ and hence one obtains natural homomorphisms

(6.63) $K_n(R) \to KH_n(R)$ for $n \in \mathbb{Z}.$

This map is in general neither injective nor surjective. It is bijective if R is regular by Theorem 6.16. In some sense homotopy algebraic K-theory is the best approximation of algebraic K-theory by a homotopy invariant functor.

Exercise 6.64. Let $R = R_0 \oplus R_1 \oplus R_2 \oplus \cdots$ be a graded ring. Show that the inclusion $i: R_0 \to R$ induces isomorphisms $KH_n(R_0) \xrightarrow{\cong} KH_n(R)$ for $n \in \mathbb{Z}.$
The same argument as for the Baum Conjecture in Subsection 1.1.3 leads to

Conjecture 6.65 (Farrell-Jones Conjecture for torsionfree groups for homotopy K-theory). Let G be a torsionfree group. Then the assembly map

$$H_n(BG; KH(R)) \to KH_n(RG)$$

is an isomorphism for every $n \in \mathbb{Z}$ and every ring R.

The next result is taken from [81, Lemma 2.11].

Lemma 6.66. (i) Let R be a ring of finite characteristic N. Then the canonical map from algebraic K-theory to homotopy K-theory induces an isomorphism

$$K_n(R)[1/N] \overset{\cong}{\to} KH_n(R)[1/N]$$

for all $n \in \mathbb{Z}$;

(ii) Let H be a finite group. Then the canonical map from algebraic K-theory to homotopy K-theory induces an isomorphism

$$K_n(\mathbb{Z}[H]) \otimes_{\mathbb{Z}} \mathbb{Q} \overset{\cong}{\to} KH_n(\mathbb{Z}[H]) \otimes_{\mathbb{Z}} \mathbb{Q}$$

for all $n \in \mathbb{Z}$.

Conjecture 6.67 (Comparison of algebraic K-theory and homotopy K-theory for torsionfree groups). Let R be a regular ring and let G be a torsionfree group. Then the canonical map

$$K_n(RG) \to KH_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Note that Conjecture 6.67 follows from Conjecture 6.44 and Conjecture 6.65.

6.11 Algebraic K-Theory and Cyclic Homology

Fix a commutative ring k, referred to as the ground ring. Let R be a k-algebra. We denote by $HH^\otimes_k(R)$ the Hochschild homology of R relative to the ground ring k, and similarly by $HC^\otimes_k(R)$, $HP^\otimes_k(R)$, and $HN^\otimes_k(R)$ the cyclic, the periodic cyclic, and the negative cyclic homology of R relative to k. Hochschild homology receives a map from the algebraic K-theory, which is known as the Dennis trace map. There are variants of the Dennis trace taking values in cyclic, periodic cyclic and negative cyclic homology (sometimes called Chern characters), as displayed in the following commutative diagram.
For the definition of these maps, see [574, Chapters 8 and 11] and [605, Section 5]. In [605] the question is investigated which parts of $K_n(RG) \otimes \mathbb{Z} \mathbb{Q}$ can be detected by using the linear traces above.

Remark 6.69. In [131], Bökstedt, Hsiang and Madsen define the *cyclotomic trace*, a map out of K-theory which takes values in topological cyclic homology. The cyclotomic trace map can be thought of as an even more elaborate refinement of the Dennis trace map. In contrast to the Dennis trace, the cyclotomic trace has the potential to detect almost all of the rationalized K-theory of an integral group ring. This question is investigated in detail by Lück-Rognes-Reich-Varisco [606, 607].

6.12 Notes

A good source of survey articles about algebraic K-theory is the handbook of K-theory, edited by Friedlander and Grayson [367]. There the relevance of higher algebraic K-theory for algebra, topology, arithmetic geometry, and number theory is explained. Other good sources are the books by Rosenberg [775] and Weibel [909].

The relation of the exact sequences for amalgamated free products and HNN-extensions appearing in Sections 6.9 and 6.10 to the Farrell-Jones Conjecture is explained in Section 14.7.

The exact sequences for amalgamated free products and HNN-extensions appearing in Sections 6.9 and 6.10 are the main ingredients in the proof that Conjecture 6.44 holds for a certain class of groups $\mathcal{C}L$, see [888, Theorem 19.4 on page 249] in the connective case and [75, Corollary 0.12] in general. The class $\mathcal{C}L$ is described and analyzed in [888, Definition 19.2 on page 248 and Theorem 17.5 on page 250] and [75, Definition 0.10]. It is closed under taking subgroups and contains for instance all torsionfree 1-relator groups.

The compatibility of algebraic K-theory with infinite products of categories is examined in [188] and [517].

The question, under which condition the long exact sequence associated to a pullback of rings, see Remark 4.3 and Remark 5.10, can be extended to higher algebraic K-theory is investigated by Land-Tamme [555], actually for ring spectra.
Chapter 7
Algebraic K-Theory of Spaces

7.1 Introduction

We give a brief introduction to the K-theory of spaces called A-theory. This theory was initialized by Waldhausen. Its benefit is that it allows to study interesting spaces of geometric structures such as groups of diffeomorphisms or homeomorphism of manifolds, pseudoisotopy spaces, spaces of h-cobordisms and Whitehead spaces. It is the instance of a very successful strategy in topology to extend algebraic notions to spaces. Other examples of this type are topological Hochschild homology and topological cyclic homology.

7.2 Pseudoisotopy

Let I denote the unit interval $[0, 1]$. A topological pseudoisotopy of a compact manifold M is a homeomorphism $h: M \times I \to M \times I$, which restricted to $M \times \{0\} \cup \partial M \times I$ is the obvious inclusion. The space $P(M)$ of pseudoisotopies is the group of all such homeomorphisms, where the group structure comes from composition. If we allow M to be non-compact, we will demand that h has compact support, i.e., there is a compact subset $C \subseteq M$ such that $h(x, t) = (x, t)$ for all $x \in M - C$ and $t \in [0, 1]$.

Pseudoisotopies play an important role if one tries to understand the homotopy type of the space $\text{Top}(M)$ of self-homeomorphisms of a closed manifold M. We will see in Section 8.21 how the results about pseudoisotopies discussed in this section combined with surgery theory lead to quite explicit results about the homotopy groups of $\text{Top}(M)$ for an aspherical closed manifold M.

There is a stabilization map $P(M) \to P(M \times I)$ given by crossing a pseudoisotopy with the identity on the interval I and the stable pseudoisotopy space is defined as $P(M) = \text{colim}_j P(M \times I^j)$. There exist also smooth versions $\mathcal{P}^{\text{Diff}}(M)$ and $\mathcal{P}^{\text{Diff}}(M) = \text{colim}_j \mathcal{P}^{\text{Diff}}(M \times I^j)$. The PL-version agrees for closed manifolds of dimension ≥ 6 with the topological version, see [168].

The natural inclusions $P(M) \to \mathcal{P}(M)$ and $\mathcal{P}^{\text{Diff}}(M) \to \mathcal{P}^{\text{Diff}}(M)$ induce isomorphisms on the i-th homotopy group if the dimension n of M is large compared to i, roughly for $i \leq n/3$ see [169], [419], [421] and [459].

Next we want to define a delooping of $P(M)$. Let $p: M \times \mathbb{R}^k \times I \to \mathbb{R}^k$ denote the natural projection. For a manifold M the space $P_b(M; \mathbb{R}^k)$ of
bounded pseudoisotopies is the space of all self-homeomorphism \(h: M \times [0,1] \to M \times [0,1] \) satisfying:

(i) The restriction of \(h \) to \(M \times \{0\} \cup \partial M \times [0,1] \) is the inclusion,

(ii) the map \(h \) is bounded in the \(R^i \)-direction, i.e., the set \(\{ p(h(y)) - p(y) \mid y \in M \times [0,1] \} \) is a bounded subset of \(R^k \), and

(iii) the map \(h \) has compact support in the \(M \)-direction, i.e., there is a compact subset \(C \subseteq M \) such that \(h(x,y,t) = (x,y,t) \) for all \(x \in M - C, y \in R^i \) and \(t \in [0,1] \).

There is an obvious stabilization map \(P_b(M; R^k) \to P_b(M \times I; R^k) \) and a stable bounded pseudoisotopy space \(P_b(M; R^k) = \text{colim}_j P_b(M \times I_j; R^k) \).

There is a homotopy equivalence \(P_b(M; R^k) \to \Omega^{-1}P_b(M; R^{k+1}) \), see [422, Appendix II]. Hence the sequences of spaces \(P_b(M; R^k) \) for \(k = 0, 1, 2, \ldots \) and \(\Omega^{-i}P_b(M) \) for \(i = 0, -1, -2, \ldots \) define an \(\Omega \)-spectrum \(P(M) \). Analogously one defines the differentiable bounded pseudoisotopies \(P_{\text{Diff}}(M; R^k) \) and an \(\Omega \)-spectrum \(P_{\text{Diff}}(M) \).

Definition 7.1 ((Non-connective) pseudoisotopy spectrum). We call the \(\Omega \)-spectra \(P(X) \) and \(P_{\text{Diff}}(X) \) associated to a topological space \(X \) the (non-connective) pseudoisotopy spectrum and the smooth (non-connective) pseudoisotopy spectrum of \(X \).

Remark 7.2 (Strict Functoriality). A priori the pseudoisotopy space and its non-connective version are only homotopy functors in the following sense. They assign to a map between manifolds only a homotopy class of maps between the pseudoisotopy spaces and not a specific map. At least the homotopy class of maps between the pseudoisotopy spaces depends only on the homotopy class of the map between manifolds we started with. The homotopy class of the identity is sent to the homotopy class of the identity and the construction is compatible with composition up to homotopy. Moreover, it is a priori not clear what the values of the pseudoisotopy space on general topological spaces are.

There are several places in the literature, where a construction as a strict functor from the category of topological spaces to the category of non-connective spectra is indicated, but it seems to be the case that the only place, where all the details of this non-trivial extensions are carried out in the smooth, topological and PL-category, are the PhD-theses of Enkelmann [315] and Pieper [728]. This is important for the construction of the assembly map appearing in the Farrell-Jones Conjecture for pseudoisotopy spaces since we want the pseudoisotopy functor to digest for instance classifying spaces of groups and groupoids, which obviously are not compact manifolds in general, and to construct the assembly map we need strict functoriality.

We conclude from [422, Proposition 1.3]

Theorem 7.3 (Pseudoisotopy is a homotopy-invariant functor). Let \(f: X \to Y \) be a weak homotopy equivalence. Then the induced maps

\[
\begin{align*}
P(f): P(X) & \to P(Y); \\
P_{\text{Diff}}(f): P_{\text{Diff}}(X) & \to P_{\text{Diff}}(Y),
\end{align*}
\]
7.3 Whitehead Spaces and \(A \)-Theory

7.3.1 Categories with Cofibrations and Weak Equivalences

The following definition is a generalization of the notion of an exact category of Definition 6.31 in the sense of Quillen. It allows to deal with spaces instead of algebraic objects such as modules. It is due to Waldhausen.

A category \(C \) is called pointed if it comes with a distinguished zero-object, i.e., an object which is both initial and terminal.

Definition 7.4 (Category with cofibrations and weak equivalences).

A category with cofibrations and weak equivalences is a small pointed category with a subcategory \(\co C \), called category of cofibrations, in \(C \) and a subcategory \(\we C \), called category of weak equivalences, in \(C \) such that the following axioms are satisfied:

(i) The isomorphisms in \(C \) are cofibrations, i.e., belong to \(\co C \);

(ii) For every object \(C \) the map \(* \to C \) is a cofibration, where \(* \) is the distinguished zero-object;

(iii) If in the diagram \(A \xleftarrow{i} B \xrightarrow{f} C \) the left arrow is a cofibration, the pushout

\[
\begin{array}{c}
A \xrightarrow{i} B \\
\downarrow f \\
C \xrightarrow{\gamma} D
\end{array}
\]

exists and \(\gamma \) is a cofibration;

(iv) The isomorphisms in \(C \) are contained in \(\we C \);

(v) If in the commutative diagram

\[
\begin{array}{c}
B \xleftarrow{\approx} A \xrightarrow{\approx} C \\
\downarrow \approx \\
B' \xleftarrow{\approx} A' \xrightarrow{\approx} C'
\end{array}
\]

the horizontals arrow on the left are cofibrations, and all vertical arrows are weak equivalences, then the induced map on the pushout of the upper row to the pushout of the lower row is a weak homotopy equivalence.

Example 7.5 (Exact categories are categories with cofibrations and weak equivalences). Let \(\mathcal{P} \subseteq \mathcal{A} \) be an exact category in the sense of Definition 6.31 The zero-object is just a zero-object in the abelian category.
A cofibration in \(\mathcal{P} \) is a morphism \(i : A \to B \) which occurs in an exact sequence \(0 \to A \to B \to C \to 0 \) of \(\mathcal{P} \). The weak equivalences are given by the isomorphisms.

Exercise 7.6. Let \(\mathcal{C} \) be the category of finite projective \(R \)-chain complexes. Define cofibrations to be chain maps \(i_* : C_* \to D_* \) such that \(i_n : C_n \to D_n \) is split injective for all \(n \geq 0 \). Define weak equivalences to be homology equivalences. Show that \(\mathcal{C} \) is a category with cofibrations and weak equivalences in the sense of Definition 7.4 ignoring the fact that \(\mathcal{C} \) is not small.

Example 7.7 (The category \(\mathcal{R}(X) \) of retractive spaces). Let \(X \) be a space. A retractive space over \(X \) is a triple \((Y,r,s) \) consisting of a space \(Y \) and maps \(s : X \to Y \) and \(r : Y \to X \) such that \(s \) is a cofibration and \(r \circ s = \text{id}_X \). A morphism from \((Y,r,s) \) to \((Y',r',s') \) is declared to be a cofibration if the underlying map of spaces \(f : Y \to Y' \) is a cofibration. Now there are several possibilities to define weak equivalences. One may require that \(f : Y \to Y' \) is a homeomorphism, a homotopy equivalence, weak homotopy equivalence or a homology equivalence with respect to some fixed homology theory. Then one obtains a category \(\mathcal{R}(X) \) with cofibrations and weak equivalences in the sense of Definition 7.4 except that \(\mathcal{R}(X) \) is not small.

To achieve that \(\mathcal{R}(X) \) is small and later to get interesting \(K \)-theory, one may for instance require that \((Y,X) \) is a relative \(CW \)-complex which is relatively finite, and \(s : X \to Y \) is the inclusion and morphisms to be cellular maps. Denote this category with cofibrations and weak equivalences by \(\mathcal{R}^f(X) \), where we choose all weak homotopy equivalences as weak equivalences and inclusion of relative \(CW \)-complexes as cofibrations.

7.3.2 The \(wS_* \)-Construction

Let \(\mathcal{C} \) be a category with cofibrations and weak equivalences. Next we briefly recall Waldhausen's \(wS_* \)-construction, see [891, Section 1.3].

For an integer \(n \geq 0 \) let \([n]\) be the ordered set \(\{0,1,2,\ldots,n\}\). Let \(\Delta \) be the category whose set of objects is \(\{[n] \mid n = 0,1,2\ldots\} \) and whose set of morphisms from \([m]\) to \([n]\) consists of the order preserving maps. A simplicial category is a contravariant functor from \(\Delta \) to the category \(\text{CAT} \) of categories. Analogously, a simplicial category with cofibrations and weak equivalences is a contravariant functor from \(\Delta \) to the category \(\text{CAT}_{\text{cof,weq}} \) of categories with cofibrations and weak equivalences. Now we assign to \(\mathcal{C} \) a simplicial category with cofibrations and weak equivalences \(S_\bullet \mathcal{C} \) as follows.

Define \(S_n \mathcal{C} \) to be the category for which an object is a sequence of cofibrations \(A_{0,1} \to A_{0,2} \to \cdots \to A_{0,n} \) together with explicit choices of quotient
objects \(\text{pr}_{i,j} : A_{0,j} \to A_{i,j} = A_{0,j}/A_{0,i} \) for \(i, j \in \{1, 2, \ldots, n\}, i < j \), i.e., we fix pushouts

\[
\begin{array}{ccc}
A_{0,i} & \xrightarrow{k_{0,j-1} \circ \cdots \circ k_{0,i}} & A_{0,j} \\
\downarrow & & \downarrow \text{pr}_{i,j} \\
0 & \to & A_{i,j}.
\end{array}
\]

Morphisms are given by a collection of morphisms \(\{ f_{i,j} \} \) which make the obvious diagram commute.

With these explicit choices of quotient objects it is easy to define the relevant face and degeneracy maps. For instance the face map \(d_i : S_n C \to S_{n-1} C \) is given for \(i \geq 1 \) by dropping \(A_{0,i} \) and for \(i = 0 \) by passing to \(A_{0,2}/A_{0,1} \to A_{0,3}/A_{0,1} \to \cdots \to A_{0,n}/A_{0,1} \). An arrow in \(S_n C \) is declared to be a cofibration if each arrow \(A_{i,j} \to A'_{i,j} \) is a cofibration and analogously for weak equivalences.

We obtain a simplicial category \(wS_\bullet C \) by considering the category of weak equivalences of \(S_\bullet C \). Let \(|wS_\bullet C| \) be the geometric realization of the simplicial category \(wS_\bullet C \) which is the geometric realization of the bisimplicial set obtained by the composite of the functor nerve of a category with \(wS_\bullet C \).

Definition 7.8 (Algebraic K-theory space of a category with cofibrations and weak equivalences). Let \(C \) be a category with cofibrations and weak equivalences. Its algebraic K-theory space \(K(C) \) is defined by

\[
K(C) := \Omega |wS_\bullet C|.
\]

The 1-skeleton in the \(S_\bullet \) direction of \(|wS_\bullet C| \) is obtained from \(|wSC| \times [0,1] = |wS_1 C| \times \Delta^1 \) by collapsing \(* \times [0,1] \cup |wSC| \times \{0\} \) to a point since \(|wS_0| = \{\bullet\} \). Hence there is a canonical map \(|wC| \to \Omega |wS_\bullet C| \) which is the adjoint of the obvious identification of the 1-skeleton in the \(S_\bullet \)-direction of \(|wS_\bullet C| \) with the reduced suspension \(|wC| \wedge S^1 \). If we apply the construction to \(S_n C \), we obtain a map of spaces \(|wS_n C| \to \Omega |wS_\bullet S_n C| \). The collection of these maps for \(n \geq 0 \) yields a map of simplicial spaces and hence by geometric realization a map of spaces \(|wS_\bullet C| \to \Omega |wS_\bullet S_\bullet C| \) By iterating this construction, we obtain a sequence of maps

\[
|wC| \to \Omega |wS_\bullet C| \to \Omega \Omega |wS_\bullet S_\bullet C| \to \Omega \Omega \Omega |wS_\bullet S_\bullet S_\bullet C| \to \cdots
\]

such that all maps except the first one are weak homotopy equivalences. So \(K(C) \) is an infinite loop space beyond the first term.
7.3.3 A-Theory

Next we recall Waldhausen’s definition of A-theory of a topological space, see [891, Chapter 2].

Definition 7.9 (Connective A-theory). Let X be a topological space. Let $R^f(X)$ be the category with cofibrations and weak equivalences defined in Example 7.7. Define the A-theory space $A(X)$ associated to X to be the algebraic K-theory space $K(R^f(X))$ in the sense of Definition 7.8.

Remark 7.10 (The wS_\bullet-construction encompasses the Q-construction). Waldhausen’s construction encompasses the Q-construction of Quillen, see [891, Section 1.9].

As in the case of algebraic K-theory of rings or pseudoisotopy, it will be crucial for us to consider a non-connective version. Vogell [880] has defined a delooping of $A(X)$ yielding a non-connective Ω-spectrum $A(X)$ for a topological space. The idea is similar to the construction of the (non-connective) pseudoisotopy spectrum in Section 7.2, where one considers parametrizations over \mathbb{R}^n and imposes control conditions. This construction actually yields a covariant functor from the category of topological spaces to the category of Ω-spectra

$$A: \text{TOP} \to \Omega\text{-SPECTRA}$$

Definition 7.12 (Non-connective A-theory). We call $A(X)$ the (non-connective) A-theory spectrum associated to the topological space X. We write for $n \in \mathbb{Z}$

$$A_n(X) := \pi_n(A(X))$$

Note that $A_n(X)$ agrees with $\pi_n(A(X))$ for $n \geq 1$ if $A(X)$ is the space appearing in Definition 7.9. Actually there is a map of spectra, natural in X,

$$\iota(X): A(X) \to A(X)$$

which induces isomorphisms $\pi_n(\iota(X)) : \pi_n(A(X)) \xrightarrow{\cong} \pi_n(A(X))$ for $n \geq 1$.

Remark 7.14 ($\pi_0(A(X))$). If X is path connected, then $A_0(X) \cong \mathbb{Z}$. The isomorphism comes from taking the Euler characteristic of a relatively finite relative CW-complex (Y, X).

One may replace in the definition of $A(X)$ the category $R^f(X)$ by the full subcategory of $R(X)$ of those triples (Y, r, s) such that (Y, X) is a relative CW-complex consisting of countably many cells, $s : X \to Y$ is the inclusion and the object (Y, r, s) is up to homotopy the retract of an object (Y', r', s') such that (Y', X) is a relatively finite relative CW-complex. Then $\pi_n(A(X))$ is unchanged for $n \geq 1$, whereas $\pi_0(A(X)$ can now be identified with $K_0(\mathbb{Z}[\pi_1(X)])$ if X is path connected. The identification comes from
taking an appropriate finiteness obstruction. With this new definition the map \(\pi_0(i): \pi_0(A(X)) \to \pi_0(A(X)) \) is bijective.

For the proof of the next result see [891, Proposition 2.1.7]).

Theorem 7.15 (A-theory is a homotopy-invariant functor). Let \(f: X \to Y \) be a weak homotopy equivalence. Then the induced maps

\[
A(f): A(X) \to A(Y); \quad A_*(f): A_*(X) \to A_*(Y),
\]

are weak homotopy equivalences.

Let \(X \) be a connected space with fundamental group \(\pi = \pi_1(X) \) which admits a universal covering \(p_X: \tilde{X} \to X \). Consider an object in \(\mathcal{R}^f(X) \). Recall that it is given by a relatively finite relative CW-complex \((Y, X) \) together with a map \(r: Y \to X \) satisfying \(r|_X = \text{id}_X \). Let \(\tilde{Y} \to Y \) be the \(\pi \)-covering obtained from \(p_X: \tilde{X} \to X \) by the pullback construction applied to \(r: Y \to X \). The cellular \(\mathbb{Z}\pi \)-chain complex \(C_*(\tilde{Y}, \tilde{X}) \) of the relative free \(\pi \)-CW-complex \((\tilde{Y}, \tilde{X}) \) is a finite free \(\mathbb{Z}\pi \)-chain complex. This yields a functor of categories with cofibrations and weak equivalences from \(\mathcal{R}^f(X) \) to the category of finite free \(\mathbb{Z}\pi \)-chain complexes. The algebraic \(K \)-theory of the category of finite free \(\mathbb{Z}\pi \)-chain complexes agrees with the one of the finitely generated free \(\mathbb{Z}\pi \)-modules. Hence we get a natural map of spectra called *linearization map*

\[
L(X): A(X) \to K(\mathbb{Z}\pi_1(X))
\]

The next result follows by combining [881, Section 4] and [890, Proposition 2.2 and Proposition 2.3].

Theorem 7.17 (Connectivity of the linearization map). Let \(X \) be a connected CW-complex. Then:

(i) The linearization map \(L(X) \) of (7.16) is 2-connected, i.e., the map

\[
L_n := \pi_n(L(X)): A_n(X) \to K_n(\mathbb{Z}\pi_1(X))
\]

is bijective for \(n \leq 1 \) and surjective for \(n = 2 \).

(ii) Rationally the map \(L_n \) is bijective for all \(n \in \mathbb{Z} \) provided that \(X \) is aspherical.

Exercise 7.18. Show that the canonical map of spectra \(A(\{\bullet\}) \to A(\{\bullet\}) \) is a weak homotopy equivalence.
7.3.4 Whitehead Spaces

Waldhausens [890][891] defines the functor $\text{Wh}^{\text{PL}}(X)$ from spaces to infinite loop spaces which can be viewed as connective Ω-spectra, and a fibration sequence

$$X_+ \wedge A(\{\bullet\}) \to A(X) \to \text{Wh}^{\text{PL}}(X).$$

Here $X_+ \wedge A(\{\bullet\}) \to A(X)$ is an assembly map. After taking homotopy groups, it can be compared with the algebraic K-theory assembly map that appears in Conjecture 6.44 via a commutative diagram

$$\pi_n(X_+ \wedge A(\{\bullet\})) \xrightarrow{\cong} \pi_n(X_+ \wedge A(\{\bullet\})) = H_n(X; A(\{\bullet\})) \xrightarrow{H_n(X; L)} \pi_n(L) \to K_n(\mathbb{Z}; K_1(X)).$$

Here the vertical arrows from the first row to the second row come from the map i of (7.13). The left one of these is bijective for $n \in \mathbb{Z}$ by Exercise 7.18 and the right one of these is bijective for $n \geq 1$. The vertical arrows from the second row to the third row come from the linearization map L of (7.16). Because of Theorem 7.17 the left one of these is bijective for $n \leq 1$ and rationally bijective for $n \in \mathbb{Z}$.

In the case where X is aspherical, the lower right vertical map $\pi_n(L)$ is bijective for $n \leq 1$ and rationally bijective for all $n \in \mathbb{Z}$ because of Theorem 7.17 and the fact that

$$\Omega^2 \text{Wh}^{\text{PL}}(X) \simeq \mathcal{P}(X),$$

see [292, Section 9] and [893], Conjecture 6.44 implies rational vanishing results for the groups $\pi_n(\mathcal{P}(M))$ if M is an aspherical closed manifold.

Lemma 7.22. Suppose that M is an aspherical closed manifold and Conjecture 6.44 holds for $R = \mathbb{Z}$ and $G = \pi_1(M)$. Then we get for all $n \geq 0$

$$\pi_n(\text{Wh}^{\text{PL}}(M)) \otimes \mathbb{Q} = 0;$$

$$\pi_n(\mathcal{P}(M)) \otimes \mathbb{Q} = 0.$$

Exercise 7.23. Show that $\pi_1(\text{Wh}^{\text{PL}}(BG))$ is $\text{Wh}(G)$.

There is also a smooth version of the Whitehead space $\text{Wh}^{\text{Diff}}(X)$ and we have
Again there is a close relation to \mathcal{A}-theory via the natural splitting of connective spectra due to Waldhausen [890], [892], [893].

\begin{equation}
A(X) \simeq \Sigma^\infty(X_+) \vee \text{Wh}^\text{Diff}(X).
\end{equation}

Here $\Sigma^\infty(X_+)$ denotes the suspension spectrum associated to X_+. Since for every space $\pi_n(\Sigma^\infty(X_+)) \otimes \mathbb{Q} \cong H_n(X; \mathbb{Q})$, Conjecture 6.44 combined with Remark 6.48 and Theorem 7.17 yields the following result.

Lemma 7.26. Suppose that M is an aspherical closed manifold and Conjecture 6.44 holds for $R = \mathbb{Z}$ and $G = \pi_1(M)$. Then we get for all $n \geq 0$

\[
\pi_n(\text{Wh}^\text{Diff}(M)) \otimes \mathbb{Z} \mathbb{Q} \cong \bigoplus_{k=1}^{\infty} H_{n-4k-1}(M; \mathbb{Q});
\]

\[
\pi_n(\mathcal{P}^\text{Diff}(M)) \otimes \mathbb{Z} \mathbb{Q} \cong \bigoplus_{k=1}^{\infty} H_{n-4k+1}(M; \mathbb{Q}).
\]

Exercise 7.27. Show that there is no connected closed manifold M such that the homomorphism induced by the forgetful map $\pi_n(\text{Wh}^\text{Diff}(M)) \otimes \mathbb{Z} \mathbb{Q} \cong \pi_n(\text{Wh}^\text{PL}(M)) \otimes \mathbb{Q}$ is bijective for all $n \geq 0$. Use the fact that the composite of the obvious inclusion of $\text{Wh}^\text{Diff}(X)$ into $\Sigma^\infty(X_+) \vee \text{Wh}^\text{Diff}(X)$ with the inverse of the splitting (7.25) and the map $A(X) \to \text{Wh}^\text{PL}(X)$ of (7.19) is up to homotopy the obvious forgetful map $\text{Wh}^\text{Diff}(M) \to \text{Wh}^\text{PL}(M)$.

7.4 Notes

One of the basic tools to investigate algebraic K-theory of spaces is the Additivity Theorem, see [638], [891, Theorem 1.4.2]. If \mathcal{C} is a category with cofibrations and weak equivalences, we can assign to it a category with cofibrations and weak equivalences $E(\mathcal{C})$ whose objects are exact sequences $A \xrightarrow{i} B \xrightarrow{p} C$, where exact means that the map i is a cofibration and the following diagram is a pushout

\[
\begin{array}{ccc}
A & \xrightarrow{i} & B \\
\downarrow & & \downarrow p \\
\ast & \xrightarrow{p} & C
\end{array}
\]

Theorem 7.28 (Additivity Theorem for categories with cofibrations and weak equivalences). Let F_1 and F_3 respectively be the functors
$E(C) \to C$ of categories with cofibrations and weak equivalences sending an object $A \xrightarrow{i} B \xrightarrow{p} C$ to A and C respectively. Then we obtain a weak homotopy equivalence

$$K(F_1) \times K(F_3) : K(E(C)) \xrightarrow{\simeq} K(C) \times K(C).$$

Another useful tool is the Approximation Theorem, see [891, Theorem 1.6.7], which gives a criterion to decide when a functor of categories with cofibrations and weak equivalences induces a weak homotopy equivalence on the K-theory spaces.

There is also a space of parametrized h-cobordisms $H(M)$ for a closed topological manifold M. Roughly speaking, the space is designed such that a map $N \to H(M)$ is the same as a bundle over N whose fibers are h-cobordisms over M. The set of path component $\pi_0(H(M))$ agrees with the isomorphism classes of h-cobordisms over M. In particular the s-Cobordism Theorem [3.44] is equivalent to the statement that for $\dim(M) \geq 5$ we obtain a bijection $\pi_0(H(M)) \xrightarrow{\cong} \text{Wh}(\pi_1(M))$ coming from taking the Whitehead torsion, or, equivalently, that we obtain a bijection $\pi_0(H(M)) \xrightarrow{\cong} \pi_0(\Omega \text{Wh}(M))$. There is also a stable version, the space of stable parametrized h-cobordisms $\mathcal{K}(M) = \colim_j H(M \times I^j)$.

Theorem 7.29 (The stable parametrized h-cobordism Theorem). If M is a closed topological manifold, then there is a homotopy equivalence

$$\mathcal{K}(M) \xrightarrow{\cong} \Omega \text{Wh}(M).$$

There is also a smooth version of the result above. For the proof and more information about the stable parametrized h-cobordism Theorem we refer to [893].

last edited on 05.02.2022
last compiled on March 21, 2022
name of texfile: ic
Chapter 8
Algebraic L-Theory

8.1 Introduction

In Remark 3.50 we have briefly discussed the surgery program. Starting with a map of degree one of connected closed manifolds \(f: M \to N \), the goal is to modify it by surgery steps so that it becomes a homotopy equivalence. This will change the source but not the target, and can only be carried out, if the map \(f \) is covered by bundle data. With the bundle data, one is able to make the map highly connected, but in the last step towards a homotopy equivalence an obstruction, the surgery obstruction, occurs, whose appearance is due to Poincaré duality. This surgery obstruction takes values in the algebraic L-groups \(L_n(\mathbb{Z}G) \) for \(G = \pi_1(N) \). An introduction to the surgery obstruction and the algebraic L-groups will be given in this chapter. These are the key tools for the classification of manifolds besides the s-Cobordism Theorem 3.44. All this will be carried out in Sections 8.2 to 8.5 in the even-dimensional case and in Sections 8.6 to 8.8 in the odd-dimensional case.

We will also consider normal maps between compact manifolds with boundary that induce homotopy equivalences on the boundary. Here we want to achieve a homotopy equivalence by surgery on the interior, see Section 8.9.

Since the Whitehead torsion appears in the s-Cobordism Theorem 3.44, it will be important to achieve a simple homotopy equivalence and not only a homotopy equivalence by surgery. This leads to the simple surgery obstruction and decorated L-groups, see Section 8.10. The various decorated L-groups are linked by Rothenberg sequences. The L-theoretic analogue of the Bass-Heller-Swan decomposition for K-theory is the Shaneson splitting.

We will present the L-theoretic Farrell-Jones Conjecture for torsionfree groups 8.111, which relates the algebraic L-groups \(L_n(\mathbb{Z}G) \) to the homology of BG with coefficient in the L-theory spectrum, analogous to Farrell-Jones Conjecture for torsionfree groups and regular rings for K-theory 6.44. This together with the Surgery Exact Sequence of Section 8.12 opens the door to many applications. We will discuss the Novikov Conjecture 8.134 predicting the homotopy invariance of higher signatures, and the Borel Conjecture 8.155 about the topologically rigidity of aspherical closed manifolds. Moreover, we deal with the problems, whether a given Poincaré duality group occurs as the fundamental group of an aspherical closed manifold, see Section 8.17, which hyperbolic groups have spheres as their boundary, see Section 8.18, the stable Cannon Conjecture, see Section 8.19, and when does a product decomposition of the fundamental group of an aspherical closed manifold already implies a...
product decomposition of the manifold itself, see Section 8.20. Automorphism groups of aspherical closed manifolds are treated in Section 8.21. A brief survey on computations of L-theory of group rings of finite groups is presented in Section 8.22.

This chapter is an extract of [235].

8.2 Symmetric and Quadratic Forms

8.2.1 Symmetric Forms

Definition 8.1 (Ring with involution). A ring with involution R is an associative ring R with unit together with an involution of rings

$$\mathcal{r} : R \to R, \quad r \mapsto r,$$

i.e., a map satisfying $\mathcal{r} = r$, $r + s = r + s$, $\mathcal{r}rs = s \cdot r$ and $1 = 1$ for $r, s \in R$.

If R is commutative, we can equip it with the trivial involution $r = r$.

Below we fix a ring R with involution. Module is to be understood as left module unless explicitly stated differently.

Example 8.2 (Involutions on groups rings). Let $w : G \to \{\pm 1\}$ be a group homomorphism. Then the group ring RG inherits an involution, the so called w-twisted involution, that sends $\sum_{g \in G} r_g \cdot g$ to $\sum_{g \in G} w(g) \cdot r_g \cdot g^{-1}$.

Remark 8.3 (Dual modules). The main purpose of the involution is to ensure that the dual of a left R-module can be viewed as a left R-module again. Namely, let M be a left R-module. Then $M^* := \text{hom}_R(M, R)$ carries a canonical right R-module structure given by $(fr)(m) = f(m) \cdot r$ for a homomorphism of left R-modules $f : M \to R$ and $m \in M$. The involution allows us to view $M^* = \text{hom}_R(M, R)$ as a left R-module, namely, define rf for $r \in R$ and $f \in M^*$ by $(rf)(m) := f(m) \cdot r$ for $m \in M$.

Notation 8.4. Given a finitely generated projective R-module P, denote by $e(P) : P \cong (P^*)^*$ the canonical isomorphism of (left) R-modules that sends $p \in P$ to the element in $(P^*)^*$ given by $P^* \to R$, $f \mapsto \int(fp)$.

We will often use the following elementary fact. Let $f : P \to Q$ be a homomorphism of finitely generated projective R-modules. Then the following diagram commutes

$$
\begin{array}{ccc}
P & \xrightarrow{f} & Q \\
\downarrow{e(P)} & \cong & \cong \downarrow{e(Q)} \\
(P^*)^* & \xrightarrow{(f^*)^*} & (Q^*)^*
\end{array}
$$
Exercise 8.6. Show that the map $e(P) : P \to (P^*)^*$ of Notation 8.4 is a well-defined isomorphism of finitely generated projective R-modules, is compatible with direct sums and is natural, i.e., the diagram (8.5) commutes.

Definition 8.7 (Non-singular ϵ-symmetric form). Let $\epsilon \in \{\pm 1\}$. An ϵ-symmetric form (P, ϕ) over an associative ring R with unit and involution is a finitely generated projective (left) R-module P together with an R-map $\phi : P \to P^*$ such that the composite $P \xrightarrow{e(P)} (P^*)^* \xrightarrow{\phi^*} P^*$ agrees with $\epsilon \cdot \phi$.

A morphism $f : (P, \phi) \to (P', \phi')$ of ϵ-symmetric forms is an R-homomorphism $f : P \to P'$ satisfying $f^* \circ \phi' \circ f = \phi$.

We call an ϵ-symmetric form (P, ϕ) non-singular, if ϕ is an isomorphism.

If ϵ is 1 or -1 respectively, we often replace ϵ-symmetric by symmetric or skew-symmetric respectively. The direct sum of two ϵ-symmetric forms is defined in the obvious way. The direct sum of two non-singular ϵ-symmetric forms is again a non-singular ϵ-symmetric form.

Remark 8.8 (ϵ-symmetric forms as pairings). We can rewrite an ϵ-symmetric form (P, ϕ) as a pairing

$$\lambda : P \times P \to R, \quad (p, q) \mapsto \phi(p)(q).$$

The conditions that ϕ is R-linear and that $\phi(p)$ is R-linear for all $p \in P$ translates to

$$\lambda(p, r_1 \cdot q_1 + r_2 \cdot q_2, r_1) = r_1 \cdot \lambda(p, q_1) + r_2 \cdot \lambda(p, q_2);$$

$$\lambda(r_1 \cdot p_1 + r_2 \cdot p_2, q) = \lambda(p_1, q) \cdot r_1 + \lambda(p_2, q) \cdot r_2.$$

The condition $\phi = \epsilon \cdot \phi^* \circ e(P)$ translates to $\lambda(q, p) = \epsilon \cdot \overline{\lambda(p, q)}$.

If we consider the real numbers \mathbb{R} as a ring with involution by the trivial involution, then a non-singular 1-symmetric form ϕ on a finite dimensional \mathbb{R}-vector space V such that $\phi(x)(x) \geq 0$ holds for all $x \in \mathbb{R}^n$ is the same as a scalar product on V. If we consider the complex numbers \mathbb{C} as a ring with involution by taking complex conjugation, then the corresponding statement holds for a finite dimensional complex vector space.

Definition 8.9 (The standard hyperbolic ϵ-symmetric form). Let P be a finitely generated projective R-module. The standard hyperbolic ϵ-symmetric form $H^\epsilon(P)$ is given by the R-module $P \oplus P^*$ and the R-isomorphism

$$\phi : (P \oplus P^*) \xrightarrow{\begin{pmatrix} 0 & 1 \\ \epsilon & 0 \end{pmatrix}} P^* \oplus P \xrightarrow{id \oplus e(P)} P^* \oplus (P^*)^* \xrightarrow{\rho} (P \oplus P^*)^*,$$

where ρ is the obvious R-isomorphism.
If we write the standard hyperbolic ϵ-symmetric form $H^\epsilon(P)$ as a pairing, see Remark 8.8 we obtain

$$(P \oplus P^*) \times (P \oplus P^*) \to \mathbb{R}, \quad ((p, \alpha), (p', \alpha')) \mapsto \alpha'(p) + \epsilon \cdot \alpha(p').$$

8.2.2 The Signature

Consider a non-singular symmetric bilinear pairing $s: V \times V \to \mathbb{R}$ for a finite dimensional real vector space V, or, equivalently, a non-singular symmetric form of finitely generated free \mathbb{R}-modules. Choose a basis for V and let A be the square matrix describing s with respect to this basis. Since s is symmetric and non-singular, A is symmetric and invertible. Hence A can be diagonalized by an orthogonal matrix U to a diagonal matrix whose entries on the diagonal are non-zero real numbers. Let n_+ be the number of positive entries and n_- be the number of negative entries on the diagonal. These two numbers are independent of the choice of the basis and the orthogonal matrix U. Namely n_+ is the maximum of the dimensions of subvector spaces $W \subset V$, on which s is positive-definite, and analogous for n_-. Obviously $n_+ + n_- = \dim_{\mathbb{R}}(V)$.

Definition 8.10 (Signature). Define the *signature* of the non-singular symmetric bilinear pairing $s: V \times V \to \mathbb{R}$ for a finite dimensional real vector space V to be the integer

$$\text{sign}(s) := n_+ - n_-.$$

Define the signature of a non-singular symmetric form over \mathbb{Z} to be the signature of the associated non-singular symmetric form over \mathbb{R}.

Lemma 8.11. Let $s: V \times V \to \mathbb{R}$ be a non-singular symmetric bilinear pairing for a finite dimensional real vector space V. Then $\text{sign}(s) = 0$, if and only if there exists a subvector space $L \subset V$ such that $\dim_{\mathbb{R}}(V) = 2 \cdot \dim_{\mathbb{R}}(L)$ and $s(a, b) = 0$ for $a, b \in L$.

Proof. Suppose that $\text{sign}(s) = 0$. Then one can find an orthogonal (with respect to s) basis $\{b_1, b_2, \ldots, b_{n_+}, c_1, c_2, \ldots, c_{n_-}\}$ such that $s(b_i, b_j) = 1$ and $s(c_i, c_j) = -1$ holds. Since $0 = \text{sign}(s) = n_+ - n_-$, we can define L to be the subvector space generated by $\{b_i + c_i \mid i = 1, 2, \ldots, n_+\}$. One easily checks that L has the desired properties.

Suppose such an $L \subset V$ exists. Choose subvector spaces V_+ and V_- of V such that s is positive-definite on V_+ and negative-definite on V_- and that V_+ and V_- are maximal with respect to this property. Then $V_+ \cap V_- = \{0\}$ and $V = V_+ \oplus V_-$. Obviously $V_+ \cap L = V_- \cap L = \{0\}$. From

$$\dim_{\mathbb{R}}(V_+) + \dim_{\mathbb{R}}(L) - \dim_{\mathbb{R}}(V_+ \cap L) \leq \dim_{\mathbb{R}}(V),$$

we conclude $\dim_{\mathbb{R}}(V_+) \leq \dim_{\mathbb{R}}(V) - \dim_{\mathbb{R}}(L)$. Since $2 \cdot \dim_{\mathbb{R}}(L) = \dim_{\mathbb{R}}(V) = \dim_{\mathbb{R}}(V_+) + \dim_{\mathbb{R}}(V_-)$ holds, we get $\dim_{\mathbb{R}}(V_+) = \dim_{\mathbb{R}}(L)$. This implies...
\[\text{sign}(s) = \dim_{\mathbb{R}}(V_+) - \dim_{\mathbb{R}}(V_-) = \dim_{\mathbb{R}}(L) - \dim_{\mathbb{R}}(L) = 0. \]

\[\square \]

If \(M \) is an orientable connected closed manifold of dimension \(d \), then \(H_d(M) \) is infinite cyclic. An orientation on \(M \) is equivalent to a choice of generator \([M] \in H_d(M)\) called fundamental class. This definition extends to a (not necessarily connected) orientable closed manifold \(M \) of dimension \(d \) by defining \([M] \in H_d(M)\) to be the image of \(\{[C] \mid C \in \pi_0(M)\} \) under the canonical isomorphism \(\bigoplus_{C \in \pi_0(M)} H_{\dim(M)}(C) \cong H_{\dim(M)}(M) \).

Example 8.12 (Intersection pairing). Let \(M \) be a closed oriented manifold of even dimension \(2n \). Then we obtain a \((-1)^n\)-symmetric form on the finitely generated free \(\mathbb{R} \)-module \(H^n(M; \mathbb{R}) \):

\[i: H^n(M; \mathbb{R}) \times H^n(M; \mathbb{R}) \to \mathbb{R} \]

by sending \([x], [y]\) for \(x, y \in H^n(M; \mathbb{R}) \) to \(\langle x \cup y, [M]_\mathbb{R} \rangle \), where \(\langle u, v \rangle \) denotes the Kronecker product and \([M]_\mathbb{R}\) is the image of the fundamental class \([M]\) under the change of rings homomorphism \(H_n(M; \mathbb{Z}) \to H_n(M; \mathbb{R}) \). It is non-singular by Poincaré duality.

Next we define a fundamental invariant of a closed oriented manifold, namely, its signature. This is the first kind of surgery obstruction we will encounter.

Definition 8.13 (Signature of a closed oriented manifold). Let \(M \) be a closed oriented manifold of dimension \(n \). If \(n \) is divisible by four, then the signature \(\text{sign}(M) \) of \(M \) is defined to be the signature of its intersection pairing. If \(n \) is not divisible by four, define \(\text{sign}(M) = 0 \).

One easily checks \(\text{sign}(M) = \sum_{C \in \pi_0(M)} \text{sign}(C) \).

Exercise 8.14. Let \(M \) be an oriented closed \(4k \)-dimensional manifold. Let \(\chi(M) \) be its Euler characteristic. Show \(\text{sign}(M) \equiv \chi(M) \mod 2 \).

The signature can also be defined for oriented compact manifolds with possibly non-empty boundary, see for instance [235 Definition 5.84 on page 121], and has the following properties.

Theorem 8.15 (Properties of the signature of oriented compact manifolds).

(i) The signature is an oriented bordism invariant, i.e., if \(M \) is a \((4k + 1)\)-dimensional oriented compact manifold with boundary \(\partial M \), then

\[\text{sign}(\partial M) = 0; \]
(ii) Let M and N be oriented compact manifolds and $f: \partial M \to \partial N$ be an orientation reversing diffeomorphism. Then $M \cup_f N$ inherits an orientation from M and N and

$$\text{sign}(M \cup_f N) = \text{sign}(M) + \text{sign}(N);$$

(iii) Let M and N be oriented compact manifolds. Then

$$\text{sign}(M \times N, \partial(M \times N)) = \text{sign}(M, \partial M) \cdot \text{sign}(N, \partial N);$$

(iv) Let $p: \overline{M} \to M$ be a finite covering with d sheets of oriented closed manifolds. Then

$$\text{sign}(\overline{M}) = d \cdot \text{sign}(M);$$

(v) If the oriented oriented connected closed manifolds M and N are oriented homotopy equivalent, then

$$\text{sign}(M) = \text{sign}(N);$$

(vi) If M is an oriented closed manifold and M^- is obtained from M by reversing the orientation, then

$$\text{sign}(M^-) = -\text{sign}(M).$$

Proof. Let $i: \partial M \to M$ be the inclusion. Then the following diagram commutes

$$
\begin{array}{c}
H^{2k}(M; \mathbb{R}) \xrightarrow{H^{2k}(i)} H^{2k}(\partial M; \mathbb{R}) \xrightarrow{\delta^{2k}} H^{2k+1}(M, \partial M; \mathbb{R}) \\
\xrightarrow{-\cap [M, \partial M]} \cong \quad \xrightarrow{-\cap [\partial M, [M, \partial M]; \mathbb{R}]} \cong \\
H_{2k+1}(M, \partial M; \mathbb{R}) \xrightarrow{\partial_{2k+1}} H_{2k}(\partial M; \mathbb{R}) \xrightarrow{H_{2k}(i)} H_{2k}(M; \mathbb{R}).
\end{array}
$$

This implies $\dim_{\mathbb{R}}(\ker(H_{2k}(i))) = \dim_{\mathbb{R}}(\text{im}(H^{2k}(i))).$ Since \mathbb{R} is a field, we get from the Kronecker pairing an isomorphism $H^{2k}(M; \mathbb{R}) \cong (H_{2k}(M; \mathbb{R}))^*$ and analogously for $\partial M.$ Under these identifications $H^{2k}(i)$ becomes $(H_{2k}(i))^*.$ Hence $\dim_{\mathbb{R}}(\text{im}(H_{2k}(i))) = \dim_{\mathbb{R}}(\text{im}(H^{2k}(i))).$ From

$$\dim_{\mathbb{R}}(H_{2k}(\partial M; \mathbb{R})) = \dim_{\mathbb{R}}(\ker(H_{2k}(i))) + \dim_{\mathbb{R}}(\text{im}(H_{2k}(i)))$$

we conclude

$$\dim_{\mathbb{R}}(H^{2k}(\partial M; \mathbb{R})) = 2 \cdot \dim_{\mathbb{R}}(\text{im}(H^{2k}(i))).$$

We have for $x, y \in H^{2k}(M; \mathbb{R})$
\[\langle H^{2k}(i)(x) \cup H^{2k}(i)(y), \partial_{4k+1}([M, \partial M]) \rangle \]
\[= \langle H^{4k}(i)(x \cup y), \partial_{4k+1}([M, \partial M]) \rangle \]
\[= \langle x \cup y, H^{4k}(i) \circ \partial_{4k+1}([M, \partial M]) \rangle \]
\[= \langle x \cup y, 0 \rangle \]
\[= 0. \]

If we apply Lemma 8.11 to the non-singular symmetric bilinear pairing

\[H^{2k}(\partial M; \mathbb{R}) \otimes \mathbb{R} H^{2k}(\partial M; \mathbb{R}) \xrightarrow{} H^{4k}(\partial M; \mathbb{R}) \]
\[\langle -, \partial_{4k+1}(\partial M; \mathbb{R}) \rangle \xrightarrow{} \mathbb{R} \]

with \(L \) the image of \(H^{2k}(i): H^{2k}(M; \mathbb{R}) \to H^{2k}(\partial M; \mathbb{R}) \), we see that the signature of this pairing is zero.

This is due to Novikov. For a proof see for instance [55, Proposition 7.1 on page 588].

(ii) See for instance [235, Lemma 5.85 (ii) on page 121].

(iii) For a smooth manifold \(M \) this follows from Atiyah’s \(L^2 \)-index theorem [48, (1.1)]. Topological closed manifolds are treated in [806, Theorem 8].

(iv) The two intersection pairings are isomorphic and hence have the same signatures.

(v) This follows from \([M^-] = -[M] \). \(\square \)

Exercise 8.16. Compute for \(n \geq 1 \) the signature of:

(i) the complex projective space \(\mathbb{CP}^n \);
(ii) the total space \(STM \) of the sphere tangent bundle of an oriented closed \(n \)-dimensional manifold \(M \);
(iii) an oriented closed \(n \)-dimensional manifold \(M \) admitting an orientation reversing selfdiffeomorphism.

8.2.3 Quadratic Forms

Next we introduce quadratic forms, which are refinements of symmetric forms.

Notation 8.17. For a finitely generated projective \(R \)-module \(P \) define an involution of \(R \)-modules

\[T = T(P): \hom_R(P, P^*) \to \hom_R(P, P^*), \quad u \mapsto u^* \circ e(P). \]

Notation 8.18. Let \(P \) be a finitely generated projective \(R \)-module. Define abelian groups
\[Q'(P) := \ker((1 - \epsilon \cdot T): \hom_R(P, P^*) \to \hom_R(P, P^*)) ; \]
\[Q_\epsilon(P) := \coker((1 - \epsilon \cdot T): \hom_R(P, P^*) \to \hom_R(P, P^*)) . \]

An \(R \)-homomorphism \(f: P \to Q \) induces a homomorphism of abelian groups
\[Q'(f): Q'(Q) \to Q'(P), \quad u \mapsto f^* \circ u \circ f; \]
\[Q_\epsilon(f): Q_\epsilon(Q) \to Q_\epsilon(P), \quad [u] \mapsto [f^* \circ u \circ f]. \]

Let
\[(1 + \epsilon \cdot T): Q_\epsilon(P) \to Q_\epsilon(P) \]
be the homomorphism, which sends the class \([u]\) represented by \(u: P \to P^*\) to the element \(u + \epsilon \cdot T(u)\).

Definition 8.19 (Non-singular \(\epsilon \)-quadratic form). Let \(\epsilon \in \{\pm 1\} \). An \(\epsilon \)-quadratic form \((P, \psi)\) is a finitely generated projective \(R \)-module \(P \) together with an element \(\psi \in Q_\epsilon(P) \). It is called non-singular if the associated \(\epsilon \)-symmetric form \((P, (1 + \epsilon \cdot T)(\psi))\) is non-singular, i.e. \((1 + \epsilon \cdot T)(\psi): P \to P^*\) is bijective.

A morphism \(f: (P, \psi) \to (P', \psi') \) of two \(\epsilon \)-quadratic forms is an \(R \)-homomorphism \(f: P \to P' \) such that the induced map \(Q_\epsilon(f): Q_\epsilon(P') \to Q_\epsilon(P) \) sends \(\psi'\) to \(\psi \).

Given a non-singular \(\epsilon \)-symmetric form \((P, \phi)\), a quadratic refinement is a non-singular \(\epsilon \)-quadratic form \((P, \psi)\) with \(\phi = (1 + \epsilon \cdot T)(\psi) \).

There is an obvious notion of a direct sum of two \(\epsilon \)-quadratic forms. The direct sum of two non-singular \(\epsilon \)-quadratic forms is a non-singular \(\epsilon \)-quadratic form.

Remark 8.20 (\(\epsilon \)-quadratic forms as pairings). An \(\epsilon \)-quadratic form \((P, \phi)\) is the same as a triple \((P, \lambda, \mu)\) consisting of a pairing
\[\lambda: P \times P \to R \]
satisfying
\[\lambda(p, r_1 \cdot q_1 + r_2 \cdot q_2) = r_1 \cdot \lambda(p, q_1) + r_2 \cdot \lambda(p, q_2); \]
\[\lambda(r_1 \cdot p_1 + r_2 \cdot p_2, q) = \lambda(p_1, q) \cdot r_1 + \lambda(p_2, q) \cdot r_2; \]
\[\lambda(q, p) = \epsilon \cdot \lambda(p, q), \]
and a map
\[\mu: P \to Q_\epsilon(R) = R/\{r - \epsilon \cdot \mathfrak{r} \mid r \in R\} \]
satisfying
\[\mu(rp) = r\mu(p)\mathfrak{r}; \]
\[\mu(p + q) - \mu(p) - \mu(q) = pr(\lambda(p, q)); \]
\[\lambda(p, p) = (1 + \epsilon \cdot T)(\mu(p)), \]
where \(pr: R \rightarrow Q_e(R) \) is the projection and \((1 + \epsilon \cdot T): Q_e(R) \rightarrow R\) the map sending the class of \(r \) to \(r + \epsilon \cdot \tau \). Namely, put
\[
\lambda(p, q) = ((1 + \epsilon \cdot T)(\psi)(p))(q);
\]
\[
\mu(p) = \psi(p)(p).
\]
These two descriptions of an \(\epsilon \)-quadratic form are equivalent by \cite[Theorem 1]{897}.

Definition 8.21 (The standard hyperbolic \(\epsilon \)-quadratic form). Let \(P \) be a finitely generated projective \(R \)-module. The standard hyperbolic \(\epsilon \)-quadratic form \(H_\epsilon(P) \) is given by the \(R \)-module \(P \oplus P^* \) and the class in \(Q_e(P \oplus P^*) \) of the \(R \)-homomorphism
\[
\phi: (P \oplus P^*) \xrightarrow{(0 \ 1) \ \ (0 \ 0)} P^* \oplus P \xrightarrow{id \oplus \epsilon(p)} P^* \oplus (P^*)^* \xrightarrow{\rho} (P \oplus P^*)^*,
\]
where \(\rho \) is the obvious \(R \)-isomorphism.

If we write the standard hyperbolic \(\epsilon \)-quadratic form \(H_\epsilon(P) \) as a pairing, see Remark \cite{8.20}, we obtain
\[
\lambda: (P \oplus P^*) \times (P \oplus P^*) \rightarrow R, \quad ((p, \alpha), (p', \alpha')) \mapsto \alpha'(p) + \epsilon \cdot \alpha(p');
\]
\[
\mu: P \oplus P^* \rightarrow Q_e(R), \quad (p, \alpha) \mapsto pr(\alpha(p)).
\]
In particular the \(\epsilon \)-symmetric form associated to the standard \(\epsilon \)-quadratic form \(H_\epsilon(P) \) is just the standard \(\epsilon \)-symmetric form \(H^\epsilon(P) \).

Exercise 8.22. Let \(\lambda: P \times P \rightarrow \mathbb{Z} \) be a non-singular symmetric \(\mathbb{Z} \)-bilinear pairing on the finitely generated free \(\mathbb{Z} \)-module \(P \). Show that it has, when considered as a non-singular symmetric form, a quadratic refinement, if and only if \(\lambda(x, x) \) is even for all \(x \in P \).

Remark 8.23. Suppose that \(1/2 \in R \). Then the homomorphism
\[
(1 + \epsilon \cdot T): Q_e(P) \rightarrow Q^e(P), \quad [u] \mapsto [u + \epsilon \cdot T(u)]
\]
is bijective. The inverse sends \(v \) to \([v/2]\). Hence any \(\epsilon \)-symmetric form carries a unique \(\epsilon \)-quadratic structure. Therefore there is no difference between the symmetric and the quadratic setting, if \(2 \) is invertible in \(R \).

8.3 Even-Dimensional \(L \)-groups

Next we define even-dimensional \(L \)-groups. Below \(R \) is an associative ring with unit and involution.
Definition 8.24 (L-groups in even dimensions). For an even integer \(n = 2k \) define the abelian group \(L_n(R) \), called the \(n \)-th quadratic \(L \)-group, of \(R \) to be the abelian group of equivalence classes \([(P,\psi)]\) of non-singular \((-1)^k\)-quadratic forms \((P,\psi)\), whose underlying \(R \)-module \(P \) is a finitely generated free \(R \)-module, with respect to the following equivalence relation: We call \((P,\psi)\) and \((P',\psi')\) equivalent, if and only if there exists integers \(u, u' \geq 0 \) and an isomorphism of non-singular \((-1)^k\)-quadratic forms

\[
(P,\psi) \oplus H_\epsilon(R)^u \cong (P',\psi') \oplus H_\epsilon(R)^{u'}.
\]

Addition is given by the direct sum of two \((-1)^k\)-quadratic forms. The zero element is represented by \([H_{(-1)^k}(R)]\) for any integer \(u \geq 0 \). The inverse of \([P,\psi]\) is given by \([P,-\psi]\).

A morphism \(u: R \to S \) of rings with involution induces homomorphisms \(u_*: L_n(R) \to L_n(S) \) and \(u^*: L^n(R) \to L^n(S) \) for even \(n \in \mathbb{Z} \) by induction satisfying \((u \circ v)_* = u_* \circ v_* \) and \((\text{id}_R)_* = \text{id}_{L^k(R)}\) for \(k = 0, 2 \).

Next we will present a criterion for an \(\epsilon \)-quadratic form \((P,\psi)\) to represent zero in \(L_{1-\epsilon}(R) \). Let \((P,\psi)\) be an \(\epsilon \)-quadratic form. A sublagrangian \(L \subset P \) is an \(R \)-submodule such that the inclusion \(i: L \to P \) is split injective, the image of \(\psi \) under the map \(Q_{\epsilon}(i): Q_{\epsilon}(P) \to Q_{\epsilon}(L) \) is zero and \(L \) is contained in its annihilator \(L^\perp \), which is by definition the kernel of

\[
P \xrightarrow{(1+\epsilon \cdot T)(\psi)} P^* \xrightarrow{i^*} L^*.
\]

A sublagrangian \(L \subset P \) is called lagrangian if \(L = L^\perp \). Equivalently, a lagrangian \(L \subset P \) is an \(R \)-submodule \(L \) with inclusion \(i: L \to P \) such that the sequence

\[
0 \to L \xrightarrow{i} P \xrightarrow{i^* \cdot (1+\epsilon \cdot T)(\psi)} L^* \to 0.
\]

is exact.

Lemma 8.25. Let \((P,\psi)\) be an \(\epsilon \)-quadratic form. Let \(L \subset P \) be a sublagrangian. Then \(L \) is a direct summand in \(L^\perp \) and \(\psi \) induces the structure of a non-singular \(\epsilon \)-quadratic form \((L^\perp/L,\psi^\perp/\psi)\). Moreover, the inclusion \(i: L \to P \) extends to an isomorphism of \(\epsilon \)-quadratic forms

\[
H_\epsilon(L) \oplus (L^\perp/L,\psi^\perp/\psi) \cong (P,\psi).
\]

In particular a non-singular \(\epsilon \)-quadratic form \((P,\psi)\) is isomorphic to \(H_\epsilon(Q) \), if and only if it contains a lagrangian \(L \subset P \), which is isomorphic as \(R \)-module to \(Q \).

Proof. See for instance [235, Lemma 8.92 on page 250]. \(\square \)

Exercise 8.26. Show for a non-singular \(\epsilon \)-quadratic form \((P,\psi)\) that \((P,\psi) \oplus (P,-\psi)\) is isomorphic to \(H_\epsilon(P) \) and hence an inverse of \([(P,\psi)]\) in \(L_{1-\epsilon}(R) \) is given by \([(P,-\psi)]\).
Exercise 8.27. Show that the signature defines an isomorphism $L_0(\mathbb{R}) \xrightarrow{\cong} \mathbb{Z}$.

Finally we state the computation of the even-dimensional L-groups of the ring of integers \mathbb{Z}. Consider an element (P, ϕ) in $L_0(\mathbb{Z})$. By tensoring over \mathbb{Z} with \mathbb{R} and only taking the symmetric structure into account, we obtain a non-singular symmetric \mathbb{R}-bilinear pairing $\lambda: \mathbb{R} \otimes_{\mathbb{Z}} P \times \mathbb{R} \otimes_{\mathbb{Z}} P \rightarrow \mathbb{R}$. It turns out that its signature is always divisible by eight. A proof the the following classical result can be found for instance in [233, Subsection 8.5.2], see also [653].

Theorem 8.28 (L-groups of the ring of integers in dimension $4n$).
The signature defines for $n \in \mathbb{Z}$ an isomorphism

$$\frac{1}{8} \cdot \text{sign}: L_{4n}(\mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}, \quad [P, \psi] \mapsto \frac{1}{8} \cdot \text{sign}(\mathbb{R} \otimes_{\mathbb{Z}} P, \lambda).$$

Consider a non-singular quadratic form (P, ψ) over the field \mathbb{F}_2 of two elements. Write (P, ψ) as a triple (P, λ, μ) as explained in Remark 8.20. Choose any symplectic basis $\{b_1, b_2, \ldots, b_{2m}\}$ for P, where symplectic means that $\lambda(b_i, b_j)$ is 1 if $i - j = m$ and 0 otherwise. Such a symplectic basis always exists. Define the Arf invariant of (P, ψ) by

$$(8.29) \quad \text{Arf}(P, \psi) := \sum_{i=1}^{m} \mu(b_i) \cdot \mu(b_{i+m}) \in \mathbb{Z}/2.$$

It turns out that the Arf invariant of (P, ψ) is 1 if and only if μ sends a (strict) majority of the elements of P to 1, see [147, Corollary III.1.9 on page 55]. (Because of this property sometimes the Arf invariant is called the democratic invariant.) This description shows that (8.29) is independent of the choice of symplectic basis.

Exercise 8.30. Let V be a two-dimensional \mathbb{F}_2-vector space. Classify all non-singular quadratic forms on V up to isomorphism and compute their Arf invariants.

The Arf invariant defines an isomorphism

$$\text{Arf}: L_{2n}(\mathbb{F}_2) \xrightarrow{\cong} \mathbb{Z}/2,$$

essentially, since two non-singular quadratic forms over \mathbb{F}_2 on the same finite dimensional \mathbb{F}_2-vector space are isomorphic, if and only if they have the same Arf invariant, see [137, Theorem III.1.12 on page 55]. The change of rings homomorphism $\mathbb{Z} \rightarrow \mathbb{F}_2$ induces an isomorphism,

$$L_{4n+2}(\mathbb{Z}) \xrightarrow{\cong} L_{4n+2}(\mathbb{F}_2).$$
This implies, see for instance [235, Subsection 8.5.3],

Theorem 8.31 (L-groups of the ring of integers in dimension $4n + 2$).

The Arf invariant defines for $n \in \mathbb{Z}$ an isomorphism

$$\text{Arf}: L_{4n+2}^2(\mathbb{Z}) \cong \mathbb{Z}/2, \quad [(P, \psi)] \mapsto \text{Arf}(\mathbb{F}_2 \otimes \mathbb{Z} (P, \psi)).$$

For more information about forms over the integers and the Arf invariant we refer for instance to [147, 653]. Implicitly the computation of $L_n(\mathbb{Z})$ is already in [520].

8.4 Intersection and Selfintersection Pairings

The notions of an ϵ-symmetric form as presented in Remark 8.8 and of an ϵ-quadratic form as presented in Remark 8.20 are best motivated by considering intersections and selfintersection pairings. When trying to solve a surgery problem in even dimensions, one faces in the final step, namely, when dealing with the middle dimension, the problem to decide, whether we can change an immersion $f: S^k \to M$ within its regular homotopy class to an embedding, where M is a compact manifold of dimension $n = 2k$. This problem leads in a natural way to selfintersection pairings and to the notion of ϵ-quadratic form as explained next.

8.4.1 Intersections of Immersions

Let $k \geq 2$ be a natural number and let M be a connected compact smooth manifold of dimension $n = 2k$. We fix base points $s \in S^k$ and $b \in M$. We will consider pointed immersions (f, w), i.e., an immersion $f: S^k \to M$ together with a path w from b to $f(s)$. A regular homotopy $h: M \times [0, 1] \to N$ from an immersion $q_0: M \to N$ to an immersion $q_1: M \to N$ is a (continuous, but not necessarily smooth) homotopy $h: M \times [0, 1] \to N$ such that $h_0 = q_0$, $h_1 = q_1$, $h_t: M \to N$ is a (smooth) immersion for each $t \in [0, 1]$ and the derivatives $Th_t: TM \to TN$ of h_t fit together to define a (continuous) homotopy of bundle monomorphisms

$$TM \times [0, 1] \to TN, \quad (v, t) \mapsto Th_t(v)$$

between Tq_0 and Tq_1. A pointed regular homotopy from (f_0, w_0) to (f_1, w_1) is a regular homotopy $h: S^k \times [0, 1] \to M$ from $h_0 = f_0$ to $h_1 = f_1$ such that $w_0 \ast h(s, -)$ and w_1 are homotopic paths relative end points. Here $h(s, -)$ is the path from $f_0(s)$ to $f_1(s)$ given by restricting h to $\{s\} \times [0, 1]$. Denote by $I_k(M)$ the set of pointed regular homotopy classes of pointed immersions.
from S^k to M. We need the paths to define the structure of an abelian group on $I_k(M)$. The sum of $[(f_0, w_0)]$ and $[(f_1, w_1)]$ is given by the connected sum along the path $w_0 * w_1$ from $f_0(s)$ to $f_1(s)$. The zero element is given by the composite of the standard embedding $S^k \to \mathbb{R}^{k+1} \subset \mathbb{R}^{k+1} \times \mathbb{R}^{k-1} = \mathbb{R}^n$ with some embedding $\mathbb{R}^n \subset M$ and any path w from b to the image of s. The inverse of the class of (f, w) is the class of $(f \circ a, w)$ for any base point preserving diffeomorphism $a : S^k \to S^k$ of degree -1.

The fundamental group $\pi = \pi_1(M, b)$ operates on $I_k(M)$ by composing the path w with a loop at b. Thus $I_k(M)$ inherits the structure of a $\mathbb{Z} \pi$-module.

Next we want to define the intersection pairing

(8.32) \[\lambda : I_k(M) \times I_k(M) \to \mathbb{Z} \pi. \]

For this purpose we will have to fix an orientation of $T_b M$ at b. Consider $\alpha_0 = [(f_0, w_0)]$ and $\alpha_1 = [(f_1, w_1)]$ in $I_k(M)$. Choose representatives (f_0, w_0) and (f_1, w_1). We can arrange without changing the pointed regular homotopy class that $D = \text{im}(f_0) \cap \text{im}(f_1)$ is finite, for any $y \in D$ both the preimage $f_0^{-1}(y)$ and the preimage $f_1^{-1}(y)$ consists of precisely one point, and for any two points x_0 and x_1 in S^k with $f_0(x_0) = f_1(x_1)$ we have $T_{x_0}f_0(T_{x_0}S^k) + T_{x_1}f_1(T_{x_1}S^k) = T_{f_0(x_0)}M$. Consider $d \in D$. Let x_0 and x_1 in S^k be the points uniquely determined by $f_0(x_0) = f_1(x_1) = d$. Let u_i be a path in S^k from s to x_i. Then we obtain an element $g(d) \in \pi$ by the loop at b given by the composite $w_1 * f_1(u_1) * f_0(u_0)^{-1} * w_0^{-1}$. Recall that we have fixed an orientation of $T_b M$. The fiber transport along the path $w_0 * f(u_0)$ yields an isomorphism $T_b M \cong T_d M$, which is unique up to isotopy. Hence $T_d M$ inherits an orientation from the given orientation of $T_b M$. The standard orientation of S^k determines an orientation on $T_{x_0}S^k$ and $T_{x_1}S^k$. We have the isomorphism of oriented vector spaces

$$T_{x_0}f_0 \oplus T_{x_1}f_1 : T_{x_0}S^k \oplus T_{x_1}S^k \cong T_d M.$$

Define $\epsilon(d) = 1$, if this isomorphism respects the orientations and $\epsilon(d) = -1$ otherwise. The elements $g(d) \in \pi$ and $\epsilon(d) \in \{\pm 1\}$ are independent of the choices of u_0 and u_1, since S^k is simply connected for $k \geq 2$. Define

$$\lambda(\alpha_0, \alpha_1) := \sum_{d \in D} \epsilon(d) \cdot g(d).$$

Lift $b \in M$ to a base point $\tilde{b} \in \tilde{M}$. Let $\tilde{f}_i : S^k \to \tilde{M}$ be the unique lift of f_i determined by w_i and b for $i = 0, 1$. Let $\lambda_\mathbb{Z}(\tilde{f}_0, \tilde{f}_1)$ be the \mathbb{Z}-valued intersection number of \tilde{f}_0 and \tilde{f}_1. This is the same as the algebraic intersection number of the classes in the k-th homology with compact support defined by \tilde{f}_0 and \tilde{f}_1, which obviously depends only on the homotopy classes of \tilde{f}_0 and \tilde{f}_1. Then

(8.33) \[\lambda(\alpha_0, \alpha_1) = \sum_{g \in \pi} \lambda_\mathbb{Z}(\tilde{f}_0, l_{g^{-1}} \circ \tilde{f}_1) \cdot g, \]
where \(l_{g^{-1}} \) denotes left multiplication with \(g^{-1} \). This shows that \(\lambda(\alpha_0, \alpha_1) \) depends only on the pointed regular homotopy classes of \((f_0, w_0)\) and \((f_1, w_1)\).

Below we use the \(w_1(M) \)-twisted involution on \(\mathbb{Z} \pi \), which sends \(\sum_{g \in \pi} a_g \cdot g \) to \(\sum_{g \in \pi} w_1(M)(g) \cdot a_g \cdot g^{-1} \), where \(w_1(M) : \pi \to \{\pm 1\} \) is the first Stiefel-Whitney class of \(M \). One easily checks

Lemma 8.34. For \(\alpha, \beta, \beta_1, \beta_2 \in I_k(M) \) and \(u_1, u_2 \in \mathbb{Z} \pi \) we have

\[
\lambda(\alpha, \beta) = (-1)^k \cdot \lambda(\beta, \alpha);
\]

\[
\lambda(\alpha, u_1 \cdot \beta_1 + u_2 \cdot \beta_2) = u_1 \cdot \lambda(\alpha, \beta_1) + u_2 \cdot \lambda(\alpha, \beta_2).
\]

Remark 8.35 (Intersection pairing and \((-1)^k\)-symmetric forms).

Lemma 8.34 says that the pair \((I_k(M), \lambda)\) satisfies all the requirements appearing in Remark 8.8 except that \(I_k(M) \) may not be finitely generated free over \(\mathbb{Z} \pi \).

Remark 8.36 (The intersection pairing as necessary obstruction for finding an embedding). Suppose that the normal bundle of the immersion \(f : S^k \to M \) has a nowhere vanishing section. (In the typical situation, which appears in surgery theory, it actually will be trivial.) Suppose that \(f \) is regular homotopic to an embedding \(g \). Then the normal bundle of \(g \) has a nowhere vanishing section \(\sigma \). Let \(g' \) be the embedding obtained by moving \(g \) a little bit in the direction of this normal vector field \(\sigma \). Choose a path \(w_f \) from \(f(s) \) to \(b \). Then for appropriate paths \(w_g \) and \(w_{g'} \) we get pointed embeddings \((g, w_g)\) and \((g', w_{g'})\) such that the pointed regular homotopy classes of \((f, w), (g, w_g)\) and \((g', w_{g'})\) agree. Since \(g \) and \(g' \) have disjoint images, we conclude

\[
\lambda([f, w], [f, w]) = 0.
\]

Hence the vanishing of \(\lambda([f, w], [f, w]) \) is a necessary condition for finding an embedding in the regular homotopy class of \(f \), provided that the normal bundle of \(f \) has a nowhere vanishing section. It is not a sufficient condition. To get a sufficient condition we have to consider self-intersections, what we will do next.

8.4.2 Selfintersections of Immersions

Let \(\alpha \in I_k(M) \) be an element. Let \((f, w)\) be a pointed immersion representing \(\alpha \). Recall that we have fixed base points \(s \in S^k, b \in M \) and an orientation of \(T_bM \). Since we can find arbitrarily close to \(f \) an immersion, which is in general position, we can assume without loss of generality that \(f \) itself is in general position. This means that there is a finite subset \(D \) of \(\text{im}(f) \) such that \(f^{-1}(y) \) consists of precisely two points for \(y \in D \) and of precisely one point for \(y \in \text{im}(f) - D \) and that for two points \(x_0 \) and \(x_1 \) in \(S^k \) with \(x_0 \neq x_1 \) and
8.4 Intersection and Selfintersection Pairings

For any \(d \in D \) an ordering \(x_0(d), x_1(d) \) of \(f^{-1}(d) \). Analogously to the construction above one defines \(\epsilon(x_0(d), x_1(d)) \in \{ \pm 1 \} \) and \(g(x_0(d), x_1(d)) \in \pi = \pi_1(M, b) \). Consider the element \(\sum_{d \in D} \epsilon(x_0(d), x_1(d)) \cdot g(x_0(d), x_1(d)) \) of \(\mathbb{Z}_\pi \). It does not only depend on \(f \), but also on the choice of the ordering of \(f^{-1}(d) \) for \(d \in D \).

One easily checks that the change of ordering of \(f^{-1}(d) \) has the following effect for \(w = w_1(M) : \pi \to \{ \pm 1 \} \):

\[
\begin{align*}
g(x_1(d), x_0(d)) &= g(x_0(d), x_1(d))^{-1}; \\
g(w(x_1(d), x_0(d))) &= w(g(x_0(d), x_1(d))); \\
\epsilon(x_1(d), x_0(d)) &= (-1)^k \cdot w(g(x_0(d), x_1(d))) \cdot \epsilon(x_0(d), x_1(d)); \\
\epsilon(x_1(d), x_0(d)) \cdot g(x_1(d), x_0(d)) &= (-1)^k \cdot \epsilon(x_0(d), x_1(d)) \cdot g(x_0(d), x_1(d)).
\end{align*}
\]

We have defined the abelian group \(Q_{(-1)^k}(\mathbb{Z}_\pi, w) \) in Notation 8.18. Define the selfintersection element for \(\alpha \in I_k(M) \):

\[
(8.37) \quad \mu(\alpha) := \left[\sum_{d \in D} \epsilon(x_0(d), x_1(d)) \cdot g(x_0(d), x_1(d)) \right] \in Q_{(-1)^k}(\mathbb{Z}_\pi, w).
\]

The passage from \(\mathbb{Z}_\pi \) to \(Q_{(-1)^k}(\mathbb{Z}_\pi, w) \) ensures that the definition is independent of the choice of the order on \(f^{-1}(d) \) for \(d \in D \). It remains to show that it depends only on the pointed regular homotopy class of \((f, w) \). Let \(h \) be a pointed regular homotopy from \((f, w) \) to \((g, v) \). We can arrange that \(h \) is in general position. In particular each immersion \(h_t \) is in general position and comes with a set \(D_t \). The collection of the \(D_t \)'s yields a bordism \(W \) from the finite set \(D_0 \) to the finite set \(D_1 \). Since \(W \) is a compact one-dimensional manifold, it consists of circles and arcs joining points in \(D_0 \cup D_1 \) to points in \(D_0 \cup D_1 \). Suppose that the point \(c \) and the point \(c' \) in \(D_0 \cup D_1 \) are joint by an arc. Then one easily checks that their contributions to

\[
\mu(f, w) - \mu(g, w) := \left[\sum_{d_0 \in D_0} \epsilon(x_0(d_0), x_1(d_0)) \cdot g(x_0(d_0), x_1(d_0)) \right] - \left[\sum_{d_1 \in D_1} \epsilon(x_0(d_1), x_1(d_1)) \cdot g(x_0(d_1), x_1(d_1)) \right]
\]

cancel out. This implies \(\mu(f, w) = \mu(g, w) \).

Consider the pairing

\[
(8.38) \quad \rho : \mathbb{Z}_\pi \times Q_{(-1)^k}(\mathbb{Z}_\pi, w) \to Q_{(-1)^k}(\mathbb{Z}_\pi, w), \quad (u, [v]) \mapsto [uv mau].
\]

It is additive in the second variable, i.e., \(\rho(x, [y_1] - [y_2]) = \rho(x, [y_1]) - \rho(x, [y_2]) \), but it is not additive in the first variable and in particular \(\rho \) does not give the structure of a left \(\mathbb{Z}_\pi \)-module on \(Q_{(-1)^k}(\mathbb{Z}_\pi, w) \).
\textbf{Lemma 8.39.} Let $\mu: I_k(M) \to Q_{(-1)^k}(\mathbb{Z}\pi, w)$ be the map given by the self-intersection element, see \hbox{[8.37]}, and let $\lambda: I_k(M) \times I_k(M) \to \mathbb{Z}\pi$ be the intersection pairing, see \hbox{[8.32]}. Then

(i) Let $(1 + ((-1)^k \cdot T): Q_{(-1)^k}(\mathbb{Z}\pi, w) \to \mathbb{Z}\pi$ be the homomorphism of abelian groups, which sends $[u]$ to $u + (1)^k \cdot \pi$. Denote for $\alpha \in I_k(M)$ by $\chi(\alpha) \in \mathbb{Z}$ the Euler number of the normal bundle $\nu(f)$ for any representative (f, w) of α with respect to the orientation of $\nu(f)$ given by the standard orientation on S^k and the orientation on f^*TM given by the fixed orientation on T_bM and w. Then

$$\chi(\alpha) = (1 + (1)^k \cdot T)(\mu(\alpha)) + \chi(\alpha) \cdot 1;$$

(ii) We get for $\text{pr}: \mathbb{Z}\pi \to Q_{(-1)^k}(\mathbb{Z}\pi, w)$ the canonical projection and $\alpha, \beta \in I_k(M)$

$$\mu(\alpha + \beta) - \mu(\alpha) - \mu(\beta) = \text{pr}(\lambda(\alpha, \beta)) ;$$

(iii) For $\alpha \in I_k(M)$ and $u \in \mathbb{Z}\pi$ we get with respect to the obvious $\mathbb{Z}\pi$-bimodule structure on $Q_{(-1)^k}(\mathbb{Z}\pi, w)$

$$\mu(x \cdot \alpha) = \rho(x, \mu(\alpha)),$$

where ρ is defined in \hbox{[8.38]}.

\textbf{Proof.} [i] Represent $\alpha \in I_k(M)$ by a pointed immersion (f, w), which is in general position. Choose a section σ of $\nu(f)$, which meets the zero section transversally. Note that then the Euler number satisfies

$$\chi(f) = \sum_{y \in N(\sigma)} \epsilon(y),$$

where $N(\sigma)$ is the (finite) set of zero points of σ and $\epsilon(y)$ is a sign, which depends on the local orientations. We can arrange that no zero of σ is the preimage of an element in the set of double points D_f of f. Now move f a little bit in the direction of this normal field σ. We obtain a new immersion $g: S^k \to M$ with a path v from b to $g(s)$ such that (f, w) and (g, v) are pointed regularly homotopic.

We want to compute $\chi(\alpha, \alpha)$ using the representatives (f, w) and (g, v). Note that any point in $d \in D_f$ corresponds to two distinct points $x_0(d)$ and $x_1(d)$ in the set $D = \text{im}(f) \cap \text{im}(g)$ and any element $n \in N(\sigma)$ corresponds to one point $x(n)$ in D. Moreover any point in D occurs as $x_1(d)$ or $x(n)$ in a unique way. Now the contribution of d to $\lambda([(f, w)], [(g, v)])$ is $\epsilon(d) \cdot g(d) + (1)^k \cdot \epsilon(d) \cdot g(d)$ and the contribution of $n \in N(\sigma)$ is $\epsilon(n) \cdot 1$. Now assertion (i) follows.

(ii) and (iii) The proof of these assertions are left to the reader. \hfill \square

\textbf{Remark 8.40 (Selfintersection pairing and $(-1)^k$-quadratic forms).} Lemma \hbox{[8.39]} says that the triple $(I_k(M), \lambda, \mu)$ satisfies all the requirements
appearing in Remark 8.20 except that $I_k(M)$ may not be finitely generated free over \mathbb{Z}_2 and we have to require $\chi(\alpha) = 0$, which will be satisfied in the cases of interest.

Theorem 8.41 (Selfintersections and embeddings). Let M be a t-connected compact manifold of even dimension $n = 2k$. Fix base points $s \in S^k$ and $b \in M$ and an orientation of $T_b M$. Let (f, w) be a pointed immersion of S^k in M. Suppose that $k \geq 3$. Then (f, w) is pointed homotopic to a pointed immersion (g, v), for which $g: S^k \to M$ is an embedding, if and only if $\mu(f, w) = 0$.

Proof. If f is represented by an embedding, then $\mu(f, w) = 0$ by definition. Suppose that $\mu(f, w) = 0$. We can assume without loss of generality that f is in general position. Since $\mu(f, w) = 0$, we can find d and e in the set of double points D_f of f and a numeration $x_0(d), x_1(d)$ of $f^{-1}(d)$ and $x_0(e), x_1(e)$ of $f^{-1}(e)$ such that

\[
e(x_0(d), x_1(d)) = -e(x_0(e), x_1(e));
\]

\[
g(x_0(d), x_1(d)) = g(x_0(e), x_1(e)).
\]

Therefore we can find arcs u_0 and u_1 in S^k such that $u_0(0) = x_0(d), u_0(1) = x_0(e), u_1(0) = x_1(d)$ and $u_1(1) = x_1(e)$, the path u_0 and u_1 are disjoint from one another, $f(u_0((0, 1)))$ and $f(u_1((0, 1)))$ do not meet D_f and $f(u_0)$ and $f(u_1)$ are homotopic relative endpoints. We can change u_0 and u_1 without destroying the properties above and find a smooth map $U: D^2 \to M$, whose restriction to S^1 is an embedding (ignoring corners on the boundary) and is given on the upper hemisphere $S^1_+ = u_0$ and on the lower hemisphere S^1_- by u_1, and which meets im(f) transversally. There is a compact neighborhood K of S^1 such that $U|_K$ is an embedding. Since $k \geq 3$ we can find arbitrarily close to U an embedding, which agrees with U on K. Hence we can assume without loss of generality that U itself is an embedding. The Whitney trick, see [650, Theorem 6.6 on page 71], [922], allows to change f within its pointed regular homotopy class to a new pointed immersion (g, v) such that $D_g = D_f - \{d, e\}$ and $\mu(g, v) = 0$. By iterating this process we achieve $D_f = \emptyset$. \hfill \Box

Remark 8.42 (The dimension assumption $\dim(M) \geq 5$). The condition $\dim(M) \geq 5$, which arises in high-dimensional manifold theory, ensures in the proof of Theorem 8.41 that $k \geq 3$ and hence we can arrange U to be an embedding. If $k = 2$, one can achieve that U is an immersion but not necessarily an embedding. This is the technical reason, why surgery in dimension 4 is much more complicated than in dimensions ≥ 5.

Exercise 8.43. Let $f: S^k \to M$ be an immersion into a compact $2k$-dimensional manifold. Suppose that it is in general position and the set of double points consists of precisely one element. Show that f is not regular homotopic to an embedding.
Exercise 8.44. Construct an immersion $f: M \to N$ of connected closed manifolds, which is homotopic, but not regularly homotopic to an embedding.

8.5 The Surgery Obstruction in Even Dimensions

We give a brief introduction to the surgery obstruction in even dimension to motivate the relevance of the L-groups for topology. We will use the signs conventions as they appear in [235, Subsection 14.2].

8.5.1 Poincaré Duality Spaces

Consider a connected finite CW-complex X with fundamental group π and a group homomorphism $w: \pi \to \{\pm 1\}$. Below we use the w-twisted involution on $\mathbb{Z}\pi$. Denote by $C_\ast(\tilde{X})$ the cellular $\mathbb{Z}\pi$-chain complex of the universal covering. It is a finite free $\mathbb{Z}\pi$-chain complex. The product $\tilde{X} \times \tilde{X}$ equipped with the diagonal π-action is again a π-CW-complex. The diagonal map $D: \tilde{X} \to \tilde{X} \times \tilde{X}$ sending \tilde{x} to (\tilde{x}, \tilde{x}) is π-equivariant but not cellular. By the equivariant cellular Approximation Theorem, see for instance [579, Theorem 2.1 on page 32], there is up to cellular π-homotopy precisely one cellular π-map $D: \tilde{X} \to \tilde{X} \times \tilde{X}$, which is π-homotopic to D. It induces a $\mathbb{Z}\pi$-chain map unique up to $\mathbb{Z}\pi$-chain homotopy

\[
C_\ast(D): C_\ast(\tilde{X}) \to C_\ast(\tilde{X} \times \tilde{X}).
\]

There is a natural isomorphism of $\mathbb{Z}\pi$-chain complexes

\[
i_\ast: C_\ast(\tilde{X}) \otimes_{\mathbb{Z}} C_\ast(\tilde{X}) \xrightarrow{\cong} C_\ast(\tilde{X} \times \tilde{X}).
\]

Definition 8.47 (Dual chain complex). Given an R-chain complex of left R-modules C_\ast and $n \in \mathbb{Z}$, we define its dual chain complex C_\ast^{n-*} to be the chain complex of left R-modules, whose p-th chain module is $\text{hom}_R(C_{n-p}, R)$ and whose p-th differential is given by

\[
(-1)^{n-p+1} \cdot \text{hom}_R(c_{n-p+1}, \text{id}): (C_\ast^{n-*})_p = \text{hom}_R(C_{n-p}, R) \to (C_\ast^{n-*})_{p-1} = \text{hom}_R(C_{n-p+1}, R).
\]

Denote by \mathbb{Z}^w the $\mathbb{Z}\pi$-module, whose underlying abelian group is \mathbb{Z} and on which $g \in \pi$ acts by $w(g) \cdot \text{id}$. Given two projective $\mathbb{Z}\pi$-chain complexes C_\ast and D_\ast, we obtain a natural \mathbb{Z}-chain map unique up to \mathbb{Z}-chain homotopy
by sending $1 \otimes x \otimes y \in \mathbb{Z} \otimes C_p \otimes D_q$ to
\[
s(1 \otimes x \otimes y) : \hom_{\mathbb{Z}_\pi}(C_p, \mathbb{Z}_\pi) \to D_q, \quad (\phi : C_p \to \mathbb{Z}_\pi) \mapsto (-1)^{|x|+|y|+|x|} \cdot \phi(x) \cdot y.
\]

The composite of the chain map (8.48) for $C_* = D_* = C_*(\tilde{X})$, the inverse of the chain map (8.46) tensored with $\mathbb{Z}^w \otimes_{\mathbb{Z}_\pi} -$, and the chain map (8.45) tensored with $\mathbb{Z}^w \otimes_{\mathbb{Z}_\pi} -$ yield a \mathbb{Z}-chain map
\[
\mathbb{Z}^w \otimes_{\mathbb{Z}_\pi} C_*(\tilde{X}) \to \hom_{\mathbb{Z}_\pi}(C^{-*}(\tilde{X}), C_*(\tilde{X})�).
\]

Note that the n-th homology of $\hom_{\mathbb{Z}_\pi}(C^{-*}((\tilde{X}), C_*(\tilde{X}))$ is the set of \mathbb{Z}_π-chain homotopy classes $[C^{n-*}((\tilde{X}), C_*(\tilde{X}))]_{\mathbb{Z}_\pi}$ of \mathbb{Z}_π-chain maps from $C^{n-*}((\tilde{X})$ to $C_*(\tilde{X})$. Define $H_n(X; \mathbb{Z}^w) := H_n(\mathbb{Z}^w \otimes_{\mathbb{Z}_\pi} C_*(\tilde{X}))$. Taking the n-th homology group yields a well-defined \mathbb{Z}-homomorphism
\[
\cap : H_n(X; \mathbb{Z}^w) \to [C^{n-*}((\tilde{X}), C_*(\tilde{X})]_{\mathbb{Z}_\pi}
\]
which sends a class $x \in H_n(X; \mathbb{Z}^w) = H_n(\mathbb{Z}^w \otimes_{\mathbb{Z}_\pi} C_*(\tilde{X}))$ to the \mathbb{Z}_π-chain homotopy class of a \mathbb{Z}_π-chain map denoted by $- \cap x : C^{n-*}(\tilde{X}) \to C_*(\tilde{X})$.

Definition 8.50 (Poincaré complex). A connected finite n-dimensional Poincaré complex is a connected finite CW-complex of dimension n together with a group homomorphism $w = w_1(X) : \pi_1(X) \to \{\pm 1\}$ called orientation homomorphism and an element $[X] \in H_n(X; \mathbb{Z}^w)$ called fundamental class such that the \mathbb{Z}_π-chain map $- \cap [X] : C^{n-*}(\tilde{X}) \to C_*(\tilde{X})$ is a \mathbb{Z}_π-chain homotopy equivalence. We will call it the Poincaré \mathbb{Z}_π-chain homotopy equivalence.

Exercise 8.51. Show that the orientation homomorphism $w : \pi_1(X) \to \{\pm 1\}$ is uniquely determined by the homotopy type of the finite n-dimensional Poincaré complex X.

Obviously there are two possible choices for $[X]$, since it has to be a generator of the infinite cyclic group $H_n(X, \mathbb{Z}^w) \cong H^0(X; \mathbb{Z}) \cong \mathbb{Z}$. A choice of $[X]$ will be part of the Poincaré structure.

A map $f : Y_1 \to Y_2$ of connected Poincaré complexes has degree one, if $w_1(Y_2) \circ \pi_1(f) = w_1(Y_2)$ and the map $H_n(Y_1, \mathbb{Z}^{w_1}(Y_1)) \to H_n(Y_2, \mathbb{Z}^{w_1}(Y_2))$ induced by f sends $[Y_1]$ to $[Y_2]$.

Theorem 8.52. Let M be a connected closed manifold of dimension n. Then M carries the structure of a connected finite n-dimensional Poincaré complex.

For a proof we refer for instance to [898, Theorem 2.1 on page 23].

Below a w-orientation of a connected closed manifold M of dimension n is a choice of a generator $[M]$ of the infinite cyclic group $H_n(M; \mathbb{Z}^{w_1}(M))$. We call
M ω-oriented, if we have chosen a ω-orientation. Note that ω-oriented does not necessarily mean that $\omega_1(M)$ is trivial. Following the standard conventions, we say that M is orientable if $\omega_1(M)$ is trivial and we call M oriented if $\omega_1(M)$ is trivial and we have chosen a fundamental class $[M] \in H_n(M; \mathbb{Z})$.

Remark 8.53 (Poincaré duality as obstruction for being homotopy equivalent to a closed manifold). Theorem 8.52 gives us the first obstruction for a topological space X to be homotopy equivalent to a connected closed n-dimensional manifold. Namely, X must be homotopy equivalent to a connected finite n-dimensional Poincaré complex.

8.5.2 Normal Maps and the Surgery Step

Definition 8.54 (Normal map of degree one). Let X be a connected finite n-dimensional Poincaré complex together with an m-dimensional vector bundle $\xi: E \to X$. A normal m-map (M, i, f, \bar{f}) with (X, ξ) as target consists of a ω-oriented connected closed manifold M of dimension n together with an embedding $i: M \to \mathbb{R}^{n+m}$ and a bundle map $(\bar{f}, f): \nu(M) \to \xi$, where $\nu(M)$ denotes the normal bundle $\nu(i)$ of the embedding $i: M \to \mathbb{R}^{m+n}$. A normal map of degree one is a normal map such that the degree of $f: M \to X$ is one.

Remark 8.55. We are somewhat sloppy here, since we ignore the problem that the choices of the fundamental classes and the bundle data have to be consistent with one another. This is an issue, which has been overlooked at many places. This is explained in detail and fixed in [235, Section 7.4, Example 7.46 and Remark 7.47 on page 204]. However, to keep this exposition comprehensible, we ignore this issue.

Given a normal map (M, i, f, \bar{f}) with (X, ξ) as target, we obtain for $k \geq 1$ a normal map (M, i', f', \bar{f}') with $(X, \xi \oplus \mathbb{R}^k)$ as target as follows. Let $i': M \to \mathbb{R}^{n+m+k}$ be the composite of the embedding $i: M \to \mathbb{R}^{n+m}$ with the standard inclusion $\mathbb{R}^{n+m} \to \mathbb{R}^{n+m+k}$. Then $\nu(i')$ is the Whitney sum $\nu(i) \oplus \mathbb{R}^k$, where \mathbb{R}^k is the trivial k-dimensional bundle. Let $\bar{f}': \nu(i') \to \xi \oplus \mathbb{R}^k$ be the stabilization of \bar{f}. We call (M, i', f', \bar{f}') a stabilization of (M, i, f, \bar{f}).

The next result is due to Whitney [921, 922].

Theorem 8.56 (Whitney’s Approximation Theorem). Let M and N be closed manifolds of dimensions m and n. Then any map $f: M \to N$ is arbitrarily close and in particular homotopic to an immersion, provided that $2m \leq n$, and arbitrarily close and in particular homotopic to an embedding, provided that $2m < n$.

Remark 8.57 (Existence of a normal map of degree one as obstruction for being homotopy equivalent to a closed manifold). Given a
finite \(n \)-dimensional Poincaré complex \(X \), the existence of a normal map of degree one with \((X, \xi) \) as target for some vector bundle \(\xi \) over \(X \) is necessary for \(X \) to be homotopy equivalent to a closed manifold. Namely, if \(f: M \to X \) is such a homotopy equivalence, choose a homotopy inverse \(g: X \to M \) and put
\[
\xi = g^* \nu(i) \quad \text{for some embedding} \quad i: M \subset \mathbb{R}^{n+m}. \]
Such an embedding exists always for \(n < m \) by Theorem 8.56. Obviously \(f \) can be covered by a bundle map \(\bar{f}: \nu(M) \to \xi \) and \(f \) has degree one.

Note that an orientation of a compact manifold \(W \) induces an orientation of its boundary \(\partial W \), see for instance [235, Lemma 5.34 on page 103]. In the special case \(W = M \times [0,1] \) for closed \(M \), the induced orientations on \(M_0 = M \times \{0\} \) and \(M_1 = M \times \{1\} \) are inverse to one another.

Definition 8.58 (Normal bordism). Consider two normal maps of degree one \((M_k, i_k, f_k, \bar{f}_k)\) with the same target \((X, \xi)\) for \(k = 0, 1 \). A normal bordism from \((f_0, f_0)\) to \((f_1, f_1)\) consists of a \(w \)-oriented connected compact manifold \(W \) with boundary \(\partial W \), an embedding \(j: (W, \partial W) \to (\mathbb{R}^{n+m} \times [0,1], \mathbb{R}^{n+m} \times \{0,1\}) \), a map \((F, \partial F): (W, \partial W) \to (X \times [0,1], X \times \{0,1\})\) of degree one covered by a bundle map \(F: \nu(W) \to \xi \) and an orientation preserving diffeomorphism \(u: \partial W \xrightarrow{\cong} M_0 \sqcup M_1 \) satisfying the obvious compatibility conditions.

We call \((M_0, i_0, f_0, \bar{f}_0)\) and \((M_1, i_1, f_1, \bar{f}_1)\) normally bordant, if after stabilization there exists a normal bordism between them.

Note Definition 8.58 corresponds in [235] to the notion of a normal bordism with cylindrical ends.

Exercise 8.59. Let \((M, i_0, f_0, \bar{f}_0)\) be a normal map of degree one with target \((X, \xi)\). Let \(i_1: M \to \mathbb{R}^{n+k} \) be an embedding. Show that there exists a normal map of degree one \((M, i_1, f_1, \bar{f}_1)\) with target \((X, \xi)\), which is normally bordant to \((M, i_0, f_0, \bar{f}_0)\).

Below we will often suppress the embedding \(i: M \to \mathbb{R}^{n+m} \) in the notation.

8.5.3 The Surgery Step

So the question is, whether we can modify a normal map of degree one with \((X, \xi)\) as target (without changing the target) so that the underlying map \(f \) is a homotopy equivalence. There is a procedure in the world of CW-complexes to turn a map into a weak homotopy equivalence, namely by attaching cells. If \(f: Y_1 \to Y_2 \) is already \(k \)-connected, we can attach \((k+1)\) cells to \(Y_1 \) to obtain an extension \(f': Y_1' \to Y_2 \) of \(f \), which is \((k+1)\)-connected. In principle we want to do the same for a normal map of degree one with target \((X, \xi)\). However, there are two fundamental difficulties. First of all we have to keep...
the manifold structure on the source and cannot therefore just attach cells. Moreover, by Poincaré duality any modification in dimension k will cause a dual modification in dimension $n-k$, if n is the dimension of X so that one encounters at any rate problems when n happens to be $2k$. Consider a normal map (\bar{f}, f): $\nu(M) \to \xi$ such that $f: M \to X$ is a k-connected map. Consider an element $\omega \in \pi_{k+1}(f)$ represented by a diagram

\[
\begin{array}{ccc}
S^k & \xrightarrow{q} & M \\
\downarrow{j} & & \downarrow{f} \\
D^{k+1} & \xrightarrow{\nu} & X.
\end{array}
\]

We cannot attach a single cell to M without destroying the manifold structure. But one can glue two manifolds together along a common boundary such that the result is a manifold. Suppose that the map $q: S^k \to M$ extends to an embedding $\bar{q}: S^k \times D^{n-k} \to M$. (This assumption will be justified later.) Let $\text{int}(\text{im}(\bar{q}))$ be the interior of the image of \bar{q}. Then $M - \text{int}(\text{im}(\bar{q}))$ is a manifold with boundary $\text{im}(\bar{q}|_{S^k \times S^{n-k-1}})$. We can get rid of the boundary by attaching $D^{k+1} \times S^{n-k-1}$ along $\text{im}(\bar{q}|_{S^k \times S^{n-k-1}})$. Call the result

\[M' := D^{k+1} \times S^{n-k-1} \cup_{\text{im}(\bar{q}|_{S^k \times S^{n-k-1}})} (M - \text{int}(\text{im}(\bar{q}))).\]

Here and elsewhere we apply without further mentioning the technique of straightening the angle in order to get a well-defined smooth structure, see [145, Definition 13.11 on page 145 and (13.12) on page 148] and [444, Chapter 8, Section 2]. Choose a map $\bar{Q}: D^{k+1} \times D^{n-k} \to X$, which extends Q and $f \circ \bar{q}$. The restriction of f to $M - \text{int}(\text{im}(\bar{q}))$ extends to a map $f': M' \to X$ using $\bar{Q}|_{D^{k+1} \times S^{n-k}}$. Note that the inclusion $M - \text{int}(\text{im}(\bar{q})) \to M$ is $(n-k-1)$-connected, since $S^k \times S^{n-k-1} \to S^k \times D^{n-k}$ is $(n-k-1)$-connected. So the passage from M to $M - \text{int}(\text{im}(\bar{q}))$ will not affect $\pi_j(f)$ for $j < n-k-1$. All in all we see that $\pi_l(f) = \pi_l(f')$ for $l \leq k$ and that there is an epimorphism $\pi_{k+1}(f) \to \pi_{k+1}(f')$, whose kernel contains ω, provided that $2(k+1) \leq n$. The condition $2(k+1) \leq n$ can be viewed as a consequence of Poincaré duality. Roughly speaking, if we change something in a manifold in dimension l, Poincaré duality forces also a change in dimension $(n-l)$. This phenomenon will cause surgery obstructions to appear.

Note that $f: M \to X$ and $f': M' \to X$ are bordant. The relevant bordism is given by $W = D^{k+1} \times D^{n-k} \cup_{\bar{Q}} M \times [0,1]$, where we think of \bar{q} as an embedding $S^k \times D^{n-k} \to M \times \{1\}$. In other words, W is obtained from $M \times [0,1]$ by attaching a handle $D^{k+1} \times D^{n-k}$ to $M \times \{1\}$. Then M appears in W as $M \times \{0\}$ and M' as other part of the boundary of W. Define $F: W \to X$ by $f \times \text{id}_{[0,1]}$ and \bar{Q}. Then F restricted to M and M' is f and f'.
8.5 The Surgery Obstruction in Even Dimensions

Why can we assume that the map \(q: S^k \to M \) extends to an embedding \(\overline{q}: S^k \times D^{n-k} \to M \)? This will be ensured by the bundle data in the case \(2k + 1 < n \) by the following argument.

Because of Theorem \(\ref{thm:surgery-obstruction-even} \), we can arrange that \(q \) is an embedding. The extension \(\overline{q} \) exists, if and only if the normal bundle \(\nu(q) \) of the embedding \(q: S^k \to M \) is trivial. Since \(D^{k+1} \) is contractible, every vector bundle over \(D^{k+1} \) is trivial. Hence \(Q^*\xi \) is a trivial vector bundle over \(D^{k+1} \). Recall that \(i: M \to \mathbb{R}^{m+n} \) is a fixed embedding and \(\nu(M) \) is defined to be the normal bundle \(\nu(i) \) of \(i \). Pullbacks of trivial vector bundles are trivial again. This implies that \(q^*\nu(M) \cong q^*f^*\xi \cong j^*Q^*\xi \) is a trivial vector bundle over \(S^k \).

Since \(\nu(q) \oplus q^*\nu(M) \cong \nu(i): S^k \to \mathbb{R}^{n+m} \) is trivial, \(\nu(q) \) is a stably trivial \((n-k)\)-dimensional vector bundle over \(S^k \). Since \(2k + 1 \leq n \), this implies that \(\nu(q) \) itself is trivial.

So we see that the bundle data are needed to carry out the desired surgery step. Note that the construction yields a map \(f': M' \to X \) of degree one and a bundle map \(\overline{f}' : \nu(M') \to \xi \) covering \(f' \) so that we end up with a normal map of degree one with target \(X \) again. Hence we are able to repeat this surgery step over and over again in dimensions \(2k - 1 \leq n \). Actually, also the bordism \(W \) together with the map \(F: W \to X \) come by a bundle map \(\overline{F} : \nu(W) \to \xi \) covering \(F \) and is therefore a normal bordism in the sense of Definition \(\ref{def:normbordism} \). In particular surgery does not change the normal bordism class.

Lemma 8.60. Consider a normal map of degree one \((\overline{f}, f): \nu(M) \to \xi \) covering \(f: M \to X \), where \(M \) is a \(w \)-oriented connected closed manifold of dimension \(n \) and \(X \) is a connected finite Poincaré complex of dimension \(n \). Let \(k \) be the natural number given by \(n = 2k \) or \(n = 2k + 1 \).

Then we can always arrange by finitely many surgery steps that for the resulting normal map of degree one \((\overline{f}', f'): \nu(M') \to \xi \) its underlying map \(f': M' \to X \) is \(k \)-connected.

Now assume that \(n \) is even, let us say \(n = 2k \). As mentioned above, we can arrange that \(f \) is \(k \)-connected. If we can achieve that \(f \) is \((k + 1)\)-connected, then by Poincaré duality the map \(f \) is a homotopy equivalence.

But in this last step we encounter a problem, which actually leads to the surgery obstruction in the even-dimensional case. Namely, in the argument above we used at one point that the map \(q: S^k \to M \) can be arranged to be an embedding by general position if \(2k + 1 \leq n \) and that certain normal bundle are trivial. In the situation \(n = 2k \) we can arrange \(q \) to be an immersion by Theorem \(\ref{thm:surgery-obstruction-even} \) and simultaneously ensure that the bundle data carry over to the desired normal bordism essentially because of a systematic use of Theorem \(\ref{thm:immersion} \) below. However, the latter fixes the regular homotopy class of the immersion \(q \). Hence one open problem is to ensure that we can change \(q \) to an embedding within its regular homotopy class. We have already introduced the main obstruction for that, the selfintersection element in \(\ref{sec:obstruction} \). We also encounter the problem that by Poincaré duality any change in the homology...
of the middle dimension comes with a dual change and one has to ensure that there two have the desired effect and do not disturb one another. Next we explain how this leads to the so called surgery obstruction in \(L_{2k}(\mathbb{Z}_\pi(X))\) with respect to the \(w_1(X)\)-twisted involution on \(\mathbb{Z}_\pi\).

8.5.4 The Even-Dimensional Surgery Obstruction

For the rest of this subsection we fix a normal map \((f, f): \nu(M) \to \xi\) of degree one covering \(f: M \to X\), where \(M\) is a \(w\)-oriented connected closed manifold of dimension \(n\) and \(X\) is a connected finite Poincaré complex of dimension \(n\). Suppose that \(f\) induces an isomorphism on the fundamental groups. Fix a base point \(b \in M\) together with lifts \(\tilde{b} \in \tilde{M}\) of \(b\) and \(\tilde{f}(b) \in \tilde{X}\) of \(f(b)\). We identify \(\pi = \pi_1(M, b) = \pi(X, f(b))\) by \(\pi_1(f, b)\). The choices of \(\tilde{b}\) and \(\tilde{f}(b)\) determine \(\pi\)-operations on \(\tilde{M}\) and on \(\tilde{X}\) and a lift \(\tilde{f}: \tilde{M} \to \tilde{X}\), which is \(\pi\)-equivariant.

Definition 8.61 (Surgery kernels). Let \(K_k(\tilde{M})\) be the kernel of the \(\mathbb{Z}_\pi\)-map \(H_k(f): H_k(\tilde{M}) \to H_k(\tilde{X})\). Denote by \(K^k(\tilde{M})\) the cokernel of the \(\mathbb{Z}_\pi\)-map \(H^k(f): H^k(\tilde{X}) \to H^k(\tilde{M})\), which is the \(\mathbb{Z}_\pi\)-map induced by \(C^*(f): C^*(\tilde{X}) \to C^*(\tilde{M})\). We call \(K_k(\tilde{M})\) the surgery kernel.

Given two vector bundles \(\xi: E \to M\) and \(\eta: F \to N\), we have so far only considered bundle maps \((\tilde{f}, f): \xi \to \eta\), which are fiberwise isomorphisms. We need to consider, at least for the next theorem, more generally bundle monomorphisms, i.e., we only will require that the map is fiberwise injective. Consider two bundle monomorphisms \((\tilde{f}_0, f_0), (\tilde{f}_1, f_1): \xi \to \eta\). Let \(\xi \times [0, 1]\) be the vector bundle \(\xi \times \text{id}: E \times [0, 1] \to M \times [0, 1]\). A homotopy of bundle monomorphisms \((\tilde{f}_0, f_0)\) to \((\tilde{f}_1, f_1)\) is a bundle monomorphism \((\tilde{h}, h): \xi \times [0, 1] \to \eta\) whose restriction to \(X \times \{j\}\) is \((\tilde{f}_j, f_j)\) for \(j = 0, 1\). Denote by \(\pi_0(\text{Mono}(\xi, \eta))\) the set of homotopy classes of bundle monomorphisms.

For a proof of the following result we refer to Haefliger-Poenaru [401], Hirsch [443] and Smale [833]. Denote by \(\pi_0(\text{Imm}(M, N))\) the set of regular homotopy classes of immersions from \(M\) to \(N\).

Theorem 8.62 (Immersions and Bundle Monomorphisms). Let \(M\) be an \(m\)-dimensional and \(N\) be an \(n\)-dimensional closed manifold.

(i) Suppose that \(1 \leq m < n\). Then taking the differential of an immersion yields a bijection

\[
T: \pi_0(\text{Imm}(M, N)) \xrightarrow{\cong} \pi_0(\text{Mono}(TM, TN));
\]
Suppose that $1 \leq m \leq n$ and that M has a handlebody decomposition consisting of q-handles for $q \leq n - 2$. Then taking the differential of an immersion yields a bijection

$$T: \pi_0(\text{Imm}(M, N)) \xrightarrow{\cong} \text{colim}_{a \to \infty} \pi_0(\text{Mono}(TM \oplus \mathbb{R}^a, TN \oplus \mathbb{R}^a)),$$

where the colimit is given by stabilization.

Lemma 8.63. (i) The cap product with $[M]$ induces isomorphisms

$$- \cap [M]: K^{n-k}(\widetilde{M}) \xrightarrow{\cong} K_k(\widetilde{M});$$

(ii) Suppose that f is k-connected. Then there is the composite of natural $\mathbb{Z}\pi$-isomorphisms

$$h_k: \pi_{k+1}(f) \xrightarrow{\cong} \pi_{k+1}(\widetilde{f}) \xrightarrow{\cong} H_{k+1}(\widetilde{f}) \xrightarrow{\cong} K_k(\widetilde{M});$$

(iii) Suppose that f is k-connected and $n = 2k$. Then there is a natural $\mathbb{Z}\pi$-homomorphism

$$t_k: \pi_{k+1}(f) \to I_k(M).$$

Proof. (i) The following diagram commutes and has isomorphisms as vertical arrows

$$
\begin{array}{ccc}
H^{n-k}(\widetilde{M}) & \xrightarrow{\cong} & H^{n-k}(\widetilde{X}) \\
\cap [M] & \simeq & \cap [X] \\
\downarrow & & \downarrow \\
H_k(\widetilde{M}) & \xrightarrow{\cong} & H_k(\widetilde{X}).
\end{array}
$$

Hence the composite $K_k(\widetilde{M}) \to H_k(\widetilde{M}) \xrightarrow{(- \cap [M])^{-1}} H^{n-k}(\widetilde{M}) \to K^{n-k}(\widetilde{M})$ is bijective.

(ii) The commutative square (8.64) above implies that $H_l(\widetilde{f}): H_l(\widetilde{M}) \to H_l(\widetilde{X})$ is split surjective for all l. We conclude from the long exact sequence of $C_{*}(\widetilde{f})$ that the boundary map

$$\partial: H_{k+1}(\widetilde{f}) := H_{k+1}(\text{cone}(C_{*}(\widetilde{f}))) \to H_k(\widetilde{M})$$

induces an isomorphism

$$\partial_{k+1}: H_{k+1}(\widetilde{f}) \xrightarrow{\cong} K_k(\widetilde{M}).$$

Since f and hence \widetilde{f} is k-connected, the Hurewicz homomorphism

$$\pi_{k+1}(\widetilde{f}) \xrightarrow{\cong} H_{k+1}(\widetilde{f})$$
is bijective [916, Corollary IV.7.10 on on page 181]. The canonical map

$$\pi_{k+1}(\tilde{f}) \to \pi_{k+1}(f)$$

is bijective. The composite of the maps above or their inverses yields a natural isomorphism $h_k: \pi_{k+1}(f) \to K_k(M)$.

Note that an element in $\pi_{k+1}(f, b)$ is given by a commutative diagram

$$
\begin{array}{ccc}
S^k & \xrightarrow{q} & M \\
\downarrow & & \downarrow \\
D^{k+1} & \xrightarrow{Q} & X
\end{array}
$$

together with a path w from b to $f(s)$ for a fixed base point $s \in S^k$. We leave the details of the rest of the proof, which is based on Theorem 8.62 (iii), to the reader. The necessary bundle monomorphisms come from the bundle data of (\tilde{f}, f), the stable triviality of TS^k and the fact that any vector bundle over D^{k+1} is trivial. \hfill \Box

Suppose that $n = 2k$. The Kronecker product $\langle \ , \ \rangle: H^k(M) \times H_k(\tilde{M}) \to \mathbb{Z}_\pi$ is induced by the evaluation pairing $\text{hom}_{\mathbb{Z}_\pi}(C_p(\tilde{M}), \mathbb{Z}_\pi) \times C_p(\tilde{M}) \to \mathbb{Z}_\pi$ which sends (β, x) to $\beta(x)$. It induces a pairing

$$\langle \ , \ \rangle: K^k(\tilde{M}) \times K_k(\tilde{M}) \to \mathbb{Z}_\pi.
$$

Together with the isomorphism

$$- \cap [M]: K^{n-k}(\tilde{M}) \xrightarrow{\cong} K_k(\tilde{M})$$

of Theorem 8.63 (i) it yields the intersection pairing

$$\langle \ , \ \rangle: K^k(\tilde{M}) \times K_k(\tilde{M}) \to \mathbb{Z}_\pi.
$$

We get from Lemma 8.63 (iii) and (iii) a \mathbb{Z}_π-isomorphism

$$\alpha: K_k(\tilde{M}) \to I_k(\tilde{M}).
$$

We leave it to the reader to check

Lemma 8.67. The following diagram commutes

$$
\begin{array}{ccc}
K_k(\tilde{M}) \times K_k(\tilde{M}) & \xrightarrow{s} & \mathbb{Z}_\pi \\
\downarrow{\alpha \times \alpha} & & \downarrow{\text{id}} \\
I_k(M) \times I_k(M) & \xrightarrow{\lambda} & \mathbb{Z}_\pi
\end{array}
$$

\hfill \Box
Remark 8.71. Let \((K, \alpha)\) arrange by finitely many surgery steps on the trivial element in \(\pi\) taking the selfintersections into account, the non-singular \((\cdot, \cdot)\) if for some non-negative integer \(l\) the \(R\)-module \(V \oplus R^l\) is a finitely generated free \(R\)-module.

Exercise 8.68. Let \(f : X \to Y\) be a map of connected finite Poincaré complexes of dimension \(n \geq 4\). Suppose that \(f\) has degree one and that \(f\) is \((k+1)\)-connected, where \(k\) is given by \(n = 2k\), if \(n\) is even, and by \(n = 2k + 1\), if \(n\) is odd. Show that then \(f\) is a homotopy equivalence.

Recall that an \(R\)-module \(V\) is called stably finitely generated free if for some non-negative integer \(l\) the \(R\)-module \(V \oplus R^l\) is a finitely generated free \(R\)-module.

Lemma 8.69. If \(f : X \to Y\) is \(k\)-connected for \(n = 2k\) or \(n = 2k + 1\), then \(K_k(M)\) is stably finitely generated free.

Proof. See for instance \([233\text{ Lemma 8.54 (ii)}]\) on page 237.

Example 8.70 (Effect of trivial surgery). Consider the normal map \((\tilde{f}, f) : \nu(M) \to \xi\) covering the \(k\)-connected map of degree one \(f : M \to X\) for a \(w\)-oriented connected closed \(n\)-dimensional manifolds \(M\) for \(n = 2k\). If we do surgery on the zero element in \(\pi_{k+1}(f)\), then the effect on \(M\) is that \(M\) is replaced by the connected sum \(M' = M \# (S^k \times S^k)\). The effect on \(K_k(\tilde{M})\) is that it is replaced by \(K_k(\tilde{M}') = K_k(\tilde{M}) \oplus (\mathbb{Z} \pi \oplus \mathbb{Z} \pi)\). The intersection pairing on this new kernel is the sum of the given intersection pairing on \(K_k(\tilde{M})\) together with the standard hyperbolic symmetric form \(H^{(-1)^k}(\mathbb{Z} \pi)\). Moreover, taking the selfintersections into account, the non-singular \((-1)^k\)-quadratic form on the new kernel is direct sum of the the one of the old kernel and the standard hyperbolic \((-1)^k\)-quadratic form \(H^{(-1)^k}(\mathbb{Z} \pi)\). In particular we can arrange by finitely many surgery steps on the trivial element in \(\pi_{k+1}(f)\) that \(K_k(\tilde{M})\) is a finitely generated free \(\mathbb{Z} \pi\)-module.

Remark 8.71. Let \((\tilde{f}, f) : \nu(M) \to \xi\) be a normal map of degree one covering \(f : M \to X\), where \(M\) is a \(w\)-oriented connected closed manifold of dimension \(n\) and \(X\) is a connected finite Poincaré complex of dimension \(n\). Suppose that \(n = 2k\) and \(f\) is \(k\)-connected.

By Lemma 8.69 and Example 8.70, we can do finitely many trivial surgery steps to achieve that the kernel \(K_k(\tilde{M})\) is a finitely generated free \(\mathbb{Z} \pi\)-module. By the intersection pairing \(s\) of \(K_k(\tilde{M})\), we obtain a non-singular \((-1)^k\)-symmetric form \((K_k(\tilde{M}), s)\), see Remark 8.8.

So far we have not used the bundle data. They come now into play, when we want to refine \((K_k(\tilde{M}), s)\) to a non-singular \((-1)^k\)-quadratic form. Because of Remark 8.20 we have to specify a map \(t : K_k(\tilde{M}) \to Q_{(-1)^k}(\mathbb{Z} \pi)\). We will take the composite

\[
K_k(\tilde{M}) \xrightarrow{h_{(-1)^k}} \pi_{k+1}(f) \xrightarrow{h_k} I_k(M) \xrightarrow{\mu} Q_{(-1)^k}(\mathbb{Z} \pi),
\]
where μ has been defined \[8.37\], and the isomorphism h_k and the map t_k have been introduced in Lemma \[8.63\]. This is indeed a quadratic refinement by Lemma \[8.39\] and Lemma \[8.67\].

Definition 8.72 (Even-dimensional surgery obstruction). Consider a normal map of degree one $(\overline{f}, f): \nu(M) \to \xi$ covering $f: M \to X$, where M is a w-oriented connected closed manifold of even dimension $n = k$ and X is a connected finite Poincaré complex of dimension n with fundamental group π. Perform surgery below the middle dimension and trivial surgery in the middle dimension so that we obtain a k-connected normal map of degree one $(\overline{f}', f'): \nu(M') \to \xi$ such that $K_k(M')$ is finitely generated free $\mathbb{Z}\pi$-module.

Define the surgery obstruction of $(\overline{f}, f): \nu(M) \to \xi$

$$\sigma(\overline{f}, f) \in L_{2k}(\mathbb{Z}\pi, w_1(X))$$

by the class of the non-singular $(-1)^k$-quadratic form $(K_k(M'), s, t)$ of Remark \[8.71\].

We omit the proof that this element is well-defined, e.g., independent of the previous surgery steps.

Theorem 8.73 (Surgery obstruction in even dimensions). Consider a normal map of degree one $(\overline{f}, f): \nu(M) \to \xi$ covering $f: M \to X$, where M is a w-oriented connected closed manifold of even dimension $n = 2k$ and X is a connected finite Poincaré complex of dimension n with fundamental group π. Then:

(i) Suppose $k \geq 3$. Then $\sigma(\overline{f}, f) = 0$ in $L_n(\mathbb{Z}\pi, w_1(X))$, if and only if we can do a finite number of surgery steps to obtain a normal map $(\overline{f}', f'): \nu(M') \to \xi$, which covers a homotopy equivalence $f': M' \to X$;

(ii) The surgery obstruction $\sigma(\overline{f}, f)$ depends only on the normal bordism class of (\overline{f}, f).

Proof. We only give the proof of assertion (i). More details can be found in \[235\] Theorem 8.109 on page 260 or \[898\] Chapter 5. By Lemma \[8.60\] Example \[8.70\] and the definition of $L_{2k}(\mathbb{Z}\pi, w)$, we can arrange by finitely many surgery steps that the non-singular $(-1)^k$-quadratic form $(K_k(M), s, t)$ is isomorphic to $H_{(-1)^k}(\mathbb{Z}\pi^\times)$. Thus we can choose for some natural number v a $\mathbb{Z}\pi$-basis $\{b_1, b_2, \ldots, b_v, c_1, c_2, \ldots, c_v\}$ for $K_k(M)$ such that

\[
\begin{align*}
s(b_i, c_i) &= 1 & i & \in \{1, 2, \ldots, v\}; \\
s(b_i, c_j) &= 0 & i, j & \in \{1, 2, \ldots, v\}, i \neq j; \\
s(b_i, b_j) &= 0 & i, j & \in \{1, 2, \ldots, v\}; \\
s(c_i, c_j) &= 0 & i, j & \in \{1, 2, \ldots, v\}; \\
t(b_i) &= 0 & i & \in \{1, 2, \ldots, v\}.
\end{align*}
\]

Note that f is a homotopy equivalence, if and only if the number v is zero. Hence it suffices to explain how we can lower the number v to $(v - 1)$ by a
surgery step on an element in $\pi_{k+1}(f)$. Of course our candidate is the element ω in $\pi_{k+1}(f)$, which corresponds under the isomorphism $h: \pi_{k+1}(f) \to K_k(\hat{M})$, see Lemma 8.63 [24], to the element b_v. By construction the composite

$$\pi_{k+1}(f) \xrightarrow{\iota_k} I_k(M) \xrightarrow{\iota} Q_{(-1)^k}(\mathbb{Z}\pi, w)$$

of the maps defined in [8.37] and Lemma 8.63 [24] sends ω to zero. Now Theorem 8.41 ensures that we can perform surgery on ω. Note that the assumption $k \geq 3$ and the quadratic structure on the kernel become relevant exactly at this point. Finally it remains to check, whether the effect on $K_k(\hat{M})$ is the desired one, namely, that we get rid of one of the hyperbolic summands $H_*(\mathbb{Z}\pi)$, or equivalently, v is lowered to $v - 1$.

We have explained earlier that doing surgery yields not only a new manifold M', but also a bordism from M to M'. Namely, take $W = M \times [0, 1] \cup S^k \times D^{n-k}$ where we attach $D^{k+1} \times D^{n-k}$ by an embedding $S^k \times D^{n-k} \to M \times \{1\}$, and $M' := \partial W - M$, where we identify $M = M \times \{0\}$. The manifold W comes with a map $F: W \to X \times [0, 1]$, whose restriction to M is the given map $f: M = M \times \{0\} \to X = X \times \{0\}$ and whose restriction to M' is a map $f': M' \to X \times \{1\}$. The definition of the kernels makes also sense for pair of maps. We obtain an exact braid

\[
\begin{array}{cccccc}
0 & \rightarrow & K_{k+1}(\tilde{W}, \tilde{M}) & \rightarrow & K_k(\tilde{M}) & \rightarrow & K_k(\tilde{W}, M') & \rightarrow & 0 \\
0 & \rightarrow & K_{k+1}(\tilde{W}, \partial\tilde{W}) & \rightarrow & K_k(\tilde{W}) & \rightarrow & K_k(\tilde{M}) & \rightarrow & 0 \\
0 & \rightarrow & K_k(\tilde{M}') & \rightarrow & 0
\end{array}
\]

which combines the various long exact sequences of pairs.

The $(k+1)$-handle $D^{k+1} \times D^{n-k}$ defines an element ϕ^{k+1} in $K_{k+1}(\tilde{W}, \tilde{M})$ and the associated dual k-handle defines an element $\psi^k \in K_k(\tilde{W}, \tilde{M}')$. These elements constitute a $\mathbb{Z}\pi$-basis for $K_{k+1}(\tilde{W}, \tilde{M}) \cong \mathbb{Z}\pi$ and $K_k(\tilde{W}, M') \cong \mathbb{Z}\pi$. The $\mathbb{Z}\pi$-homomorphism $K_{k+1}(\tilde{W}, \tilde{M}) \to K_k(\tilde{M})$ maps ϕ to b_v. The $\mathbb{Z}\pi$-homomorphism $K_k(\tilde{M}) \to K_k(\tilde{W}, M')$ sends x to $s(b_v, x) \cdot \psi^k$. Hence we can find elements b_1, b_2, \ldots, b_v and $c_1', c_2', \ldots, c_{v-1}'$ in $K_{k+1}(\tilde{W}, \partial\tilde{W})$ uniquely determined by the property that b_i' is mapped to b_i and c_i' to c_i under the $\mathbb{Z}\pi$-homomorphism $K_{k+1}(\tilde{W}, \partial\tilde{W}) \to K_k(\tilde{M})$. Moreover, these elements form a $\mathbb{Z}\pi$-basis for $K_{k+1}(\tilde{W}, \partial\tilde{W})$ and the element ϕ^{k+1} is mapped to b_v' under the $\mathbb{Z}\pi$-homomorphism $K_{k+1}(\tilde{W}, \tilde{M}) \to K_{k+1}(\tilde{W}, \partial\tilde{W})$. Define b_i'' and c_i' for $i = 1, 2, \ldots, (v-1)$ to be the image of b_i' and c_i' under the $\mathbb{Z}\pi$-homomorphism.
We conclude from Remark 8.77 (Formations and automorphisms). One easily checks for the quadratic structure \((s', t')\) on \(K_k(M')\)

\[
\begin{align*}
 s'(b_i^u, c_j^u) &= s(b_i, c_j) = 1 & i & \in \{1, 2, \ldots, (v-1)\}; \\
 s'(b_i^u, c_j^u) &= s(b_i, c_j) = 0 & i, j & \in \{1, 2, \ldots, (v-1)\}, i \neq j; \\
 s'(b_i^u, b_j^u) &= s(b_i, b_j) = 0 & i, j & \in \{1, 2, \ldots, (v-1)\}; \\
 s'(c_i^u, c_j^u) &= s(c_i, c_j) = 0 & i, j & \in \{1, 2, \ldots, (v-1)\}; \\
 t'(b_i^u) &= t(b_i) = 0 & i & \in \{1, 2, \ldots, (v-1)\}.
\end{align*}
\]

This finishes the proof of assertion \(\Box\) of Theorem 8.73.

Exercise 8.74. Let \(M\) be a stably framed manifold of dimension \((4k + 2)\), i.e., a closed \((4k + 2)\)-dimensional manifold together with a choice of a stable trivialization of its tangent bundle. Assign to it an element \(\alpha(M) \in \mathbb{Z}/2\) such that \(\alpha(M) = \alpha(N)\) depends only on the stably framed bordism class of \(M\). (The easy solutions that \(\alpha\) is constant is not what we have in mind).

8.6 Formations

In this subsection we explain the algebraic objects, so called formations, which describe the surgery obstruction and will be the typical elements in the surgery obstruction group in odd dimensions. Throughout this section \(R\) will be an associative ring with unit and involution and \(\epsilon \in \{\pm 1\}\).

Definition 8.75 (Formation). An \(\epsilon\)-quadratic formation \((P, \psi; F, G)\) consists of a non-degenerate \(\epsilon\)-quadratic form \((P, \psi)\) together with two lagrangians \(F\) and \(G\).

An isomorphism \(f: (P, \psi; F, G) \to (P', \psi'; F', G')\) of \(\epsilon\)-quadratic formations is an isomorphism \(f: (P, \psi) \to (P', \psi')\) of non-singular \(\epsilon\)-quadratic forms such that \(f(F) = F'\) and \(f(G) = G'\) holds.

Definition 8.76 (Trivial formation). The trivial \(\epsilon\)-quadratic formation associated to a finitely generated projective \(R\)-module \(P\) is the formation \((H_{\epsilon}(P); P, P^*)\). A formation \((P, \psi; F, G)\) is called trivial, if it isomorphic to the trivial \(\epsilon\)-quadratic formation associated to some finitely generated projective \(R\)-module. Two formations are stably isomorphic, if they become isomorphic after taking the direct with trivial formations.

Remark 8.77 (Formations and automorphisms). We conclude from Lemma 8.25 that any formation is isomorphic to a formation of the type \((H_{\epsilon}(P); P, F)\) for some lagrangian \(F \subset P \oplus P^*\). Given an automorphism \(f: H_{\epsilon}(P) \xrightarrow{\sim} H_{\epsilon}(P)\) of the standard hyperbolic \(\epsilon\)-quadratic form \(H_{\epsilon}(P)\)
for some finitely generated projective \(R \)-module \(P \), we get a formation by
\((H_\epsilon(P); P, f(P))\).

Consider a formation \((P, \psi; F, G)\) such that \(P, F \) and \(G \) are finitely generated free and suppose that \(R \) has the property that \(R^n \) and \(R^m \) are \(R \)-isomorphic, if and only if \(n = m \). Then \((P, \psi; F, G)\) is stably isomorphic to
\((H_\epsilon(Q); Q, f(Q))\) for some finitely generated free \(R \)-module \(Q \) by the following argument. Because of Lemma 8.25 we can choose isomorphisms of
\(R \)-modules. Hence it is plausible that the odd-dimensional \(L \)-groups will be defined in terms of formations, which is essentially the same as in terms of automorphisms of the standard hyperbolic form over a finitely generated free \(R \)-module.

Definition 8.78 (Boundary formation). Let \((P, \psi)\) be a (not necessarily non-singular) \((-\epsilon)\)-quadratic form. Define its boundary \(\partial(P, \psi) \) to be the \(\epsilon \)-quadratic formation \((H_\epsilon(P); P, \Gamma_\psi)\), where \(\Gamma_\psi \) is the lagrangian given by the image of the \(R \)-homomorphism

\[
P \rightarrow P \oplus P^*, \quad x \mapsto (x, (1 - \epsilon \cdot T)(\psi)(x)).
\]

One easily checks that \(\Gamma_\psi \) appearing in Definition 8.78 is indeed a lagrangian. Two lagrangians \(F, G \) of a non-singular \(\epsilon \)-quadratic form \((P, \psi)\) are called complementary, if \(F \cap G = \{0\} \) and \(F + G = P \).

Lemma 8.79. Let \((P, \psi; F, G)\) be an \(\epsilon \)-quadratic formation. Then:

(i) \((P, \psi; F, G)\) is trivial if and only if \(F \) and \(G \) are complementary to one another;

(ii) \((P, \psi; F, G)\) is isomorphic to a boundary, if and only if there is a lagrangian \(L \subset P \) such that \(L \) is a complement of both \(F \) and \(G \);

(iii) There is an \(\epsilon \)-quadratic formation \((P', \psi'; F', G')\) such that \((P, \psi; F, G) \oplus (P', \psi'; F', G')\) is a boundary;

(iv) An \((-\epsilon)\)-quadratic form \((Q, \mu)\) is non-singular, if and only if its boundary is trivial.

Proof. See for instance [235, Lemma 9.13 on page 323]. \(\square \)
8.7 Odd-Dimensional \(L\)-groups

Now we can define the odd-dimensional \(L\)-groups.

Definition 8.80 (Odd-dimensional \(L\)-groups). Let \(R\) be an associative ring with unit and involution. For an odd integer \(n = 2k+1\) define the abelian group \(L_n(R)\) called the \(n\)-th quadratic \(L\)-group of \(R\) to be the abelian group of equivalence classes \([((P, \psi; F, G), (Q, \mu))]\) of \((-1)^k\)-quadratic formations \((P, \psi; F, G)\) such that \(P, F\) and \(G\) are finitely generated free \(R\)-modules with respect to the following equivalence relation. We call \((P, \psi; F, G)\) and \((P', \psi'; F', G')\) equivalent, if and only if there exist \((-1)^k\)-quadratic forms \((Q, \mu)\) and \((Q', \mu')\) for finitely generated free \(R\)-modules \(Q\) and \(Q'\) and finitely generated free \(R\)-modules \(S\) and \(S'\) together with an isomorphism of \((-1)^k\)-quadratic formations

\[
(P, \psi; F, G) \oplus \partial(Q, \mu) \oplus (H_\epsilon(S); S, S^*) \\
\cong (P', \psi'; F', G') \oplus \partial(Q', \mu') \oplus (H_\epsilon(S'); S', (S')^*).
\]

Addition is given by the sum of two \((-1)^k\)-quadratic formations. The zero element is represented by \(\partial(Q, \mu) \oplus (H_\epsilon(S); S, S^*)\) for any \((-1)^k\)-quadratic form \((Q, \mu)\) for any finitely generated free \(R\)-module \(Q\) and any finitely generated free \(R\)-module \(S\). The inverse of \([((P, \psi; F, G), (Q, \mu))]\) is represented by \((P, -\psi; F', G')\) for any choice of lagrangians \(F'\) and \(G'\) in \(H_\epsilon(P)\) such that \(F\) and \(F'\) are complementary and \(G\) and \(G'\) are complementary.

A morphism \(u: R \to S\) of rings with involution induces homomorphisms \(u_*: L_k(R) \to L_k(S)\) for \(k = 1, 3\) by induction satisfying \((u \circ v)_* = u_* \circ v_*\) and \((\text{id}_R)_* = \text{id}_{L_k(R)}\) for \(k = 1, 3\).

Theorem 8.81 (Vanishing of the odd-dimensional \(L\)-groups of the ring of integers). We have \(L_{2k+1}(\mathbb{Z}) = 0\) for all \(k \in \mathbb{Z}\).

Proof. See for instance [233 Subsection 9.2.4]. \(\square\)

Remark 8.82 (Four-periodicity of the \(L\)-groups). Obviously the \(L\)-groups are four-periodic, i.e., \(L_n(R) = L_{n+4k}(R)\) holds for all \(k, n \in \mathbb{Z}\).

8.8 The Surgery Obstruction in Odd Dimensions

Next we very briefly treat the odd-dimensional surgery obstruction. Consider a normal map of degree one \((\overline{f}, f): \nu(M) \to \xi\) covering \(f: M \to X\), where \(M\) is a \(w\)-oriented closed manifold of dimension \(n\) and \(X\) is a connected finite Poincaré complex of dimension \(n\) for odd \(n = 2k+1\). To these data one can assign the surgery obstruction of \((\overline{f}, f)\).
\[\sigma(f, f) \in L_{2k+1}(\mathbb{Z}, w), \]

Its construction and the proof of the following result can be found in [235, Section 9.3] or [898, Chapter 6].

Theorem 8.84 (Surgery obstruction in odd dimensions). We get under the conditions above:

(i) Suppose \(k \geq 2 \). Then \(\sigma(f, f) = 0 \) in \(L_n(\mathbb{Z}, w) \), if and only if we can do a finite number of surgery steps to obtain a normal map \((f', f') : \nu(M') \to \xi \) covering a homotopy equivalence \(f' : M' \to X \);

(ii) The surgery obstruction \(\sigma(f, f) \) depends only on the normal bordism class of \((f, f) \).

Example 8.85 (The surgery obstruction in the simply-connected case). Consider a normal map of degree one \((f, f) : \nu(M) \to \xi \) covering \(f : M \to X \), where \(M \) is a \(w \)-oriented connected closed manifold of dimension \(n \) and \(X \) is a connected finite Poincaré complex of dimension \(n \). Suppose that \(X \) is simply connected.

If \(n \) is odd, \(L_n(\mathbb{Z}) \) is trivial and hence \(\sigma(f, f) = 0 \). In particular we can arrange by finitely many surgery steps that the underlying map is a homotopy equivalence, provided \(n \geq 5 \).

If \(n \) is divisible by four, we obtain an isomorphism \(L_n(\mathbb{Z}) \cong \mathbb{Z} \) by sending a quadratic form to its signature divided by eight, see Theorem [8.28]. It turns out that under this isomorphism we get

\[\sigma(f, f) = \frac{\text{sign}(X) - \text{sign}(M)}{8}. \]

Note that in this case the surgery obstruction depends only on \(M \) and \(X \), but not on \(f \) and \(f \). This is not true in general.

If \(n \) is even, but not divisible by four, then the Arf invariant yields an isomorphism \(L_n(\mathbb{Z}) \cong \mathbb{Z}/2 \). It turns out that \(\sigma(f, f) \) depends not only on \(f \) but also on the bundle data \(f \). For instance, for different framings of \(T^2 \) one obtains different invariants \(\alpha(T^2) \) in Exercise [8.74].

8.9 Surgery Obstructions for Manifolds with Boundary

Next we deal with manifolds with boundary.

Definition 8.86 (Poincaré pairs). The notion of a Poincaré complex can be extended to pairs as follows. Let \(X \) be a connected finite \(n \)-dimensional \(CW \)-complex with fundamental group \(\pi \) together with a subcomplex \(A \subset X \) of dimension \((n-1) \). Denote by \(\tilde{A} \subset \tilde{X} \) the preimage of \(A \) under the universal covering \(\tilde{X} \to X \). We call \((X, A)\) a finite \(n \)-dimensional Poincaré pair with
respect to the orientation homomorphism $w: \pi_1(X) \to \{\pm 1\}$, if there is a fundamental class $[X, A] \in H_n(X, A; \mathbb{Z}^w)$ such that the $\mathbb{Z}\pi$-chain maps $-\cap [X, A]: C^n(\tilde{X}, \tilde{A}) \to C_*(\tilde{X})$ and $-\cap [X, A]: C^n(\tilde{X}) \to C_*(\tilde{X}, \tilde{A})$ are $\mathbb{Z}\pi$-chain homotopy equivalences.

We call (X, A) simple, if the Whitehead torsions of these $\mathbb{Z}\pi$-chain homotopy equivalences vanish.

If M is a connected compact manifold of dimension n with boundary ∂M, then $(M, \partial M)$ is a simple finite n-dimensional Poincaré pair.

We want to extend the notion of a normal map from closed manifolds to manifolds with boundary. The underlying map f is a map of pairs $(f, \partial f): (M, \partial M) \to (X, \partial X)$, where M is a w-oriented compact manifold with boundary ∂M and $(X, \partial X)$ is a finite Poincaré pair, the degree of f is one and $\partial f: \partial M \to \partial X$ is required to be a homotopy equivalence. The bundle data are unchanged, they consist of a vector bundle ξ over X and a bundle map $f: \nu(M) \to \xi$.

The notion of a normal bordism for manifolds with boundaries is rather complicated, but also obvious. We will at least explain what happens for the underlying spaces and maps, more details can be found in [235, Subsection 8.8.2].

Consider two normal maps in dimension n, whose underlying maps are $(f_m, \partial f_m): (M_m, \partial M_m) \to (X_m, \partial X_m)$ such that ∂f_m is a homotopy equivalence. A normal bordism between them is defined as follows. As in the closed case W is a compact $(n+1)$-dimensional manifold with boundary ∂W, but now the boundary is the union of three pieces

$$\partial W = \partial_0 W \cup \partial_1 W \cup \partial_2 W,$$

where $\partial_m W$ is a codimension zero submanifold of ∂W possibly with non-empty boundary $\partial \partial_m W$ for $m = 0, 1, 2$ satisfying

$$\partial_0 W \cap \partial_1 W = \emptyset;$$
$$\partial_2 W \cap \partial_m W = \partial \partial_m W \quad \text{for } m = 0, 1;$$
$$\partial \partial_2 W = \partial \partial_0 W \amalg \partial \partial_1 W.$$

We have an $(n+1)$-dimensional finite Poincaré pair $(Y, \partial Y)$ with a decomposition of ∂Y into three n-dimensional finite CW-subcomplexes

$$\partial Y = \partial_0 Y \cup \partial_1 Y \cup \partial_2 Y,$$

such that for appropriate $(n-1)$-dimensional finite CW-subcomplexes $\partial \partial_m Y \subseteq \partial_m Y$ for $m = 0, 1, 2$ we have

$$\partial_0 Y \cap \partial_1 Y = \emptyset;$$
$$\partial_2 Y \cap \partial_m Y = \partial \partial_m Y \quad \text{for } m = 0, 1;$$
$$\partial \partial_2 Y = \partial \partial_0 Y \amalg \partial \partial_1 Y.$$
The map $F: W \to Y$ is required to induce maps $\partial_m F; \partial_m W \to \partial_m Y$ for $m = 0, 1, 2$ and $\partial_2 F: \partial_2 W \to \partial_2 Y$ is required to be a homotopy equivalence. The various identifications $M_m \xrightarrow{\approx} \partial_m W$ and $X_m \to \partial_m Y$ for $m = 0, 1$ in the closed case are now required to be identifications $(M_m, \partial M_m) \xrightarrow{\approx} (\partial_m W, \partial \partial_m W)$ and $(X_m, \partial X_m) \xrightarrow{\approx} (\partial_m Y, \partial Y_m)$ for $m = 0, 1$.

The definition and the main properties of the surgery obstruction carry over from normal maps for closed manifolds to normal maps for compact manifolds with boundary. The main reason is that we require $\partial f: \partial M \to \partial X$ to be a homotopy equivalence so that the surgery kernels “do not feel the boundary”. All arguments such as making a map highly connected by surgery steps and intersection pairings and selfintersection can be carried out in the interior of M without affecting the boundary. Thus we get, see [235, Theorem 8.186 on page 302 and Theorem 9.109 on page 381],

Theorem 8.87. (Surgery Obstruction for Manifolds with Boundary). Let (\overline{f}, f) be a normal map of degree one with underlying map $(f, \partial f): (M, \partial M) \to (X, \partial X)$ such that ∂f is a homotopy equivalence. Put $n = \dim(M)$. Then

(i) We can associate to it its surgery obstruction

$$\sigma(\overline{f}, f) \in L_n(\mathbb{Z}\pi, w);$$

(ii) The surgery obstruction depends only on the normal bordism class of (\overline{f}, f);
(iii) Suppose $n \geq 5$. Then $\sigma(\overline{f}, f) = 0$ in $L_n(\mathbb{Z}\pi, w)$, if and only if we can do a finite number of surgery steps on the interior of M leaving the boundary fixed to obtain a normal map (\overline{f}', f'), which covers a homotopy equivalence of pairs $(f', \partial f')$: $(M', \partial M') \to (X, \partial X)$ with $\partial M' = \partial M$ and $\partial f' = \partial f$.

8.10 Decorations

Next we want to modify the L-groups and the surgery obstruction so that the surgery obstruction is the obstruction to achieve a simple homotopy equivalence. This will force us to study L-groups with decorations.

8.10.1 L-groups with K_1-Decorations

We begin with the L-groups. It is clear that this requires to take equivalence classes of bases into account. Suppose that we have specified a subgroup $U \subset K_1(R)$ such that U is closed under the involution on $K_1(R)$ coming from the involution of R and contains the image of the change of rings homomorphism $K_1(\mathbb{Z}) \to K_1(R)$.
Two bases B and B' for the same finitely generated free R-module V are called U-equivalent, if the change of basis matrix defines an element in $K_1(R)$, which belongs to U. Note that the U-equivalence class of a basis B is unchanged, if we permute the order of elements of B. We call an R-module V U-based, if V is finitely generated free and we have chosen a U-equivalence class of bases.

Let V be a stably finitely generated free R-module. A stable basis for V is a basis B for $V \oplus R^u$ for some integer $u \geq 0$. Denote for any integer v the direct sum of the basis B and the standard basis S^u for R^u by $B \bigoplus S^u$, which is a basis for $V \oplus R^{u+v}$. Let C be a basis for $V \oplus R^v$. We call the stable basis B and C stably U-equivalent, if and only if there is an integer $w \geq u, v$ such that $B \bigoplus S^{w-u}$ and $C \bigoplus S^{w-v}$ are U-equivalent. We call an R-module V stably U-based, if V is stably finitely generated free and we have specified a stable U-equivalence class of stable basis for V.

Let V and W be stably U-based R-modules. Let $f : V \oplus R^a \cong W \oplus R^b$ be an R-isomorphism. Choose a non-negative integer c together with basis for $V \oplus R^{a+c}$ and $W \oplus R^{b+c}$, which represent the given stable U-equivalence classes of basis for V and W. Let A be the matrix of $f \oplus \text{id}_R : V \oplus R^{a+c} \cong W \oplus R^{b+c}$ with respect to these bases. It defines an element $[A]$ in $K_1(R)$. Define the U-torsion

\[(8.88) \quad \tau^U(f) \in K_1(R)/U\]

by the class represented by $[A]$. One easily checks that $\tau(f)$ is independent of the choices of c and the basis and depends only on f and the stable U-basis for V and W. Moreover, one easily checks

\[
\tau^U(g \circ f) = \tau^U(g) + \tau^U(f);
\]
\[
\tau^U(f_0) = \tau^U(f) + \tau^U(v);
\]
\[
\tau^U(\text{id}_V) = 0,
\]

for R-isomorphisms $f : V_0 \cong V_1$, $g : V_1 \cong V_2$ and $v : V_3 \cong V_4$ and an R-homomorphism $u : V_0 \to V_4$ of stably U-based R-modules V_i. Let C_\ast be a contractible stably U-based finite R-chain complex, i.e., a contractible R-chain complex C_\ast of stably U-based R-modules, which satisfies $C_i = 0$ for $|i| > N$ for some integer N. The definition of Whitehead torsion in (3.29) carries over to the definition of the U-torsion

\[(8.89) \quad \tau^U(C_\ast) = [A] \in K_1(R)/U.\]

Analogously we can associate to an R-chain homotopy equivalence $f : C_\ast \to D_\ast$ of stably U-based finite R-chain complexes its U-torsion, cf. (3.30),

\[(8.90) \quad \tau^U(f_\ast) := \tau(\text{cone}_\ast(f_\ast)) \in K_1(R)/U.\]
We will consider U-based ϵ-quadratic forms (P, ψ), i.e. ϵ-quadratic forms, whose underlying R-module P is a U-based finitely generated free R-module such that U-torsion of the isomorphism $(1 + \epsilon \cdot T)(\psi): P \xrightarrow{\sim} P^*$ is zero in $K_1(R)/U$. An isomorphism $f: (P, \psi) \to (P', \psi')$ of U-based ϵ-quadratic forms is U-simple, if the U-torsion of $f: P \to P'$ vanishes in $K_1(R)/U$. Note that the ϵ-quadratic form $H_\epsilon(R^u)$ inherits a basis from the standard basis of R^u. The sum of two stably U-based ϵ-quadratic forms is again a stably U-based ϵ-quadratic form. It is worthwhile to mention the following U-simple version of Lemma 8.25.

Lemma 8.91. Let (P, ψ) be a U-based ϵ-quadratic form. Let $L \subset P$ be a lagrangian such that L is U-based and the U-torsion of the following 2-dimensional U-based finite R-chain complex

$$
0 \to L \xrightarrow{i} P \xrightarrow{i^* (1 + \epsilon \cdot T)(\psi)} L^* \to 0
$$

vanishes in $K_1(R)/U$. Then the inclusion $i: L \to P$ extends to a U-simple isomorphism of ϵ-quadratic forms

$$
H_\epsilon(L) \xrightarrow{\sim} (P, \psi).
$$

Next we give the simple version of the even-dimensional L-groups.

Definition 8.92. Let R be an associative ring with unit and involution. For $\epsilon \in \{\pm 1\}$ define $L^U_{-\epsilon}(R)$ to be the abelian group of equivalence classes $[(P, \psi)]$ of U-based non-singular ϵ-quadratic forms (P, ψ) with respect to the following equivalence relation. We call (P, ψ) and (P', ψ') equivalent, if and only if there exists integers $u, u' \geq 0$ and a U-simple isomorphism of non-singular ϵ-quadratic forms

$$(P, \psi) \oplus H_\epsilon(R^u) \cong (P', \psi') \oplus H_\epsilon(R^{u'}).$$

Addition is given by the sum of two ϵ-quadratic forms. The zero element is represented by $[H_\epsilon(R^u)]$ for any integer $u \geq 0$. The inverse of $[P, \psi]$ is given by $[P, -\psi]$.

For an even integer n define the abelian group $L^U_n(R)$ called the n-th U-decorated quadratic L-group of R by

$$L^U_n(R) := \begin{cases} L^U_0(R) & \text{if } n \equiv 0 \mod 4; \\ L^U_2(R) & \text{if } n \equiv 2 \mod 4. \end{cases}$$

A U-based ϵ-quadratic formation $(P, \psi; F, G)$ consists of an ϵ-quadratic formation $(P, \psi; F, G)$ such that (P, ψ) is a U-based non-singular ϵ-quadratic form, the lagrangians F and G are U-based R-modules and the U-torsion of the following two contractible U-based finite R-chain complexes

$$
0 \to F \xrightarrow{i} P \xrightarrow{i^* (1 + \epsilon \cdot T)(\psi)} F^* \to 0
$$
and
\[0 \to G \xrightarrow{j} P \xrightarrow{j^*(1+\epsilon T)(\psi)} G^* \to 0 \]
vanish in \(K_1(R)/U\), where \(i: F \to P\) and \(j: G \to P\) denote the inclusions. An isomorphism \(f: (P,\psi;F,G) \to (P',\psi';F',G')\) of \(U\)-based \(\epsilon\)-quadratic formations is \(U\)-simple, if the \(U\)-torsion of the induced \(R\)-isomorphisms \(P \xrightarrow{\sim} P'\), \(F' \xrightarrow{\sim} F'\) and \(G' \xrightarrow{\sim} G'\) vanishes in \(K_1(R)/U\). Note that the trivial \(\epsilon\)-quadratic formation \((H_*(R^n);R^n,(R^n)^*)\) inherits a \(U\)-basis from the standard basis on \(R^n\). Given a \(U\)-based \((-\epsilon)\)-quadratic form \((Q,\psi)\), its boundary \(\partial(Q,\psi)\) is a \(U\)-based \(\epsilon\)-quadratic formation. Obviously the sum of two \(U\)-based \(\epsilon\)-quadratic formations is again a \(U\)-based \(\epsilon\)-quadratic formation. Next we give the simple version of the odd-dimensional \(L\)-groups.

Definition 8.93. Let \(R\) be an associative ring with unit and involution. For \(\epsilon \in \{\pm 1\}\) define \(L^U_{2-\epsilon}(R)\) to be the abelian group of equivalence classes \([(P,\psi;F,G)]\) of \(U\)-based \(\epsilon\)-quadratic formations \((P,\psi;F,G)\) with respect to the following equivalence relation. We call two \(U\)-based \(\epsilon\)-quadratic formations \((P,\psi;F,G)\) and \((P',\psi';F',G')\) equivalent, if and only if there exists \(U\)-based \((-\epsilon)\)-quadratic forms \((Q,\mu)\) and \((Q',\mu')\) and non-negative integers \(u\) and \(u'\) together with a \(U\)-simple isomorphism of \(\epsilon\)-quadratic formations

\[
(P,\psi;F,G) \oplus \partial(Q,\mu) \oplus (H_*(R^n);R^n,(R^n)^*) \\
\cong (P',\psi';F',G') \oplus \partial(Q',\mu') \oplus (H_*(R^{u'});R^{u'},(R^{u'})^*).
\]

Addition is given by the sum of two \(\epsilon\)-quadratic forms. The zero element is represented by \(\partial(Q,\mu)\) \(\cong (H_*(R^n);R^n,(R^n)^*)\) for any \(U\)-based \((-\epsilon)\)-quadratic form \((Q,\mu)\) and non-negative integer \(u\). The inverse of \([(P,\psi;F,G)]\) is represented by \((P,-\psi;F',G')\) for any choice of stably \(U\)-based lagrangians \(F'\) and \(G'\) in \(H_*(P)\) such that \(F\) and \(F'\) are complementary and \(G\) and \(G'\) are complementary and the \(U\)-torsion of the obvious isomorphism \(F \oplus F' \xrightarrow{\sim} P\) and \(G \oplus G' \xrightarrow{\sim} P\) vanishes in \(K_1(R)/U\).

For an odd integer \(n\) define the abelian group \(L^U_n(R)\) called the \(n\)-th \(U\)-decorated quadratic \(L\)-group of \(R\)

\[
L^U_n(R) := \begin{cases}
L^U_1(R) & \text{if } n \equiv 1 \mod 4; \\
L^U_3(R) & \text{if } n \equiv 3 \mod 4.
\end{cases}
\]

Notation 8.94. Consider the case of a group ring \(R\pi\) with the \(w\)-twisted involution. For a group \(G\) denote by \(\text{Wh}^R_n(G)\) the \(n\)-th Whitehead group of \(RG\), which is the \((n-1)\)-th homotopy group of the homotopy fiber of the assembly map \(BG_+ \wedge K(R) \to K(RG)\). Then we define \(L^U_n(R\pi,w)\) by \(L^U_n(R\pi)\) for \(U\) the kernel of the map \(K_1(R\pi) \to \text{Wh}^R_1(\pi)\). Observe that \(L^U_n(R\pi)\) depends on the pair \((R,\pi)\). Sometimes one denotes \(L^U_n(R\pi,w)\) also by \(L^U_2(R\pi,w)\).
If \(R = \mathbb{Z}\pi \) with the \(w \)-twisted involution, then \(U \subseteq K_1(\mathbb{Z}\pi) \) reduces to the abelian group \(V \subseteq K_1(\mathbb{Z}G) \) of elements of the shape \((\pm g)\) for \(g \in \pi \). So we get
\[
L_n^s(\mathbb{Z}\pi, w) = L_n^{(2)}(\mathbb{Z}\pi, w) = L_n^V(\mathbb{Z}\pi, w).
\]

8.10.2 The Simple Surgery Obstruction

Let \((\overline{f}, f)\) be a normal map of degree one with \((f, \partial f): (M, \partial M) \to (X, \partial X)\) as underlying map such that \((X, \partial X)\) is a simple finite Poincaré complex and \(\partial f\) is a simple homotopy equivalence. Then the definition of the surgery obstruction appearing in Theorem 8.87 (i) can be modified to the simple setting. Note that the difference between the \(L\)-groups \(L_n^h(\mathbb{Z}\pi, w)\) and the simple \(L\)-groups \(L_n^s(\mathbb{Z}\pi, w)\) is the additional structure of a \(U\)-basis. The definition of the simple surgery obstruction
\[
(8.95) \quad \sigma(\overline{f}, f) \in L_n^s(\mathbb{Z}\pi, w).
\]
is the same as the one appearing in Theorem 8.87 (i) except that we must explain how the various surgery kernels inherit a \(U\)-basis.

The elementary proof of the following lemma is left to the reader. Note that for any stably \(U\)-based \(R\)-module \(V\) and element \(x \in K_1(R)/U\) we can find another stable \(U\)-basis \(C\) for \(V\) such that the \(U\)-torsion \(\tau^U(\text{id}: (V, B) \to (V, C))\) is \(x\). This is not true in the unstable setting. For instance, there exists a ring \(R\) with an element \(x \in K_1(R)/U\) for \(U\) the image of \(K_1(\mathbb{Z}) \to K_1(\mathbb{Z})\) such that \(x\) cannot be represented by a unit in \(R\), in other words \(x\) is not the \(U\)-torsion of any \(R\)-automorphism of \(R\).

Lemma 8.96. Let \(C_*\) be a contractible finite stably free \(R\)-chain complex and \(r\) be an integer. Suppose that each chain module \(C_i\) with \(i \neq r\) comes with a stable \(U\)-basis. Then \(C_r\) inherits a preferred stable \(U\)-basis, which is uniquely defined by the property that the \(U\)-torsion of \(C_*\) vanishes in \(K_1(R)/U\).

We have the following version of Lemma 8.69.

Lemma 8.97. If \(f: X \to Y\) is \(k\)-connected for \(n = 2k\) or \(n = 2k + 1\), then \(K_k(\tilde{M})\) is stably finitely generated free and inherits a preferred stable \(U\)-basis.

Proof. See [235, Lemma 10.23 on page 397]. \(\square\)

Next we can give the simple version of the surgery obstruction theorem. For its proof see for instance [235, Theorem 10.26 on page 398]. Note that simple normal bordism class means that in the definition of normal nullbordisms the pairs \((Y, \partial Y), (\partial_0 Y, \partial_0 Y \cap \partial_1 Y)\) and \((\partial_1 Y, \partial_0 Y \cap \partial_1 Y)\) are required to be simple finite Poincaré pairs and the map \(\partial_2 F: \partial_2 M \to \partial_2 Y\) is required to be a simple homotopy equivalence.
Theorem 8.98. (Simple surgery obstruction for manifolds with boundary) Let \((\overline{f}, f)\) be a normal map of degree one, whose underlying map is \((f, \partial f): (M, \partial M) \rightarrow (X, \partial X)\) such that \((X, \partial X)\) is a simple finite Poincaré complex and \(\partial f\) is a simple homotopy equivalence. Put \(n = \dim(M)\). Then:

(i) The simple surgery obstruction depends only on the simple normal bordism class of \((\overline{f}, f)\);
(ii) Suppose \(n \geq 5\). Then \(\sigma(\overline{f}, f) = 0\) in \(L_s^n(\mathbb{Z}, w)\), if and only if we can do a finite number of surgery steps on the interior of \(M\) leaving the boundary fixed to obtain a normal map \((\overline{f}', f')\): \(\nu M' \rightarrow \xi\), which covers a simple homotopy equivalence of pairs \((f', \partial f')\): \((M', \partial M') \rightarrow (X, \partial X)\) with \(\partial M' = \partial M\) and \(\partial f' = \partial f\).

Exercise 8.99. Let \(W\) be a compact manifold of dimension \(n\) whose boundary is the disjoint union \(M \amalg N\). Let \((\overline{f}, f)\) be a normal map such that the underlying maps of pairs is of the shape \(f: (W, \partial W) \rightarrow (X \times [0, 1], X \times \{0, 1\})\) for some closed manifold \(X\) and induces a simple homotopy equivalence \(\partial W \rightarrow X \times \{0, 1\}\). Show that \(M\) and \(N\) are diffeomorphic provided that the simple surgery obstruction \(\sigma(\overline{f}, f)\) of (8.95) vanishes and \(n \geq 6\).

8.10.3 Decorated L-Groups

L-groups are designed as obstruction groups for surgery problems. The decoration reflects what kind of surgery problem one is interested in.

The L-group \(L_n(R)\) of Definitions 8.24 and 8.80 are also denoted by \(L_n^{(1)}(R)\) or by \(L_n^h(R)\). If one works with finitely generated projective modules instead of finitely generated free \(R\)-modules in Definitions 8.24 and 8.80 one obtains projective quadratic L-groups \(L_n^p(R)\), which are also denoted by \(L_n^{(0)}(R)\). The negative decorations \(L_n^{(j)}(R)\) for \(j \in \mathbb{Z}, j \leq -1\) can be obtained using suitable categories of modules parametrized over \(R^k\). There are forgetful maps \(L_n^{(j+1)}(R) \rightarrow L_n^{(j)}(R)\) for \(j \in \mathbb{Z}, j \leq -1\). The group \(L_n^{(-\infty)}(R)\) is defined as the colimit over these maps. For details the reader can consult 750 757.

Let us summarize the decorations for integral group rings. We have already introduced \(L_n^h(\mathbb{Z}, w) = L_n^{(2)}(\mathbb{Z}, w)\) in Notation 8.94, we get

\[
L_n^h(\mathbb{Z}, w) = L_n^{(1)}(\mathbb{Z}, w) = L_n(\mathbb{Z}, w);
L_n^p(\mathbb{Z}, w) = L_n^{(0)}(\mathbb{Z}, w),
\]

and have furthermore \(L_n^{(j)}(\mathbb{Z})\) for \(j \in \mathbb{Z}, j \leq -1\) and \(L_n^{(-\infty)}(\mathbb{Z})\).

For the Farrell-Jones Conjecture we will have to take the decoration \((-\infty)\), where for applications the decorations \(h\) and \(s\) will be relevant. So we have to understand how one can compare them.
8.10 Decorations

8.10.4 The Rothenberg Sequence

Next we explain how decorated L-groups can be computed from one another for a ring with involution. We have the Rothenberg sequence \[\text{(8.104)} \], \[\text{(8.107)} \] Proposition 1.10.1 on page 104, \[\text{(757, 17.2)} \] for the Rothenberg sequence for a ring with involution. We have the coefficients in the \mathbb{Z}-

\[\hat{H}^n(\mathbb{Z}/2; K_j(R)) \]

\[\rightarrow L^{(j+1)}_{n-1}(R) \rightarrow L^{(j)}_{n-1}(R) \rightarrow \cdots. \]

Here $\hat{H}^n(\mathbb{Z}/2; K_j(R))$ is the Tate-cohomology of the group $\mathbb{Z}/2$ with coefficients in the $\mathbb{Z}[\mathbb{Z}/2]$-module $K_j(R)$. The involution on $K_j(R)$ comes from the involution on R.

For a group ring $R\pi$ with the w-twisted involution, we get for $j \in \{1, 0, -1, \ldots\} \bigcup \{-\infty\}$ and $n \in \mathbb{Z}$

\[\text{(8.101)} \]

\[\cdots \rightarrow L^{(j+1)}_{n}(R\pi, w) \rightarrow L^{(j)}_{n}(R\pi, w) \rightarrow \hat{H}^n(\mathbb{Z}/2; Wh_{j}\pi) \]

\[\rightarrow L^{(j+1)}_{n-1}(R\pi, w) \rightarrow L^{(j)}_{n-1}(R\pi, w) \rightarrow \cdots. \]

Over the integral group ring $Wh_{j}(\pi)$ agrees with $Wh(\pi)$ and $Wh_{j}^2(\pi)$ agrees with $K_j(\pi)$ for $j \leq 0$. Hence this reduces for $R = \mathbb{Z}$ and $j = 1$ to

\[\text{(8.102)} \]

\[\cdots \rightarrow L^{(s)}_{n}(\mathbb{Z}\pi, w) \rightarrow L^{(h)}_{n}(\mathbb{Z}\pi, w) \rightarrow \hat{H}^n(\mathbb{Z}/2; Wh(\pi)) \]

\[\rightarrow L^{(s)}_{n-1}(R) \rightarrow L^{(h)}_{n-1}(R) \rightarrow \cdots, \]

and for $R = \mathbb{Z}$ and $j = 0$ to

\[\text{(8.103)} \]

\[\cdots \rightarrow L^{(h)}_{n}(\mathbb{Z}\pi, w) \rightarrow L^{(p)}_{n}(\mathbb{Z}\pi, w) \rightarrow \hat{H}^n(\mathbb{Z}/2; K_0(\mathbb{Z}\pi)) \]

\[\rightarrow L^{(h)}_{n-1}(\mathbb{Z}\pi, w) \rightarrow L^{(p)}_{n-1}(\mathbb{Z}\pi, w) \rightarrow \cdots. \]

Theorem 8.104 (Independence of decorations). Let G be a group such that $Wh(G)$, $K_0(\mathbb{Z}G)$ and $K_n(\mathbb{Z}G)$ for all $n \in \mathbb{Z}$, $n \leq -1$ vanish. Then for every $j \in \mathbb{Z}$, $j \leq -1$ and every $n \in \mathbb{Z}$ the forgetful maps induce isomorphisms

\[L^n_{j}(\mathbb{Z}G) \cong L^{h}_{n}(\mathbb{Z}G) \cong L^{p}_{n}(\mathbb{Z}G) \cong L^{(j)}_{n}(\mathbb{Z}G) \cong L^{(-\infty)}_{n}(\mathbb{Z}G). \]

Proof. This follows from the various Rothenberg sequences. \qed

Exercise 8.105. Show that for every group G, every $j \in \mathbb{Z}$, $j \leq -1$ and every $n \in \mathbb{Z}$ the forgetful maps induce isomorphisms after inverting 2.
\[L^s(ZG)[1/2] \xrightarrow{\approx} L^h(ZG)[1/2] \xrightarrow{\approx} L^p(ZG)[1/2] \xrightarrow{\approx} L^s(ZG)[1/2] \xrightarrow{\approx} L^{(-\infty)}(ZG)[1/2]. \]

8.10.5 The Shaneson Splitting

The Bass-Heller-Swan decomposition in K-theory, see Theorem 6.16, has the following analogue for the algebraic L-groups.

Theorem 8.106 (Shaneson splitting). For every group \(G \), every ring with involution \(R \), every \(j \in \mathbb{Z}, j \leq 2 \) and \(n \in \mathbb{Z} \) there is a natural isomorphism

\[L^{(j)}_n(\mathbb{Z}G) \oplus L^{(j-1)}_{n-1}(\mathbb{Z}G) \xrightarrow{\approx} L^{(j)}_n(R[G \times \mathbb{Z}]). \]

The map appearing in the theorem above comes from the map \(L^{(j)}_n(\mathbb{Z}G) \rightarrow L^{(j)}_n(R[G \times \mathbb{Z}]) \) induced by the inclusion \(G \rightarrow G \times \mathbb{Z} \) and a map \(L^{(j-1)}_{n-1}(\mathbb{Z}G) \rightarrow L^{(j)}_n(R[G \times \mathbb{Z}]) \) which is essentially given by the cartesian product with \(S^1 \).

The latter explains the raise from \((n-1)\) to \(n \). But why does the decoration raises from \(j-1 \) to \(j \)? The reason is the product formula for Whitehead torsion, see Theorem 3.34 (iv). It predicts for any (not necessarily simple) homotopy equivalence \(f : X \rightarrow Y \) of finite CW-complexes that the homotopy equivalence \(f \times \text{id}_{S^1} : X \times S^1 \rightarrow Y \times S^1 \) is a simple homotopy equivalence. There is also a product formula for the finiteness obstruction which predicts for a finitely dominated (not necessarily up to homotopy finite) CW-complex \(X \) that \(X \times S^1 \) is homotopy equivalent to a finite CW-complex. The original proof of the Shaneson splitting for the case \(j = 2 \) and \(R = \mathbb{Z} \) i.e., for the isomorphism

\[L^s_n(\mathbb{Z}G) \oplus L^h_n(\mathbb{Z}G) \xrightarrow{\approx} L^s_n(\mathbb{Z}[G \times \mathbb{Z}]) \]

can be found in [827]. The proof for arbitrary \(j \) and \(R \) is given in [757, 17.2].

Comment 9: Maybe we should also add references to [235]. Note that for \(j = 1 \) we obtain an isomorphism

\[L^h_n(RG) \oplus L^p_n(RG) \xrightarrow{\approx} L^h_n(R[G \times \mathbb{Z}]) \]

and for \(j = -\infty \) we obtain an isomorphism

\[L^{(-\infty)}_n(RG) \oplus L^{(-\infty)}_{n-1}(RG) \xrightarrow{\approx} L^{(-\infty)}_n(R[G \times \mathbb{Z}]). \]

Remark 8.108 (Nil-groups and L-theory). Even though in the Shaneson splitting above there are no terms analogous to the Nil-terms in the
Bass-Heller-Swan decomposition in K-theory, see Theorem 6.16 such Nil-phenomena do also occur in L-theory, as soon as one considers amalgamated free products. The corresponding groups are the UNil-groups. They vanish if one inverts 2, see [181]. For more information about the UNil-groups we refer for instance to [64, 178, 179, 225, 226, 229, 323, 758]. How the Farrell-Jones Conjecture predicts exact Mayer-Vietoris sequences for amalgamated free products after inverting 2 is explained in Section 14.7.

8.11 The Farrell-Jones Conjecture for Algebraic L-Theory for Torsionfree Groups

The Farrell-Jones Conjecture for algebraic L-theory, which will later be formulated in full generality in Chapter 12, reduces for a torsionfree group to the following conjecture. Given a ring with involution R, there exists an L-spectrum associated to R with decoration $\langle -\infty \rangle$

\[(8.110) \quad L^{(-\infty)}(R)\]

with the property that $\pi_n(L^{(-\infty)}(R)) = L_n^{(-\infty)}(R)$ holds for $n \in \mathbb{Z}$.

Conjecture 8.111 (Farrell-Jones Conjecture for torsionfree groups for L-theory). Let G be a torsionfree group. Let R be any ring with involution.

Then the assembly map

$$ H_n(BG; L^{(-\infty)}(R)) \to L_n^{(-\infty)}(RG) $$

is an isomorphism for $n \in \mathbb{Z}$.

In the special case $G = \mathbb{Z}$, the left hand side is

$$ H_n(BG; L^{(-\infty)}(R)) \cong H_n(\{\bullet\}; L^{(-\infty)}(R)) \oplus H_{n-1}(\{\bullet\}; L^{(-\infty)}(R)) $$

$$ \cong L_n^{(-\infty)}(R) \oplus L_{n-1}^{(-\infty)}(R). $$

Hence the Farrell-Jones Conjecture for torsionfree groups for L-theory 8.111 predicts $L_n^{(-\infty)}(R\mathbb{Z}) \cong L_n^{(-\infty)}(R) \oplus L_{n-1}^{(-\infty)}(R)$. In view of the Shaneson splitting of Subsection 8.10.5 it is now obvious, why we have passed to the decoration $(-\infty)$.

Exercise 8.112. Let F_g be the closed orientable surface of genus g. Compute $L_n^{(j)}(\mathbb{Z}[\pi_1(F_g)])$ for all $j \in \mathbb{Z}, j \leq 2$ and $n \in \mathbb{Z}$.
Lemma 8.113. Let X be a CW-complex.

(i) If X is finite and we localize at the prime 2, we obtain a natural isomorphism

$$H_n(X; L^{(-\infty)}(\mathbb{Z}))[2] \cong \prod_{j \in \mathbb{Z}} (H_{n+4j}(X; \mathbb{Z}(2)) \times H_{n+4j-2}(X; \mathbb{Z}/2));$$

(ii) If we invert 2, we obtain a natural isomorphism

$$H_n(X; L^{(-\infty)}(\mathbb{Z}))[1/2] \cong KO_n(X)[1/2].$$

Proof. (i) The L-theory spectrum $L^{(-\infty)}(\mathbb{Z})(2)$ localized at (2) is a infinite product of Eilenberg-Mac-Lane spectra by [859, Theorem A].

(ii) This follows from the more general case discussed in Subsection 14.14.4, which is based on [553].

8.12 The Surgery Exact Sequence

In this section we introduce the surgery exact sequence. It is the realization of the surgery program, which we have explained in Remark 3.50. The surgery exact sequence is the main theoretical tool in solving the classification problem of manifolds of dimensions greater than or equal to five.

8.12.1 The Structure Set

Definition 8.114 (Simple structure set). Let X be a closed manifold of dimension n. We call two simple homotopy equivalences $f_i: M_i \to X$ from closed manifolds M_i of dimension n to X for $i = 0, 1$ equivalent, if there exists a diffeomorphism $g: M_0 \to M_1$ such that $f_1 \circ g$ is homotopic to f_0. The simple structure set $S^n_s(X)$ of X is the set of equivalence classes of simple homotopy equivalences $M \to X$ from closed manifolds of dimension n to X. This set has a preferred base point, namely, the class of the identity $id: X \to X$.

The simple structure set $S^n_s(X)$ is the basic object in the study of manifolds, which are diffeomorphic to X. Note that a simple homotopy equivalence $f: M \to X$ is homotopic to a diffeomorphism, if and only if it represents the base point in $S^n_s(X)$. A manifold M is diffeomorphic to N, if and only if for some simple homotopy equivalence $f: M \to N$ the class of $[f]$ agrees with the preferred base point. Some care is necessary, since it may be possible that a given simple homotopy equivalence $f: M \to N$ is not homotopic to a diffeomorphism, although M and N are diffeomorphic. Hence it does not
suffice to compute $S^*_n(N)$, one also has to understand the operation of the group of homotopy classes of simple self-equivalences of N on $S^*_n(N)$. This can be rather complicated in general. But it will be no problem in the case $N = S^n$, because any selfhomotopy equivalence $S^n \to S^n$ is homotopic to a selfdiffeomorphism.

There is also a version of the structure set, which does not take Whitehead torsion into account.

Definition 8.115 (Structure set). Let X be a closed manifold of dimension n. We call two homotopy equivalences $f_i: M_i \to X$ from closed manifolds M_i of dimension n to X for $i = 0, 1$ equivalent, if there is a manifold triad $(W; \partial_0 W, \partial_1 W)$ with $\partial_0 W \cap \partial_1 W = \emptyset$ and a homotopy equivalence of triads $(F; \partial_0 F, \partial_1 F): (W; \partial_0 W, \partial_1 W) \to (X \times [0, 1]; X \times \{0\}, X \times \{1\})$ together with diffeomorphisms $g_0 : M_0 \to \partial_0 W$ and $g_1 : M_1 \to \partial_1 W$ satisfying $\partial_i F \circ g_i = f_i$ for $i = 0, 1$. The structure set $S^*_n(X)$ of X is the set of equivalence classes of homotopy equivalences $M \to X$ from a closed manifold M of dimension n to X. This set has a preferred base point, namely the class of the identity id: $X \to X$.

Remark 8.116 (The simple structure set and s-cobordisms). If we require in Definition 8.115 the homotopy equivalences F, f_0 and f_1 to be simple homotopy equivalences, we get the simple structure set $S^*_n(X)$ of Definition 8.114, provided that $n \geq 5$. We have to show that the two equivalence relations are the same. This follows from the s-Cobordism Theorem 3.44. Namely, W appearing in Definition 8.115 is an h-cobordism and is even an s-cobordism, if we require F, f_0 and f_1 to be simple homotopy equivalences, see Theorem 3.44. Hence there is a diffeomorphism $\Phi: \partial_0 W \times [0, 1] \to W$ inducing the obvious identification $\partial_0 W \times \{1\} \to \partial_1 W$ and some diffeomorphism $\phi_1: (\partial_0 W) = (\partial_0 W \times \{1\}) \to \partial_1 W$. Then $\phi: M_0 \to M_1$ given by $g_1^{-1} \circ \phi_1 \circ g_0$ is a diffeomorphism such that $f_1 \circ \phi$ is homotopic to f_0. The other implication is obvious.

8.12.2 Realizability of Surgery Obstructions

In this section we explain that any element in the L-group $L_n(\mathbb{Z} \pi, w)$ for $n \geq 5$ can be realized as the surgery obstruction of a normal map (\overline{f}, f) covering a map $(f, \partial f): (M, \partial M) \to (X, \partial X)$ of compact manifolds, if we require that X has non-empty boundary ∂X and that ∂f is a (simple) homotopy equivalence.

Theorem 8.117 (Realizability of the surgery obstruction). Suppose $n \geq 5$. Consider a w-oriented connected compact manifold X with non-empty boundary ∂X. Let π be its fundamental group and let $w: \pi \to \{ \pm 1 \}$ be its orientation homomorphism. Consider an element $x \in L_n(\mathbb{Z} \pi, w)$.

Then we can find a normal map of degree one (\overline{f}, f) covering a map of triads
$f = (f; \partial_0 f, \partial_1 f): (M; \partial_0 M, \partial_1 M) \to (X \times [0, 1], X \times \{0\} \cup \partial X \times [0, 1], X \times \{1\})$

with the following properties:

(i) $\partial_0 f$ is a diffeomorphism and $\mathcal{I}|_{\partial_0 M}$ is a stabilization of $T(\partial f_0)$;

(ii) $\partial_1 f$ is a homotopy equivalence;

(iii) The surgery obstruction $\sigma(\mathcal{I}, f)$ in $L_n(\mathbb{Z}_\pi, w)$, see (8.83), is the given element x.

The analogous statement holds for $x \in L_s^n(\mathbb{Z}_\pi, w)$, if we require $\partial_1 f$ to be a simple homotopy equivalence and we consider the simple surgery obstruction, see (8.95).

Proof. See [235, Theorem 8.192 on page 308 and Theorem 9.111 on page 382]

Remark 8.118 (Surgery obstructions of closed manifolds). It is not true that for any w-oriented closed manifold N of dimension n with fundamental group π and orientation homomorphism $w: \pi \to \{\pm 1\}$ and any element $x \in L_n^s(\mathbb{Z}_\pi, w)$ there is a normal map (\mathcal{I}, f) covering a map of w-oriented closed manifolds $f: M \to N$ of degree one such that $\sigma(\mathcal{I}, f) = x$. Note that in Theorem 8.117 the target manifold $X \times [0, 1]$ is not closed. The same remark holds for $L_n^s(\mathbb{Z}_\pi, w)$. These questions are discussed in [404, 409, 645, 646].

8.12.3 The Surgery Exact Sequence

Now we can establish one of the main tools in the classification of manifolds, the surgery exact sequence. We have already extended the notion of a normal map for closed manifolds to manifolds with boundary and explained the notion of a normal bordism for normal maps of pairs in Section 8.9. In this Subsection 8.12.3, we will consider only normal maps with the same target $(X, \partial X)$, whose underlying maps are diffeomorphisms on the boundary, and we call two of them with the same target normally bordant, if there is a normal bordism between them in the sense of Definition 8.58 whose underlying map induces a diffeomorphism $\partial_1 W \to \partial X \times [0, 1]$.

Definition 8.119. Let $(X, \partial X)$ be a w-oriented compact manifold of dimension n with boundary ∂X. Define the set of normal maps to $(X, \partial X)$

$\mathcal{N}_n(X, \partial X)$

to be the set of normal bordism classes of normal maps of degree one (\mathcal{I}, f) with underlying map $(f, \partial f): (M, \partial M) \to (X, \partial X)$, for which $\partial f: \partial M \to \partial X$ is a diffeomorphism.
Let X be a closed w-oriented connected manifold of dimension $n \geq 5$. Denote by π its fundamental group and by $w: \pi \to \{\pm 1\}$ its orientation homomorphism. Let $N_{n+1}(X \times [0,1], X \times \{0,1\})$ and $N_n(X)$ be the set of normal maps of degree one as introduced in Definition 8.119. Let $S^*_n(X)$ be the structure set of Definition 8.114. Denote by $L^*_n(Z\pi)$ the simple surgery obstruction group, see Notation 8.94 Denote by

\begin{equation}
\sigma^*_{n+1}: N_{n+1}(X \times [0,1], X \times \{0,1\}) \to L^*_n(Z\pi, w);
\end{equation}

\begin{equation}
\sigma^*_n: N_n(X) \to L^*_n(Z\pi, w),
\end{equation}

the maps, which assign to the normal bordism class of a normal map of degree one its simple surgery obstruction, see (8.95). This is well-defined by Theorem 8.87 (ii). Let

\begin{equation}
\eta^*_n: S^*_n(X) \to N_n(X)
\end{equation}

be the map, which sends the class $[f] \in S^*_n(X)$ represented by a simple homotopy equivalence $f: M \to X$ to the normal bordism class of the following normal map of degree one. Choose a homotopy inverse $f^{-1}: X \to M$ and a homotopy $h: \text{id}_M \simeq f^{-1} \circ f$. Put $\xi = (f^{-1})^*TM$. Up to isotopy of bundle maps there is precisely one bundle map $(\tilde{h}, h): TM \times [0,1] \to TM$ covering $h: M \times [0,1] \to M$ whose restriction to $TM \times \{0\}$ is the identity map $TM \times \{0\} \to TM$. The restriction of \tilde{h} to $X \times \{1\}$ induces a bundle map $\tilde{f}: TM \to \xi$ covering $f: M \to X$. Put $\eta([f]) := [(\tilde{f}, f)]$. One easily checks that the normal bordism class of (\tilde{f}, f) depends only on $[f] \in S^*_n(X)$ and hence that η is well-defined.

Next we define an action of the abelian group $L^*_n(Z\pi, w)$ on the structure set $S^*_n(X)$

\begin{equation}\rho^*_n: L^*_n(Z\pi, w) \times S^*_n(X) \to S^*_n(X).\end{equation}

Fix $x \in L^*_n(Z\pi, w)$ and $[f] \in S^*_n(X)$ represented by a simple homotopy equivalence $f: M \to X$. By Theorem 8.117 we can find a normal map (\mathcal{F}, F) covering a map of triads $(\mathcal{F}; \partial_0 F, \partial_1 F): (\mathcal{W}; \partial_0 W, \partial_1 W) \to (M \times [0,1], M \times \{0\}, M \times \{1\})$ such that $\partial_0 F$ is a diffeomorphism and $\partial_1 F$ is a simple homotopy equivalence and $\sigma(\mathcal{F}, F) = x$. Then define $\rho^*_n(x, [f])$ by the class $[f \circ \partial_1 F: \partial_1 W \to X]$. We have to show that this is independent of the choice of (\mathcal{F}, F). Let (\mathcal{F}', F') be a second choice. We can glue W' and W together along the diffeomorphism $(\partial_0 F)^{-1} \circ \partial_0 F': \partial_0 W' \to \partial_0 W$ and obtain a normal bordism from $(\mathcal{F}|_{\partial_1 W}, \partial_1 F)$ to $(\mathcal{F}'|_{\partial_1 W'}, \partial_1 F')$. The simple obstruction of this normal bordism is

$$\sigma(\mathcal{F}', F') - \sigma(\mathcal{F}, F) = x - x = 0.$$

Because of Theorem 8.98 (ii) we can perform surgery relative boundary on this normal bordism to arrange that the reference map from it to $X \times [0,1]$
is a simple homotopy equivalence. In view of Remark 8.116 this shows that $f \circ \partial F$ and $f \circ \partial F'$ define the same element in $S^s_n(X)$. One easily checks that this defines a group action, since the surgery obstruction is additive under stacking normal bordisms together. The next result is the main result of this chapter and follows from the definitions and Theorem 8.98 (ii).

Theorem 8.124 (The surgery Exact Sequence). Under the conditions and in the notation above the so called surgery sequence

$$
N_{n+1}(X \times [0,1], X \times \{0,1\}) \xrightarrow{\sigma^s_{n+1}} L^s_{n+1}(Z \pi, w) \xrightarrow{\partial^s_{n+1}} S^s_n(X)
$$

$$
\eta^s_n \to N_n(X) \xrightarrow{\sigma^s_n} L^s_n(Z \pi, w)
$$

is exact for $n \geq 5$ in the following sense. An element $z \in N_n(X)$ lies in the image of η^s_n, if and only if $\sigma^s_n(z) = 0$. Two elements $y_1, y_2 \in S^s_n(X)$ have the same image under η^s_n, if and only if there exists an element $x \in L^s_{n+1}(Z \pi, w)$ with $\rho^s_n(x, y_1) = y_2$. For two elements x_1, x_2 in $L^s_{n+1}(Z \pi)$ we have $\rho^s_n(x_1, [id: X \to X]) = \rho^s_n(x_2, [id: X \to X])$, if and only if there is $u \in N_{n+1}(X \times [0,1], X \times \{0,1\})$ with $\sigma^s_{n+1}(u) = x_1 - x_2$.

There is an analogous surgery exact sequence

$$
N^{h}_{n+1}(X \times [0,1], X \times \{0,1\}) \xrightarrow{\sigma^{h}_{n+1}} L^{h}_{n+1}(Z \pi, w) \xrightarrow{\partial^{h}_{n+1}} S^{h}_n(X)
$$

$$
\eta^{h}_n \to N_n(X) \xrightarrow{\sigma^{h}_n} L^{h}_n(Z \pi, w),
$$

where $S^h(X)$ is the structure set of Definition 8.115 and $L^h_n(Z \pi, w) := L_n(Z \pi, w)$ have been introduced in Definitions 8.24 and 8.80.

Remark 8.125 (Extending the surgery exact sequence to the left). The surgery sequence of Theorem 8.124 can be extended to infinity to the left. In the range far enough to the left it is a sequence of abelian groups.

8.13 Surgery Theory in the PL and in the Topological Category

One can also develop surgery theory in the PL-category or in the topological category. This requires to carry over the notions of vector bundles and tangent bundles to these categories. There are analogs of the sets of normal invariants $N^\text{PL}_n(X)$ and $N^\text{TOP}_n(X)$ and the structure sets $S^\text{PL,h}_n(X), S^\text{PL,s}_n(X), S^\text{TOP,h}_n(X)$ and $S^\text{TOP,s}_n(X)$. There are analogs PL and TOP of the group $O = \colim_{n \to \infty} O_n$. The topological group TOP is the limit of the groups TOP(k), which are the groups of homeomorphisms of \mathbb{R}^k fixing the origin:

$$
\text{TOP} = \colim_{k \to \infty} \text{TOP}(k).
$$
The definition of PL is more elaborate. Let $G = \operatorname{colim}_{n \to \infty} G(n)$, where $G(n)$ is the monoid of self homotopy equivalences of S^n. There are classifying spaces BPL (resp. BTOP), which classify stable isomorphism classes of PL (resp. TOP) \mathbb{R}^k bundles and which are infinite loop spaces with multiplication corresponding to the Whitney sum of bundles. The space BG is the classifying space for spherical fibrations. There are also canonical maps $\operatorname{BPL} \to BG$ (resp. $\operatorname{BTOP} \to BG$), which classify the passage to strong fiber homotopy equivalence classes of stable spherical fibrations. The homotopy fibres of these maps are denoted G/PL (resp. G/TOP) and have infinite loop space structures so that the canonical maps $G/\operatorname{PL} \to \operatorname{BPL}$ and $G/\operatorname{TOP} \to \operatorname{BTOP}$ are maps of infinite loop spaces. Define G/O as the homotopy fiber of the map $BO \to BG$.

Theorem 8.126 (The set of normal maps and G/O, G/PL and G/TOP).

Let X be a connected compact n-dimensional manifold. Then there is a canonical group structure on the set $[X, G/O]$, $[X, G/\operatorname{PL}]$, or $[X, G/\operatorname{TOP}]$ respectively, and a transitive free operation of this group on $\mathcal{N}_n(X)$, $\mathcal{N}^\operatorname{PL}_n(X)$, or $\mathcal{N}^\operatorname{TOP}_n(X)$ respectively. In particular we get bijections

$$
[X/\partial X, G/O] \xrightarrow{\cong} \mathcal{N}_n(X);
[X/\partial X, G/\operatorname{PL}] \xrightarrow{\cong} \mathcal{N}^\operatorname{PL}_n(X);
[X/\partial X, G/\operatorname{TOP}] \xrightarrow{\cong} \mathcal{N}^\operatorname{TOP}_n(X),
$$

respectively.

There are analogs of the surgery exact sequence, see Theorem 8.124, for the PL-category and the topological category.

Theorem 8.127 (The Surgery Exact Sequence). There is a surgery sequence

$$
\mathcal{N}^\operatorname{PL}_{n+1}(X \times [0,1], X \times \{0,1\}) \xrightarrow{\sigma^h_{n+1}} L^h_{n+1}(\mathbb{Z}_\pi, w) \xrightarrow{\delta^h_{n+1}} S^h(X) \xrightarrow{\eta^h} \mathcal{N}^\operatorname{PL}_n(X) \xrightarrow{\sigma^h} L^h(\mathbb{Z}_\pi, w),
$$

which is exact for $n \geq 5$ in the sense of Theorem 8.124. There is an analogous surgery exact sequence

$$
\mathcal{N}^\operatorname{PL}_{n+1}(X \times [0,1], X \times \{0,1\}) \xrightarrow{\sigma^h_{n+1}} L^h_{n+1}(\mathbb{Z}_\pi, w) \xrightarrow{\delta^h_{n+1}} S^h(X) \xrightarrow{\eta^h} \mathcal{N}^\operatorname{PL}_n(X) \xrightarrow{\sigma^h} L^h(\mathbb{Z}_\pi, w).
$$

The analogous sequences exists in the topological category, namely there is a surgery sequence

$$
\mathcal{N}^\operatorname{TOP}_{n+1}(X \times [0,1], X \times \{0,1\}) \xrightarrow{\sigma^h_{n+1}} L^h_{n+1}(\mathbb{Z}_\pi, w) \xrightarrow{\delta^h_{n+1}} S^h(X) \xrightarrow{\eta^h} \mathcal{N}^\operatorname{TOP}_n(X) \xrightarrow{\sigma^h} L^h(\mathbb{Z}_\pi, w).
$$
\[\mathcal{N}_{n+1}^{\text{TOP}}(X \times [0, 1], X \times \{0, 1\}) \xrightarrow{\sigma_{n+1}^s} L_n^s(Z\pi, w) \xrightarrow{\partial_{n+1}^s} S_n^\text{TOP, s}(X) \]

which is exact for \(n \geq 5 \) in the sense of Theorem 8.124, and an analogous surgery exact sequence

\[\mathcal{N}_{n+1}^{\text{TOP}}(X \times [0, 1], X \times \{0, 1\}) \xrightarrow{\sigma_{n+1}^h} L_n^h(Z\pi, w) \]

Note that the surgery obstruction groups are the same in the smooth category, PL-category and in the topological category. Only the set of normal invariants and the structure sets are different. The set of normal invariants in the smooth category, PL-category or topological category do not depend on the decoration \(h \) and \(s \), whereas the structure sets and the surgery obstruction groups depend on the decoration \(h \) and \(s \). In particular the structure set depends on both the choice of category and choice of decoration.

As in the smooth setting the surgery sequence above can be extended to infinity to the left.

Some interesting constructions can be carried out in the topological category, which do not have smooth counterparts.

Remark 8.128 (The total surgery obstruction). Given a finite Poincaré complex \(X \) of dimension \(\geq 5 \), a single obstruction, the so called total surgery obstruction, is constructed in [756, §17], see also [538]. It vanishes, if and only if \(X \) is homotopy equivalent to a closed topological manifold. It combines the two stages of the classical obstructions, namely, the problem whether the Spivak normal fibration has a reduction to a \(\text{TOP} \)-bundle (which is equivalent to the condition that \(\mathcal{N}_n^{\text{TOP}}(X) \) is non-empty) and whether the surgery obstruction of the associated normal map is trivial.

Remark 8.129 (Group structures on the surgery sequence). An algebraic surgery sequence is constructed in [756, §14, §18] and identified with the geometric surgery sequence above in the topological category. Moreover, in the topological situation one can find abelian group structures on \(S_n^{\text{TOP, s}}(X) \), \(S_n^{\text{TOP, h}}(X) \) and \(\mathcal{N}_n^{\text{TOP}}(X) \) such that the surgery sequence becomes a sequence of abelian groups. The main point is to find the right addition on \(G/\text{TOP} \).

There cannot be a group structure in the smooth category for \(S_n^h(X) \) and \(\mathcal{N}_n(X) \) such that \(S_n^h(X) \xrightarrow{\partial_n} \mathcal{N}_n(X) \xrightarrow{\sigma_n} L_n^h(Z\pi, w) \) is a sequence of groups (and analogous for the simple version), see [234]. Note that the composite, see Theorem 8.126

\[[X; G/O] \cong \mathcal{N}_n(X) \xrightarrow{\sigma_n^s} L_n^s(Z\pi, w) \]
is a map, whose source and target come with canonical group structures but it is not a homomorphism of abelian groups in general, see [898 page 114]. The same problem arises with the decoration h.

Remark 8.130 (The homotopy type of G/O and G/PL). The computation of the homotopy type of the spaces G/O and G/PL due to Sullivan [846] is explained in detail in [627, Chapter 4]. One obtains homotopy equivalences

$$G/\text{TOP} \left[\frac{1}{2}\right] \simeq BO \left[\frac{1}{2}\right];$$

$$G/\text{TOP}_{(2)} \simeq \prod_{j \geq 1} K(\mathbb{Z}(2), 4j) \times \prod_{j \geq 1} K(\mathbb{Z}/2, 4j - 2),$$

where $K(A, i)$ denotes the *Eilenberg-MacLane space* of type (A, i), i.e., a CW-complex such that $\pi_n(K(A, i))$ is trivial for $n \neq i$ and is isomorphic to A if $n = i$, the subscript (2) stands for localizing at (2), i.e., all primes except 2 are inverted, and $\left[\frac{1}{2}\right]$ stands for localization of 2, i.e. 2 is inverted. In particular we get for a space X isomorphisms

$$[X, G/\text{TOP}] \left[\frac{1}{2}\right] \cong \widetilde{KO}^0(X) \left[\frac{1}{2}\right];$$

$$[X, G/\text{TOP}_{(2)}] \cong \prod_{j \geq 1} H^{4j}(X; \mathbb{Z}(2)) \times \prod_{j \geq 1} H^{4j-2}(M; \mathbb{Z}/2),$$

where KO^* is K-theory of real vector bundles, see Subsection 9.2.2.

The various groups G, TOP, PL and their (homotopy theoretic) quotients G/PL, PL/O and G/PL fit into a braid by inspecting long exact sequences of fibrations. This braid can be interpreted geometrically in terms of L-groups, bordism groups, and homotopy groups of exotic spheres in dimensions ≥ 5, see for instance [235, Chapter 12].

Kirby and Siebenmann [524, Theorem 5.5 in Essay V on page 251], see also [798], have proved

Theorem 8.131. The space TOP/PL is an Eilenberg MacLane space of type $(\mathbb{Z}/2, 3)$.

8.14 The Novikov Conjecture

In this section we introduce the Novikov Conjecture in its original form in terms of higher signatures and make a first link to surgery theory. It follows from both the Baum-Connes Conjecture and the Farrell-Jones Conjecture and has been an important interface between topology and non-commutative geometry.
8.14.1 The Original Formulation of the Novikov Conjecture

Let G be a (discrete) group. Let $u: M \to BG$ be a map from an oriented closed smooth manifold M to BG. Let

$$L(M) \in \bigoplus_{k \in \mathbb{Z}, k \geq 0} H^{4k}(M; \mathbb{Q})$$

be the L-class of M. Its k-th entry $L(M)_k \in H^{4k}(M; \mathbb{Q})$ is a certain homogeneous polynomial of degree k in the rational Pontrjagin classes $p_i(M; \mathbb{Q}) \in H^{4i}(M; \mathbb{Q})$ for $i = 1, 2, \ldots, k$ such that the coefficient s_k of the monomial $p_k(M; \mathbb{Q})$ is different from zero. It is defined in terms of multiplicative sequences, see for instance [654, § 19]. We mention at least the first values

$L(M)_1 = \frac{1}{3} \cdot p_1(M; \mathbb{Q})$;

$L(M)_2 = \frac{1}{45} \cdot (7 \cdot p_2(M; \mathbb{Q}) - p_1(M; \mathbb{Q})^2)$;

$L(M)_3 = \frac{1}{945} \cdot (62 \cdot p_3(M; \mathbb{Q}) - 13 \cdot p_1(M; \mathbb{Q}) \cup p_2(M; \mathbb{Q}) + 2 \cdot p_1(M; \mathbb{Q})^3)$.

The L-class $L(M)$ is determined by all the rational Pontrjagin classes and vice versa. Recall that the k-th rational Pontrjagin class $p_k(M, \mathbb{Q}) \in H^{4k}(M; \mathbb{Q})$ is defined as the image of k-th Pontrjagin class $p_k(M)$ under the obvious change of coefficients map $H^{4k}(M; \mathbb{Z}) \to H^{4k}(M; \mathbb{Q})$. The L-class depends on the tangent bundle and thus on the differentiable structure of M. For $x \in \prod_{k \geq 0} H^k(BG; \mathbb{Q})$ define the higher signature of M associated to x and u to be

$$\text{sign}_x(M, u) := \langle L(M) \cup u^* x, [M]_\mathbb{Q} \rangle \in \mathbb{Q},$$

where $[M]_\mathbb{Q}$ denotes the image fundamental class $[M]$ of an oriented closed d-dimensional manifold M under the change of coefficients map $H_d(M; \mathbb{Z}) \to H_d(M; \mathbb{Q})$. Recall that for $\dim(M) = 4n$ the signature $\text{sign}(M)$ of M is the signature of the non-singular bilinear symmetric pairing on the middle cohomology $H^{2n}(M; \mathbb{R})$ given by the intersection pairing $(a, b) \mapsto \langle a \cup b, [M]_{\mathbb{R}} \rangle$. Obviously $\text{sign}(M)$ depends only on the oriented homotopy type of M. We say that sign_x for $x \in H^*(BG; \mathbb{Q})$ is homotopy invariant, if for two oriented closed closed smooth manifolds M and N with reference maps $u: M \to BG$ and $v: N \to BG$ we have

$$\text{sign}_x(M, u) = \text{sign}_x(N, v),$$

whenever there is an orientation preserving homotopy equivalence $f: M \to N$ such that $v \circ f$ and u are homotopic.
Conjecture 8.134 (Novikov Conjecture). The group G satisfies the Novikov Conjecture, if sign_x is homotopy invariant for all elements x of $\prod_{k \in \mathbb{Z}, k \geq 0} H^k(BG; \mathbb{Q})$.

This conjecture appears for the first time in the paper by Novikov [687, §11]. A survey about its history can be found in [346].

8.14.2 Invariance Properties of the L-Class

One motivation for the Novikov Conjecture comes from the Signature Theorem due to Hirzebruch [445, 446].

Theorem 8.135 (Signature Theorem). Let M be an oriented closed manifold of dimension n. Then the higher signature $\text{sign}_1(M,u) = \langle L(M), [M]_Q \rangle$ associated to $1 \in H_0(M)$ and some map $u: M \to BG$ coincides with the signature $\text{sign}(M)$ of M, if $\text{dim}(M) = 4n$, and is zero, if $\text{dim}(M)$ is not divisible by four.

The Signature Theorem 8.135 leads to the question, whether the Pontrjagin classes or the L-classes are homotopy invariants or homeomorphism invariants. They are obviously invariants of the diffeomorphism type. However, the Pontrjagin classes $p_k(M) \in H^{4k}(M; \mathbb{Z})$ for $k \geq 2$ are not homeomorphism invariants, see for instance [530, Theorem 4.8 on page 31]. On the other hand, there is the following deep result due to Novikov [684, 685, 686].

Theorem 8.136 (Topological invariance of rational Pontrjagin classes). The rational Pontrjagin classes $p_k(M,\mathbb{Q}) \in H^{4k}(M; \mathbb{Q})$ are topological invariants, i.e., for a homeomorphism $f: M \to N$ of closed smooth manifolds we have

$$H^{4k}(f; \mathbb{Q})(p_k(N; \mathbb{Q})) = p_k(M; \mathbb{Q})$$

for all $k \geq 0$ and in particular $H^*(f; \mathbb{Q})(L(N)) = L(M)$.

Example 8.137 (The L-class is not a homotopy invariant). The rational Pontrjagin classes and the L-class are not homotopy invariants as the following example shows. There exists for $k \geq 1$ and large enough $j \geq 0$ a $(j+1)$-dimensional vector bundle $\xi: E \to S^{4k}$ with Riemannian metric, whose k-th Pontrjagin class $p_k(\xi)$ is not zero and which is trivial as a fibration. The total space SE of the associated sphere bundle is a closed $(4k+j)$-dimensional manifold, which is homotopy equivalent to $S^{4k} \times S^j$ and satisfies

$$p_k(SE) = -p_k(\xi) \neq 0;$$

$$L(SE)_k = s_k \cdot p_k(SE) \neq 0,$$

where $s_k \neq 0$ is the coefficient of p_k in the polynomial defining the L-class. But $p_k(S^{4k} \times S^j)$ and $L(S^{4k} \times S^j)_k$ vanish, since the tangent bundle of $S^{4k} \times S^j$ is
stably trivial. In particular SE and $S^{4k} \times S^j$ are simply-connected homotopy equivalent closed manifolds, which are not homeomorphic. This example is taken from [758, Proposition 2.9] and attributed to Dold and Milnor there. See also [758, Proposition 2.10] or [654, Section 20].

Remark 8.138 (The homological version of the Novikov Conjecture). One may understand the Novikov Conjecture as an attempt to figure out, how much of the L-class is a homotopy invariant of M. If one considers the oriented homotopy type and the simply-connected case, it is just the expression $\langle L(M), [M]_Q \rangle$ or, equivalently, the top component of $L(M)$. In the Novikov Conjecture one asks the same question, but now taking the fundamental group into account by remembering the classifying map $u_M: M \to B\pi_1(M)$, or, more generally, a reference map $u: M \to BG$. The Novikov Conjecture can also be rephrased by saying that for any group G and any pair (M, u) consisting of an oriented closed manifold M of dimension n together with a reference map $u: M \to BG$ the term

$$u_*(L(M) \cap [M]_Q) \in \bigoplus_{k \in \mathbb{Z}} H_{n+4k}(BG; \mathbb{Q})$$

depends only on the oriented homotopy type of the pair (M, u). This follows from the elementary computation for $x \in H^*(BG; \mathbb{Q})$

$$\langle L(M) \cup u^*x, [M]_Q \rangle = \langle u^*x, L(M) \cap [M]_Q \rangle = \langle x, u_*(L(M) \cap [M]_Q) \rangle.$$

and the fact that the Kronecker product $\langle -, - \rangle$ for rational coefficients is non-singular. Note that $-\cap [M]_Q: H^{n-i}(M; \mathbb{Q}) \to H_i(M; \mathbb{Q})$ is an isomorphism for all $i \geq 0$ by Poincaré duality. Hence $L(M) \cap [M]_Q$ carries the same information as $L(M)$.

Exercise 8.139. Let $f: M \to N$ be an orientation preserving homotopy equivalence of oriented closed manifolds, which are aspherical. Assume that the Novikov Conjecture 8.134 holds for $G = \pi_1(M)$. Show that then $L(M) = f^*L(N)$ must be true.

8.14.3 The Novikov Conjecture and Surgery Theory

Remark 8.140 (The Novikov Conjecture and assembly map). There exists an assembly map

$$\text{asmb}^G_n: \bigoplus_{k \in \mathbb{Z}} H_{n+4k}(BG; \mathbb{Q}) \to L^h_n(\mathbb{Z}G) \otimes \mathbb{Q},$$

which fits into the following commutative diagram
The map i is the obvious map and u_* is the homomorphism coming from $\pi_1(u): \pi_1(M) \to \pi_1(BG) = G$. The bijection b is taken from Theorem 8.126. The map c comes from the rational version of the homotopy equivalences describing G/TOP appearing in Remark 8.130 and Poincaré duality. The composite $c \circ b$ sends the class of a normal map (f,f) with underlying map $f: N \to M$ of degree one to $(u \circ f)_* (\mathcal{L}(N) \cap [N]_Q) - u_*(\mathcal{L}(M) \cap [M]_Q)$, where we choose $[N]$ such that the map f has degree one. We conclude from Remark 8.138 that the Novikov Conjecture 8.134 is equivalent to the statement that s is trivial.

This fact is for instance explained in [564, page 728]. The map s is defined analogously, it sends the class $[f]$ of a homotopy equivalence $f: N \to M$ to the difference $(u \circ f)_* (\mathcal{L}(N) \cap [N]_Q) - u_*(\mathcal{L}(M) \cap [M]_Q)$, where we choose $[N]$ such that the map f has degree one. We conclude from Remark 8.138 that the Novikov Conjecture 8.134 is equivalent to the statement that s is trivial. The upper row is part of the surgery exact sequence of Theorem 8.127. This implies that the composite

$$S_n^{TOP,h}(M) \xrightarrow{s} \bigoplus_{k \in \mathbb{Z}} H_{n+4k}(BG;\mathbb{Q}) \xrightarrow{\text{asmb}_n^G} L_n^h(ZG) \otimes \mathbb{Q}$$

is trivial.

Thus we can conclude that the group G satisfies the Novikov Conjecture 8.134 if the map $\text{asmb}_n^G: \bigoplus_{k \in \mathbb{Z}} H_{n+4k}(BG;\mathbb{Q}) \to L_n^h(ZG) \otimes \mathbb{Q}$ is injective. See also Kaminker-Miller [485] or [530, Proposition 15.4 on page 112]. Note that the last map involves only G. This conclusion will be a key ingredient in the proof that the L-theoretic Farrell-Jones Conjecture for G implies the Novikov Conjecture 8.134 see Theorem 12.56 (xi).

Remark 8.141 (The converse of the Novikov Conjecture). A kind of converse to the Novikov Conjecture 8.134 is the following result. Let N be an oriented connected closed smooth manifold of dimension $n \geq 5$. Let $u: N \to BG$ be a map inducing an isomorphism on the fundamental groups. Consider any element $l \in \prod_{i \geq 0} H^i(N;\mathbb{Q})$ such that $u_*(l \cap [N]_Q) = 0$ holds in $H_*(BG;\mathbb{Q})$. Then there exists a non-negative integer K such that for any multiple k of K there is a homotopy equivalence $f: M \to N$ of oriented closed smooth manifolds satisfying

$$f^*(\mathcal{L}(N) + k \cdot l) = \mathcal{L}(M).$$
A proof can be found for instance in [249, Theorem 6.5]. This shows that the top dimension part of the L-class $\mathcal{L}(M)$ is essentially the only homotopy invariant rational characteristic class for simply-connected closed $4k$-dimensional manifolds.

More information about the Novikov Conjecture can be found for instance in [347, 348, 530, 780, 938]. An algebraic geometric and an equivariant version of the Novikov Conjecture is introduced in [778] and [785].

8.15 Topologically Rigidity and the Borel Conjecture

In this section we deal with the Borel Conjecture and how it follows from the Farrell-Jones Conjecture in dimensions ≥ 5.

8.15.1 Aspherical Spaces

Definition 8.142 (Aspherical). A space X is called aspherical, if it is path connected and all its higher homotopy groups vanish, i.e., $\pi_n(X)$ is trivial for $n \geq 2$.

Remark 8.143 (Homotopy classification of aspherical CW-complexes). A CW-complex is aspherical, if and only if it is connected and its universal covering is contractible. Given two aspherical CW-complexes X and Y, the map from the set of homotopy classes of maps $X \to Y$ to the set of group homomorphisms $\pi_1(X) \to \pi_1(Y)$ modulo inner automorphisms of $\pi_1(Y)$ given by the map induced on the fundamental groups is a bijection. In particular, two aspherical CW-complexes are homotopy equivalent, if and only if they have isomorphic fundamental groups and every isomorphism between their fundamental groups comes from a homotopy equivalence.

Remark 8.144 (Classifying space of a group). An aspherical CW-complex X with fundamental group π is the same as an Eilenberg Mac-Lane space $K(\pi, 1)$ of type $(\pi, 1)$ and the same as the classifying space $B\pi$ for the group π.

Exercise 8.145. Let $F \to E \to B$ be a fibration. Suppose that F and B are aspherical. Show that then E is aspherical.

Exercise 8.146. Let X be an aspherical CW-complex of finite dimension. Show that $\pi_1(X)$ is torsionfree.

Example 8.147 (Examples of aspherical manifolds).
(i) A connected closed 1-dimensional manifold is homeomorphic to \(S^1 \) and hence aspherical;
(ii) Let \(M \) be a connected closed 2-dimensional manifold. Then \(M \) is either aspherical or homeomorphic to \(S^2 \) or \(\mathbb{RP}^2 \);
(iii) A connected closed 3-manifold \(M \) is called \textit{prime}, if for any decomposition as a connected sum \(M \cong M_0 \sharp M_1 \) one of the summands \(M_0 \) or \(M_1 \) is homeomorphic to \(S^3 \). It is called \textit{irreducible}, if any embedded sphere \(S^2 \) bounds a disk \(D^3 \). Every irreducible closed 3-manifold is prime. A prime closed 3-manifold is either irreducible or an \(S^2 \)-bundle over \(S^1 \). The following statements are equivalent for a closed 3-manifold \(M \):

- \(M \) is aspherical;
- \(M \) is irreducible and its fundamental group is infinite and contains no element of order 2;
- The fundamental group \(\pi_1(M) \) cannot be written in a non-trivial way as an amalgamated free product of two groups, is infinite, different from \(\mathbb{Z} \), and contains no element of order 2.
- The universal covering of \(M \) is homeomorphic to \(\mathbb{R}^3 \).

(iv) Let \(L \) be a Lie group with finitely many path components. Let \(K \subseteq L \) be a maximal compact subgroup. Let \(G \subseteq L \) be a discrete torsionfree subgroup. Then \(M = G \backslash L / K \) is an aspherical closed manifold with fundamental group \(G \), since its universal covering \(L / K \) is diffeomorphic to \(\mathbb{R}^n \) for appropriate \(n \);
(v) Every closed Riemannian (smooth) manifold with non-positive sectional curvature has a universal covering, which is diffeomorphic to \(\mathbb{R}^n \) and is in particular aspherical.

\textbf{Exercise 8.148.} Classify all simply connected aspherical closed manifolds.

\textbf{Exercise 8.149.} Suppose that \(M \) is a connected sum \(M_1 \sharp M_2 \) of two closed manifolds \(M_1 \) and \(M_2 \) of dimension \(n \geq 3 \), which are not homotopy equivalent to a sphere. Show that \(M \) is not aspherical.

There exists exotic aspherical manifolds as the following results illustrate. The following theorem is due to Davis-Januszkiewicz [262, Theorem 5a.4].

\textbf{Theorem 8.150 (Non-PL-example).} For every \(n \geq 4 \) there exists an aspherical closed topological \(n \)-manifold, which is not homotopy equivalent to a PL-manifold.

The following result is proved by Davis-Fowler-Lafont [261] using the work of Manolescu [633, 632].

\textbf{Theorem 8.151 (Non-triangulable aspherical closed manifolds).} There exists for each \(n \geq 6 \) an \(n \)-dimensional aspherical closed topological manifold, which cannot be triangulated.
The proof of the following theorem can be found in 259, 262 Theorem 5b.1.

Theorem 8.152 (Exotic universal covering of aspherical closed manifolds). For each \(n \geq 4 \) there exists an aspherical closed \(n \)-dimensional manifold such that its universal covering is not homeomorphic to \(\mathbb{R}^n \).

By the Hadamard-Cartan Theorem, see 372, 3.87 on page 134, the manifold appearing in Theorem 8.152 above cannot be homeomorphic to a smooth manifold with Riemannian metric with non-positive sectional curvature.

More information about fundamental groups of aspherical closed manifolds with unusual properties can be found for instance in 802.

The question, when the isometry group of the universal covering of an aspherical closed manifold is non-discrete, is studied by Farb-Weinberger 318.

Remark 8.153 (\(S^1 \)-actions on aspherical closed manifolds). If \(S^1 \) acts on an aspherical closed manifold, then the orbit circle is a non-trivial element in the center by a result of Borel, see for instance 220, Lemma 5.1 on page 242. There is the conjecture of Conner-Raymond 220, page 229 stating that the converse is true, namely, if the fundamental group of an aspherical closed manifold has nontrivial center, then the manifold has a circle action, such that the orbit circle is a nontrivial central element of the fundamental group. A counterexample in dimensions \(\geq 6 \) was constructed by Cappell-Weinberger-Yan 185.

It is an open question, whether the conjecture of Conner-Raymond above is true, if one allows the passage to a finite covering.

Another interesting open question is, whether the center of the fundamental group of an aspherical closed manifold is finitely generated.

For more information about aspherical spaces we refer for instance to 595.

8.15.2 Formulation and Relevance of the Borel Conjecture

Definition 8.154 (Topologically rigid). We call a closed topological manifold \(N \) **topologically rigid**, if any homotopy equivalence \(M \to N \) with a closed topological manifold \(M \) as source is homotopic to a homeomorphism.

Conjecture 8.155 (Borel Conjecture (for a group \(G \) in dimension \(n \))). The **Borel Conjecture for a group \(G \) in dimension \(n \)** predicts for two aspherical closed topological manifolds \(M \) and \(N \) of dimensions \(n \) with \(\pi_1(M) \cong \pi_1(N) \cong G \), that \(M \) and \(N \) are homeomorphic and any homotopy equivalence \(M \to N \) is homotopic to a homeomorphism.

The **Borel Conjecture** says that every aspherical closed topological manifold is topologically rigid.
Remark 8.156 (The Borel Conjecture in low dimensions). The Borel Conjecture is true in dimension ≤ 2. It is true in dimension 3, if Thurston’s Geometrization Conjecture is true. This follows from results of Waldhausen, see Hempel [425, Lemma 10.1 and Corollary 13.7], and Turaev, see [870], as explained for instance in [531, Section 5]. A proof of Thurston’s Geometrization Conjecture is given in [525, 675] following ideas of Perelman. Some information in dimension 4 can be found in Davis [250].

Remark 8.157 (Topological rigidity for non-aspherical manifolds). Topological rigidity phenomena do hold also for some non-aspherical closed manifolds. For instance the sphere S^n is topologically rigid by the Poincaré Conjecture. The Poincaré Conjecture is known to be true in all dimensions. This follows in high dimensions from the h-cobordism theorem, in dimension four from the work of Freedman [363], in dimension three from the work of Perelman as explained in [525, 674], and and in dimension two from the classification of surfaces.

Many more examples of classes of manifolds, which are topologically rigid, are given and analyzed in Kreck-Lück [531]. For instance, the connected sum of closed manifolds of dimension ≥ 5, which are topologically rigid and whose fundamental groups do not contain elements of order two, is again topologically rigid. The product $S^k \times S^n$ is topologically rigid, if and only if k and n are odd. An integral homology sphere of dimension $n \geq 5$ is topologically rigid, if and only if the inclusion $\mathbb{Z} \to \mathbb{Z}[\pi_1(M)]$ induces an isomorphism of simple L-groups $L_{n+1}(\mathbb{Z}) \to L_{n+1}(\mathbb{Z}[\pi_1(M)])$. Every 3-manifold with torsionfree fundamental group is topologically rigid.

Exercise 8.158. Give an example of a closed orientable 3-manifold with finite fundamental group, which is not topologically rigid.

Exercise 8.159. Give an example of two topologically rigid orientable closed smooth manifolds, whose cartesian product is not topologically rigid.

Remark 8.160 (The Borel Conjecture does not hold in the smooth category). The Borel Conjecture [8.155] is false in the smooth category, i.e., if one replaces topological manifold by smooth manifold and homeomorphism by diffeomorphism. The torus T^n for $n \geq 5$ is an example, see [531, 15A]. Other counterexample involving negatively curved manifolds are constructed by Farrell-Jones [529, Theorem 0.1].

Remark 8.161 (The Borel Conjecture versus Mostow rigidity). The examples of Farrell-Jones [529, Theorem 0.1] give actually more. Namely, they yield for given $\epsilon > 0$ a closed Riemannian manifold M_0, whose sectional curvature lies in the interval $[1 - \epsilon, -1 + \epsilon]$ and a closed hyperbolic manifold M_1 such that M_0 and M_1 are homeomorphic but not diffeomorphic. The idea of the construction is essentially to take the connected sum of M_1 with exotic
spheres. Note that by definition M_0 were hyperbolic, if we could take $\epsilon = 0$. Hence this example is remarkable in view of Mostow rigidity, which predicts for two closed hyperbolic manifolds N_0 and N_1 that they are isometrically diffeomorphic, if and only if $\pi_1(N_0) \cong \pi_1(N_1)$ and any homotopy equivalence $N_0 \to N_1$ is homotopic to an isometric diffeomorphism.

One may view the Borel Conjecture as the topological version of Mostow rigidity. The conclusion in the Borel Conjecture is weaker, one gets only homeomorphisms and not isometric diffeomorphisms, but the assumption is also weaker, since there are many more aspherical closed topological manifolds than hyperbolic closed manifolds.

Remark 8.162 (The work of Farrell-Jones). Farrell-Jones have made deep contributions to the Borel Conjecture. They have proved it in dimension ≥ 5 for non-positively curved closed Riemannian manifolds, for compact complete affine flat manifolds, and for aspherical closed manifolds, whose fundamental group is isomorphic to the fundamental group of a complete non-positively curved Riemannian manifold that is A-regular. Relevant references are [330, 331, 333, 335, 336].

The Borel Conjecture for higher dimensional graph manifolds is studied by Frigerio-Lafont-Sisto [368].

8.15.3 The Farrell-Jones and the Borel Conjecture

Theorem 8.163 (The Farrell-Jones and the Borel Conjecture). Let G be a finitely presented group. Suppose that it satisfies the versions of the K-theoretic Farrell-Jones Conjecture stated in 3.107 and 4.19 and the version of the L-theoretic Farrell-Jones Conjecture stated in 8.111 for the ring $R = \mathbb{Z}$.

Then every aspherical closed manifold of dimension ≥ 5 with G as fundamental group is topologically rigid, in other words, the Borel Conjecture 8.155 holds for G in dimensions ≥ 5.

For its proof we need the following lemma.

Lemma 8.164. Let M be a closed topological manifold with $\text{Wh}(\pi_1(M)) = 0$. Then M is topologically rigid, if and only if the simple topological structure set $S_{\text{TOP},s}(M)$ consists of precisely one element, namely the class of id_M.

Proof. Suppose that M is topologically rigid. Consider any element in $\eta \in S_{\text{TOP},s}(M)$. Choose a simple homotopy equivalence $f : N \to M$ representing η. Since M is topologically rigid, f is homotopic to a homeomorphism $h : N \to M$. Hence $\text{id}_M \circ h \simeq f$. This implies that η is represented by id_M.

Suppose that $S_{\text{TOP},s}(M)$ consists only of one class, the one represented by id_M. Consider any homotopy equivalence $f : N \to M$. Since $\text{Wh}(\pi_1(M)) = 0$ holds by assumption, f is a simple homotopy equivalence and thus represents
Lemma 8.165. Let M be a closed topological manifold of dimension $n \geq 5$. Let $w: \pi := \pi_1(M) \to \{\pm 1\}$ be given by its first Stiefel-Whitney class. Suppose $\text{Wh}(\pi_1(M)) = 0$. Assume that the homomorphism of abelian groups $\sigma^*_n: \mathcal{N}^\text{TOP}_n(M \times [0, 1], M \times \{0, 1\}) \to L^s_n(\mathbb{Z}\pi, w)$ of (8.120) is surjective and that the preimage of 0 under the map $\sigma^*_n: \mathcal{N}^\text{PL}_n(X) \to L^s_n(\mathbb{Z}\pi, w)$ of (8.121) consists of one point.

Then M is topologically rigid.

Proof. This follows from the simple topological surgery exact sequence of Theorem 8.127 and Lemma 8.164.

Now we can give a sketch of the proof of Theorem 8.163.

Sketch of the proof of Theorem 8.163 We deal for simplicity with the orientable case, i.e., $w_1 = 0$, only. Let $L^{(-\infty)}(\mathbb{Z})$ be the L-theory spectrum appearing in the version of the L-theoretic Farrell-Jones Conjecture 8.111. Since it holds by assumption, the so called assembly map

$$\text{asmb}_k^{(-\infty)}: H_k(B\pi; L^{(-\infty)}(\mathbb{Z})) \to L^s_k(\mathbb{Z}\pi)$$

is bijective for all k. Let $L^{(-\infty)}(\mathbb{Z})(1)$ be the 1-connected cover of $L^{(-\infty)}(\mathbb{Z})$. This spectrum comes with a map of spectra $i: L^{(-\infty)}(\mathbb{Z})(1) \to L^{(-\infty)}(\mathbb{Z})$ such that $\pi_k(i)$ is bijective for $k \geq 1$ and $\pi_k(L^{(-\infty)}(\mathbb{Z})(1)) = 0$ for $k \leq 0$. For $k \geq 1$ there is a connective version of the assembly map asmb_k above

$$\text{asmb}_k^{(-\infty)}(1): H_k(B\pi; L^{(-\infty)}(\mathbb{Z})(1)) \to L^s_k(\mathbb{Z}\pi)$$

such that $\pi_k(i) \circ \text{asmb}_k(1) = \text{asmb}_k$ holds. A comparison argument of the Atiyah-Hirzebruch spectral sequence shows that the bijectivity of $\text{asmb}_k^{(-\infty)}$ for $k = n, n + 1$ implies that $\text{asmb}_{n+1}^{(-\infty)}(1)$ is bijective and in particular surjective and $\text{asmb}_n^{(-\infty)}(1)$ is injective, if n is the dimension of the aspherical closed manifold under consideration. Because by assumption Conjectures 3.107 and 4.19 hold for π, we conclude from Theorem 8.104 that the simple versions of the 1-connective assembly maps

$$\text{asmb}_k^{(1)}: H_k(B\pi; L^s(\mathbb{Z})(1)) \to L^s_k(\mathbb{Z}\pi)$$

agree with the maps $\text{asmb}_k^{(-\infty)}(1)$. One can identify the map $\text{asmb}_{n+1}^{s}(1)$ with the map $\sigma^*_n: \mathcal{N}^\text{TOP}_{n+1}(M \times [0, 1], M \times \{0, 1\}) \to L^s_{n+1}(\mathbb{Z}\pi)$ of (8.120) and the map $\text{asmb}_{n}^{s}(1)$ with the map $\sigma^*_n: \mathcal{N}^\text{PL}_n(X) \to L^s_{n}(\mathbb{Z}\pi)$ of (8.121), see Theorem 18.5 on page 198, [751], [538] using Remark 17.15, Remark 17.16 and Example 17.20.

Now Theorem 8.163 follows from Lemma 8.165.

\[\square\]
Remark 8.166 (Dimension 4). The conclusion of Theorem 8.163 hold also in dimension 4, provided that the fundamental group is good in the sense of Freedman, see [363, 364]. Groups of subexponential growth are good, see [365, Theorem 0.1].

Remark 8.167 (The Novikov Conjecture implies a stable version of the Borel Conjecture). For a group \(G \), which satisfies the Novikov Conjecture 8.134, the following stable version of the Borel Conjecture holds: For any homotopy equivalence \(f : M \rightarrow N \) of aspherical closed manifolds of dimension \(\geq 5 \), whose fundamental groups are isomorphic to \(G \), the map \(f \times \text{id}_{\mathbb{R}^3} : M \times \mathbb{R}^3 \rightarrow N \times \mathbb{R}^3 \) is homotopic to a homeomorphism. See [468, Proposition 2.8], where the proof is attributed to Shmuel Weinberger, see also [326, Proof of Corollary B on page 207].

Remark 8.168 (Homology-ANR-manifolds). If one works in the category of homology ANR-manifolds, one does not have to pass to the 1-connective cover, see [152, Main Theorem].

8.16 Homotopy Spheres

An oriented closed smooth manifold is called a homotopy sphere, if it is homotopy equivalent to the standard sphere. By the Poincaré Conjecture a homotopy sphere is always homeomorphic to a standard sphere and actually topologically rigid. However, it may not be diffeomorphic to a standard sphere, and in this case it is called an exotic homotopy sphere.

The classification of homotopy spheres due to Kervaire-Milnor [520] marks the beginning of surgery theory. In order to understand the surgery machinery and in particular the long exact surgery sequence, we recommend to the reader to study the classification of homotopy spheres, which boils down to compute \(\mathcal{S}_n(S^n) \). Moreover, there are some beautiful constructions of exotic spheres and results about the curvature properties of Riemannian metric on an exotic sphere. We refer for instance to the following survey articles [472], [552], [565], and [583, Chapter 6], and to [235, Chapter 12].

8.17 Poincaré Duality Groups

The following definition is due to Johnson-Wall [473].

Definition 8.169 (Poincaré duality group). A group \(G \) is called a Poincaré duality group of dimension \(n \), if the following conditions holds:
(i) The group G is of type FP, i.e., the trivial $\mathbb{Z}G$-module \mathbb{Z} possesses a finite dimensional projective $\mathbb{Z}G$-resolution by finitely generated projective $\mathbb{Z}G$-modules;

(ii) We get an isomorphism of abelian groups

$$H^i(G; \mathbb{Z}G) \cong \begin{cases}
\{0\} & \text{for } i \neq n; \\
\mathbb{Z} & \text{for } i = n.
\end{cases}$$

Recall that a CW-complex X is called finitely dominated, if there exists a finite CW-complex Y and maps $i: X \to Y$ and $r: Y \to X$ with $r \circ i \simeq \text{id}_X$.

A topological space X is called an absolute neighborhood retract or briefly ANR, if for every normal space Z, every closed subset $Y \subseteq Z$, and every (continuous) map $f: Y \to X$, there exists an open neighborhood U of Y in Z together with an extension $F: U \to X$ of f to U. A compact n-dimensional homology ANR-manifold X is a compact absolute neighborhood retract such that it has a countable basis for its topology, has finite topological dimension, and for every $x \in X$ the abelian group $H_i(X, X - \{x\})$ is trivial for $i \neq n$ and infinite cyclic for $i = n$. A closed n-dimensional topological manifold is an example of a compact n-dimensional homology ANR-manifold, see [247, Corollary 1A in V.26 page 191].

Exercise 8.170. Show that the product of two Poincaré duality groups is again a Poincaré duality group.

Theorem 8.171 (Homology ANR-manifolds and finite Poincaré complexes). Let M be a closed topological manifold, or more generally, a compact homology ANR-manifold of dimension n. Then M is homotopy equivalent to a finite n-dimensional Poincaré complex.

Proof. A closed topological manifold, and more generally a compact ANR, has the homotopy type of a finite CW-complex, see [524, Theorem 2.2], [914]. The usual proof of Poincaré duality for closed manifolds carries over to homology ANR-manifolds. \qed

Theorem 8.172 (Poincaré duality groups). Let G be a group and $n \geq 1$ be an integer. Then:

(i) The following assertions are equivalent:

(a) G is finitely presented and a Poincaré duality group of dimension n;

(b) There exists a finitely dominated n-dimensional aspherical Poincaré complex with G as fundamental group;

(ii) Suppose that $\tilde{K}_0(\mathbb{Z}G) = 0$. Then the following assertions are equivalent:

(a) G is finitely presented and a Poincaré duality group of dimension n;

(b) There exists a finite n-dimensional aspherical Poincaré complex with G as fundamental group;
(iii) A group G is a Poincaré duality group of dimension 1, if and only if $G \cong \mathbb{Z}$;
(iv) A group G is a Poincaré duality group of dimension 2, if and only if G is isomorphic to the fundamental group of an aspherical closed surface;

Proof.

(i) Every finitely dominated CW-complex has a finitely presented fundamental group, since every finite CW-complex has a finitely presented fundamental group and a group, which is a retract of a finitely presented group, is again finitely presented, see [894, Lemma 1.3]. If there exists a CW-model for BG of dimension n, then the cohomological dimension of G satisfies $cd(G) \leq n$ and the converse is true, provided that $n \geq 3$, see [149, Theorem 7.1 in Chapter VIII.7 on page 205], [302], [894], and [895]. This implies that the implication (iia) \implies (iib) holds for all $n \geq 1$ and that the implication (iib) \implies (iia) holds for $n \geq 3$. For more details we refer to [173, Theorem 1]. The remaining part to show the implication (iia) \implies (iib) for $n = 1, 2$, follows from assertions (iii) and (iv).

(ii) This follows in dimension $n \geq 3$ from assertion (i) and Wall’s results about the finiteness obstruction, which decides, whether a finitely dominated CW-complex is homotopy equivalent to a finite CW-complex, and takes values in $\tilde{K}_0(\mathbb{Z})$, see [564, 894, 895]. The implication (iib) \implies (iia) holds for all $n \geq 1$. The remaining part to show the implication (iia) \implies (iib) holds, follows from assertions (iii) and (iv).

(iii) Since $S^1 = B\mathbb{Z}$ is a 1-dimensional closed manifold, \mathbb{Z} is a finite Poincaré duality group of dimension 1 by Theorem [8.171]. We conclude from the (easy) implication (iia) \implies (iia) appearing in assertion (i) that \mathbb{Z} is a Poincaré duality group of dimension 1. Since the cohomological dimension of G is 1, it has to be a free group, see [537, 854]. Since the homology group of a group of type FP is finitely generated, G is isomorphic to a finitely generated free group F_r of rank r. Since $H^1(BF_r) \cong \mathbb{Z}^r$ and $H_0(BF_r) \cong \mathbb{Z}$, Poincaré duality can only hold for $r = 1$, i.e., G is \mathbb{Z}.

(iv) This is proved in [300, Theorem 2]. See also [122, 123, 298, 301]. □

Conjecture 8.173 (Manifold structures on aspherical Poincaré complexes). Every finitely dominated aspherical Poincaré complex is homotopy equivalent to a closed topological manifold.

Remark 8.174 (Existence and uniqueness part of the Borel Conjecture). Conjecture 8.173 can be viewed as the existence part of the Borel Conjecture 8.155, namely, the question, whether an aspherical finite Poincaré complex carries up to homotopy the structure of a closed topological manifold. The Borel Conjecture 8.155 as stated above is the uniqueness part.

Conjecture 8.175 (Poincaré duality groups). A finitely presented group is an n-dimensional Poincaré duality group, if and only if it is the fundamental group of an aspherical closed n-dimensional topological manifold.
The disjoint disk property says that for any $\epsilon > 0$ and maps $f, g : D^2 \to M$ there are maps $f', g' : D^2 \to M$ so that the distance between f and f' and the distance between g and g' are bounded by ϵ and $f'(D^2) \cap g'(D^2) = \emptyset$.

Theorem 8.176 (Poincaré duality groups and aspherical compact homology ANR-manifolds). Suppose that the torsionfree group G is a finitely presented Poincaré duality group of dimension $n \geq 6$ and satisfies the versions of the K-theoretic Farrell-Jones Conjecture stated in 3.107 and 8.111 and the version of the L-theoretic Farrell-Jones Conjecture stated in 4.19 for the ring $R = \mathbb{Z}$.

Then BG is homotopy equivalent to an aspherical compact homology ANR-manifold satisfying the disjoint disk property.

Proof. See [756, Remark 25.13 on page 297], [152, Main Theorem on page 439 and Section 8] and [153, Theorem A and Theorem B].

Remark 8.177 (Compact homology ANR-manifolds versus closed topological manifolds). In the following all manifolds have dimension ≥ 6. One would prefer that in the conclusion of Theorem 8.176 one could replace “compact homology ANR-manifold” by “closed topological manifold”. The problem is that in the geometric exact surgery sequence one has to work with the 1-connective cover $L\langle 1 \rangle$ of the L-theory spectrum L, whereas in the assembly map appearing in the Farrell-Jones setting one uses the L-theory spectrum L. The 1-connective cover $L\langle 1 \rangle$ comes with a map of spectra $f : L\langle 1 \rangle \to L$ such that $\pi_n(f)$ is an isomorphism for $n \geq 1$ and $\pi_n(L\langle 1 \rangle) = 0$ for $n \leq 0$. Since $\pi_0(L) \cong \mathbb{Z}$, one misses a part involving $L_0(\mathbb{Z})$ of the so called total surgery obstruction due to Ranicki, i.e., the obstruction for a finite Poincaré complex to be homotopy equivalent to a closed topological manifold. If one deals with the periodic L-theory spectrum L, one picks up only the obstruction for a finite Poincaré complex to be homotopy equivalent to a compact homology ANR-manifold, the so called four-periodic total surgery obstruction. The difference of these two obstructions is related to the resolution obstruction of Quinn, which takes values in $L_0(\mathbb{Z})$. Any element of $L_0(\mathbb{Z})$ can be realized by an appropriate compact homology ANR-manifold as its resolution obstruction. There are compact homology ANR-manifolds, that are not homotopy equivalent to closed manifolds. But no example of an aspherical compact homology ANR-manifold, that is not homotopy equivalent to a closed topological manifold, is known. For an aspherical compact homology ANR-manifold M, the total surgery obstruction and the resolution obstruction carry the same information. So we could replace in the conclusion of Theorem 8.176 “compact homology ANR-manifold” by “closed topological manifold”, if and only if every aspherical compact homology ANR-manifold with the disjoint disk property admits a resolution.

We refer for instance to [152, 344, 744, 745, 756] for more information about this topic.
Question 8.178 (Vanishing of the resolution obstruction in the aspherical case). Is every aspherical compact homology ANR-manifold homotopy equivalent to a closed manifold?

8.18 Boundaries of Hyperbolic Groups

If G is the fundamental group of an n-dimensional closed Riemannian (smooth) manifold with negative sectional curvature, then G is a hyperbolic group in the sense of Gromov, see for instance [138], [143], [381], and [392]. Moreover, such a group is torsion-free and its boundary ∂G is homeomorphic to a sphere. This leads to the natural question, whether a torsion-free hyperbolic group with a sphere as boundary occurs as fundamental group of an aspherical closed manifold, see Gromov [393, page 192]. In high dimensions this question is answered by the following two theorems taken from Bartels-Lück-Weinberger [83]. For the notion of and information about the boundary of a hyperbolic group and its main properties we refer for instance to [489].

Theorem 8.179 (Hyperbolic groups with spheres as boundary). Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6. Then:

(i) The following statements are equivalent:

(a) The boundary ∂G is homeomorphic to S^{n-1};
(b) There is an aspherical closed topological manifold M such that $G \cong \pi_1(M)$, its universal covering \tilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n;

(ii) The aspherical closed topological manifold M appearing in the assertion above is unique up to homeomorphism.

Theorem 8.180 (Hyperbolic groups with Čech-homology spheres as boundary). Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6. Then

(i) The following statements are equivalent:

(a) The boundary ∂G has the integral Čech cohomology of S^{n-1};
(b) G is a Poincaré duality group of dimension n;
(c) There exists a compact homology ANR-manifold M homotopy equivalent to BG. In particular, M is aspherical and $\pi_1(M) \cong G$;

(ii) If the statements in assertion (i) hold, then the compact homology ANR-manifold M appearing there is unique up to s-cobordism of compact ANR-homology manifolds.

One of the main ingredients in the proof of the two theorems above is the fact that both the K-theoretic and the L-theoretic the Farrell-Jones Conjecture hold for hyperbolic groups, see [78] and [80].
8.19 The Stable Cannon Conjecture

Tremendous progress in the theory of 3-manifolds has been made during the last decade. A proof of Thurston’s Geometrization Conjecture is given in [525], [675] following ideas of Perelman. The Virtually Fibering Conjecture was settled by the work of Agol, Liu, Przytycki-Wise, and Wise [20, 21, 571, 734, 735, 925, 926].

However, the following famous conjecture, taken from [174, Conjecture 5.1], is still open.

Conjecture 8.181 (Cannon Conjecture). Let G be a hyperbolic group. Suppose that its boundary is homeomorphic to S^2.

Then G acts properly cocompactly and isometrically on the 3-dimensional hyperbolic space.

In the torsionfree case it boils down to

Conjecture 8.182 (Cannon Conjecture in the torsion-free case). Let G be a torsion-free hyperbolic group. Suppose that its boundary is homeomorphic to S^2.

Then G is the fundamental group of a closed hyperbolic 3-manifold.

More information about Conjecture 8.181 and its status can be found for instance in [342, Section 2] and [132].

The following theorem is taken from [342, Theorem 2]. It is a stable version of the Conjecture 8.182 above. Its proof is based on high-dimensional surgery theory and the theory of homology ANR-manifolds.

Theorem 8.183 (Stable Cannon Conjecture). Let G be a hyperbolic 3-dimensional Poincaré duality group. Let N be any smooth, PL or topological manifold respectively, which is closed and whose dimension is ≥ 2.

Then there is a closed smooth, PL or topological manifold M and a normal map of degree one

$$TM \oplus \mathbb{R}^a \xrightarrow{f} \xi \times TN$$

$$\downarrow \qquad \downarrow$$

$$M \xrightarrow{f} BG \times N$$

satisfying

(i) The map f is a simple homotopy equivalence;

(ii) Let $\hat{M} \to M$ be the G-covering associated to the composite of the isomorphism $\pi_1(f): \pi_1(M) \xrightarrow{\cong} G \times \pi_1(N)$ with the projection $G \times \pi_1(N) \to G$.

Suppose additionally that N is aspherical, $\dim(N) \geq 3$, and $\pi_1(N)$ satisfies the Full Farrell-Jones Conjecture [12.23] (Its status is discussed in Theorem 15.1.)
Then \(\hat{M} \) is homeomorphic to \(\mathbb{R}^3 \times N \). Moreover, there is a compact topological manifold \(\overline{M} \), whose interior is homeomorphic to \(\hat{M} \) and for which there exists a homeomorphism of pairs \((\overline{M}, \partial \overline{M}) \to (D^3 \times N, S^2 \times N) \).

If we could choose \(N = \{\ast\} \) in Theorem 8.183, it would imply Conjecture 8.182.

Exercise 8.184. Show that the manifold \(M \) appearing in Theorem 8.183 is unique up to homeomorphism, if \(N \) is aspherical and \(\pi_1(N) \) satisfies the Full Farrell-Jones Conjecture 12.23.

8.20 Product Decompositions

In this section we show that, roughly speaking, an aspherical closed topological manifold \(M \) is a product \(M_1 \times M_2 \), if and only if its fundamental group is a product \(\pi_1(M) = G_1 \times G_2 \) and that such a decomposition is unique up to homeomorphism.

Theorem 8.185 (Product decompositions of aspherical closed manifolds). Let \(M \) be an aspherical closed topological manifold of dimension \(n \) with fundamental group \(G = \pi_1(M) \). Suppose we have a product decomposition

\[
p_1 \times p_2 : G \xrightarrow{\cong} G_1 \times G_2.
\]

Suppose that \(G, G_1 \) and \(G_2 \) satisfy the versions of the \(K \)-theoretic Farrell-Jones Conjecture stated in 3.107 and 4.19 and the version of the \(L \)-theoretic Farrell-Jones Conjecture stated in 8.111 for the ring \(R = \mathbb{Z} \).

Then \(G, G_1 \) and \(G_2 \) are Poincaré duality groups whose cohomological dimensions satisfy

\[
n = \text{cd}(G) = \text{cd}(G_1) + \text{cd}(G_2).
\]

Suppose in the following:

- the cohomological dimension \(\text{cd}(G_i) \) is different from 3, 4 and 5 for \(i = 1, 2 \),
- \(n \neq 4 \) or \(n = 4 \) and \(G \) is good in the sense of Freedman);

Then:

(i) There are aspherical closed topological manifolds \(M_1 \) and \(M_2 \) together with isomorphisms

\[
v_i : \pi_1(M_i) \xrightarrow{\cong} G_i
\]

and maps

\[
f_i : M \to M_i
\]

for \(i = 1, 2 \) such that
8.21 Automorphisms of Manifolds

\[f = f_1 \times f_2 : M \to M_1 \times M_2 \]

is a homeomorphism and \(v_i \circ \pi_1(f_i) = p_i \) (up to inner automorphisms) for \(i = 1, 2 \);

(ii) Suppose we have another such choice of aspherical closed topological manifolds \(M_1' \) and \(M_2' \) together with isomorphisms

\[v_i' : \pi_1(M_i') \xrightarrow{\cong} G_i \]

and maps

\[f_i' : M \to M_i' \]

for \(i = 1, 2 \) such that the map \(f' = f_1' \times f_2' \) is a homotopy equivalence and \(v_i' \circ \pi_1(f_i') = p_i \) (up to inner automorphisms) for \(i = 1, 2 \). Then there are for \(i = 1, 2 \) homeomorphisms \(h_i : M_i \to M_i' \) such that \(h_i \circ f_i \simeq f_i' \) and \(v_i \circ \pi_1(h_i) = v_i' \) holds for \(i = 1, 2 \).

Proof. The case \(n \neq 3 \) is proved in [595, Theorem 6.1]. The case \(n = 3 \) is done as follows. One gets from [125, Theorem 11.1 on page 100] that \(G_1 \) and \(G_2 \) are the fundamental groups of compact 2-manifolds. This implies that \(G_1 \cong \mathbb{Z} \cong \pi_1(S^1) \) and \(G_2 \) is the fundamental group \(\pi_1(F) \) of a closed surface or the other way around. Now use the fact that the Borel Conjecture is true in dimensions \(\leq 3 \). \(\square \)

8.21 Automorphisms of Manifolds

We record the following two results, which deduce information about the homotopy groups of the automorphism group of an aspherical closed manifold from the Farrell-Jones Conjecture and the material from Chapter 7 about pseudoisotopy spaces.

Theorem 8.186 (Homotopy Groups of \(\text{Top}(M) \)). Let \(M \) be an aspherical orientable closed topological manifold of dimension \(> 10 \) with fundamental group \(G \). Suppose the \(L \)-theory assembly map

\[H_n(BG; \mathbb{L}^{(-\infty)}(\mathbb{Z})) \to L_n^{(-\infty)}(\mathbb{Z}G) \]

is an isomorphism for all \(n \) and suppose the \(K \)-theory assembly map

\[H_n(BG; \mathbb{K}(\mathbb{Z})) \to K_n(\mathbb{Z}G) \]

is an isomorphism for \(n \leq 1 \) and a rational isomorphism for \(n \geq 2 \). Then for \(1 \leq i \leq (\dim M - 7)/3 \) one has

\[\pi_i(\text{Top}(M)) \otimes_{\mathbb{Z}} \mathbb{Q} = \begin{cases} \text{center}(G) \otimes_{\mathbb{Z}} \mathbb{Q} & \text{if } i = 1, \\ 0 & \text{if } i > 1. \end{cases} \]
In the differentiable case one additionally needs to study involutions on
the higher K-theory groups. The corresponding result reads:

Theorem 8.187 (Homotopy Groups of $\text{Diff}(M)$). Let M be an aspherical orientable closed smooth manifold of dimension > 10 with fundamental group G. Then under the same assumptions as in Theorem 8.186 we have for $1 \leq i \leq (\dim M - 7)/3$

$$
\pi_i(\text{Diff}(M)) \otimes \mathbb{Z} \mathbb{Q} = \begin{cases}
\text{center}(G) \otimes \mathbb{Z} \mathbb{Q} & \text{if } i = 1; \\
\bigoplus_{j=1}^\infty H_{(i+1)-4j}(M; \mathbb{Q}) & \text{if } i > 1 \text{ and } \dim M \text{ odd}; \\
0 & \text{if } i > 1 \text{ and } \dim M \text{ even.}
\end{cases}
$$

For a proof see for instance [325], [331, Section 2] and [324, Lecture 5]. For a survey on automorphisms of manifolds we refer to [912].

Remark 8.188. We get also some information about the cohomology of $\text{BTop}(M)^\circ$, where $\text{Top}(M)^\circ$ denotes the component of the identity of $\text{Top}(M)$. There is a canonical map

$$
\pi_1(\text{BTop}(M), \text{id}) \to G_1(M) \subseteq \pi_1(M).
$$

onto Gottliebs subgroups $G_1(M)$ of $\pi_1(M)$, see [385]. Suppose from now on that M is an aspherical orientable closed topological manifold of dimension > 10. Then $G_1(M) = \text{center}(G)$ and the induced map

$$
\text{BTop}(M)^\circ \to K(\text{center}(G), 2)
$$

is a map of simply connected spaces inducing isomorphism on the rationalized homotopy groups in a range. This implies that in this range we get an isomorphism

$$
H^*(K(\text{center}(G), 2); \mathbb{Q}) \xrightarrow{\cong} H^*(\text{BTop}(M)^\circ; \mathbb{Q}).
$$

8.22 Survey on Computations of L-Theory of Group Rings of Finite Groups

Theorem 8.189 (Algebraic L-theory of $\mathbb{Z}G$ for finite groups). Let G be a finite group. Then

(i) The groups $L^{(j)}_n(\mathbb{Z})$ are independent of the decoration j and given by \mathbb{Z}, $\{0\}$, $\mathbb{Z}/2$, $\{0\}$ for $n \equiv 0, 1, 2, 3 \text{ mod } 4$;

(ii) For each $j \leq 1$ the groups $L^{(j)}_n(\mathbb{Z}G)$ are finitely generated as abelian groups and contain no p-torsion for odd primes p. Moreover, they are finite for odd n;
(iii) Let \(r(G) \) be the number of isomorphisms classes of irreducible real \(G \)-representations. Let \(r_C(G) \) be the number of isomorphisms classes of irreducible real \(\pi \)-representations \(V \), which are of complex type. For every decoration \((j) \) we have

\[
L_n^{(j)}(ZG)[1/2] \cong L_n^{(j)}(QG)[1/2] \cong L_n^{(j)}(RG)[1/2] \\
\cong \begin{cases}
Z[1/2]^{r(G)} & n \equiv 0 \pmod{4}; \\
Z[1/2]^{r_C(G)} & n \equiv 2 \pmod{4}; \\
0 & n \equiv 1, 3 \pmod{4};
\end{cases}
\]

(iv) If \(G \) has odd order and \(n \) is odd, then \(L_n^\epsilon(ZG) = 0 \) for \(\epsilon = p, h, s \) and \(L_n^{(j)} \cong (ZG) = Z/2^r \) for \(j \in \{ -1, -2, \ldots \} \cup \{ -\infty \} \), where \(r \) is the number appearing in Theorem 4.21 (iii).

(v) If \(G \) is a cyclic group of odd order, then the kernel of the split epimorphism \(L_n^s(ZG) \to L_n^s(Z) \) is torsionfree. In particular \(\text{tors}(L_n^s(ZG)) = Z/2 \) if \(n \equiv 2 \pmod{4} \) and trivial otherwise.

Proof. (i) See for instance [235, Theorem 16.8 (i) on page 687].

(ii) See [898, Theorem 13.A.4 (i) on page 177], [415] for the decoration \(s \). Now the claim follows for all decorations from the Rothenberg sequences, see Subsection 8.10.4 since the relevant \(K \)-groups of \(ZG \) are all finitely generated abelian groups.

(iii) See [756, Proposition 22.34 on page 253].

(iv) See [61], [415, Theorem 10.1] for \(\epsilon \in \{ s, p, h \} \). Note that \(K_n(ZG) = 0 \) for \(n \leq -2 \) and \(K_{-1}(ZG) = Z^r \) by Theorem 4.21. The involution on \(K_{-1}(ZG) = Z^r \) is given by \(-\text{id} \). Hence \(H^0(Z/2, K_{-1}(ZG)) = 0 \) and \(H^1(Z/2, K_{-1}(ZG)) = (Z/2)^r \). Since \(L_n^p(ZG) = 0 \) for odd \(n \) and \(L_n^p(ZG) \) is known to be torsionfree for even \(n \), the claim follows from the Rothenberg sequence 8.100. See also [408, Section 3].

(v) See [898, Theorem 13.A.4 (ii) on page 177], [415, Section 10].

8.23 Notes

The next problem is meanwhile solved and triggered surgery theory for non-simply connected manifolds. It is a kind of generalization of the Space Form Problem asking, which finite groups occur as fundamental groups of closed Riemannian manifolds with constant positive sectional curvature.

Problem 8.190 (Spherical Space Form problem). Which finite groups can act freely (topologically or smoothly) on a standard sphere, or, equivalently, occur as fundamental groups of closed manifolds, whose universal covering is (homeomorphic or diffeomorphic to) a standard sphere.

More information about this interesting problem and its solution can be found in [256] and [624].

For a survey of the classification of fake spaces such as fake product of spheres, fake projective spaces, fake lens spaces, and fake tori, and the literature about them, we refer to [235, Chapter 18].

Our definition of the L-groups follows the original approach due to Wall. A much more satisfactory and elegant approach via chain complexes is due to Mishchenko and Ranicki and is of fundamental importance for many applications and generalizations, see for instance [235, 658, 659, 660, 752, 753, 754, 756].

We mention that a different approach to surgery has been developed by Kreck. A survey about his approach is given in [529]. Its advantage is that one does not have to get a complete homotopy classification first. The price to pay is that the L-groups are much more complicated, they are not necessarily abelian groups any more. This approach is in particular successful when the manifolds under consideration are already highly connected. See for instance [532, 533, 843].

More information about surgery theory can be found for instance in [147, 176, 177, 235, 583, 760, 898].

We will relate the algebraic L-theory of C^*-algebras to their topological K-theory in Theorem 9.78. In particular we get for all $n \in \mathbb{Z}$ natural isomorphisms

\[
L_n(C^*_r(G, \mathbb{R}))[1/2] \cong K^{\text{top}}_n(C^*_r(G; \mathbb{R}))[1/2];
\]

\[
L_n(C^*_r(G, \mathbb{C}))[1/2] \cong K^{\text{top}}_n(C^*_r(G; \mathbb{C}))[1/2].
\]

We mention already here Conjecture 14.86 which deals with the passage for L-theory from $\mathbb{Q}G$ to $\mathbb{R}G$ to $C^*_r(G; \mathbb{R})$. Its connection to the Baum-Connes Conjecture and the Farrell-Jones Conjecture is analyzed in Lemma 14.87.

There is also a version of the Borel Conjecture for manifolds with boundary, which is implied by the Farrell-Jones Conjecture, see for instance [346, page 17 and page 31].

There is an obvious equivariant version of the Borel Conjecture, where one replaces EG with the classifying space for proper G-actions E_G, see Definition 10.18. This version is not true in general and investigated for instance in [222, 223, 224, 228].

Another survey article about topological rigidity is [748].

The vanishing of κ-classes for aspherical closed manifolds is analyzed in [424] using the Farrell-Jones Conjecture.

Comment 10: We need to check all references to [235] when it is finished. At the moment everything refers to the version of it from 05.12.2021.
Chapter 9
Topological K-Theory

9.1 Introduction
In this chapter we deal with topological K-theory of reduced group C^*-algebras which is the target of the Baum-Connes Conjecture, in contrast to algebraic K- and L-theory of group rings which is the target of the Farrell-Jones Conjecture. We begin with reviewing the topological K-theory of spaces and its equivariant version for proper actions of possibly infinite discrete groups. Then we pass to its generalization to C^*-algebras. We discuss the Baum-Connes Conjecture for torsionfree groups 9.44 and present two applications, namely, to the Trace Conjecture about the integrality of the trace map and to the Kadison Conjecture about idempotents in reduced group C^*-algebras of torsionfree groups. Then we briefly state the main properties of Kasparov’s KK-theory and its equivariant version (without explaining its construction). This will later be needed in Chapter 13 to explain the analytic Baum-Connes assembly map and state the Baum-Connes Conjecture for arbitrary groups and with coefficients in a G-C^*-algebra.

9.2 Topological K-Theory of Spaces

9.2.1 Complex Topological K-Theory of Spaces

Complex topological K-theory of spaces, sometimes also called complex topological K-cohomology of spaces, is a generalized cohomology theory, i.e., it assigns to a pair of CW-complexes (X,A) a \mathbb{Z}-graded abelian group $K^*(X;A)$ and a homomorphism of degree one $\delta^*: K^*(A) \to K^{*+1}(X,A)$ and to a map $f: (X,A) \to (Y,B)$ of such pairs a homomorphism $K^*(f): K^*(Y,B) \to K^*(X,A)$ of \mathbb{Z}-graded abelian groups such that the Eilenberg-Steenrod axioms of a cohomology theory are satisfied, i.e., one has naturality, homotopy invariance, the long exact sequence of a pair and excision. Moreover, the disjoint union axiom holds, see Definition 11.1. In contrast to singular cohomology the dimension axiom is not satisfied, actually $K^n(\{\bullet\}) = \mathbb{Z}$ if n is even and is trivial if n is odd. A very important feature is that topological complex K-theory satisfies Bott periodicity, i.e., there is a natural isomorphism of degree two compatible with the boundary map in the long exact sequence of pairs.
\[\beta^*(X, A) : K^*(X, A) \xrightarrow{\cong} K^{*+2}(X, A). \]

Topological complex K-theory comes with a multiplicative structure.

It can be constructed by the so called complex topological K-theory spectrum K^{top} which is the following Ω-spectrum. (Spectra will be defined in Section 11.4.) The n-th space is $\mathbb{Z} \times BU$ for even n and $\Omega(\mathbb{Z} \times BU)$ for odd n. The n-th structure map is given by the identity: $\Omega(\mathbb{Z} \times BU) \rightarrow \Omega(\mathbb{Z} \times BU)$ for odd n and by an explicit homotopy equivalence due to Bott $\mathbb{Z} \times BU \xrightarrow{\cong} \Omega^2(\mathbb{Z} \times BU)$ for even n. As usual, associated to this spectrum is also a generalized homology theory $K_n(X, A)$ called topological complex K-homology of spaces such that $K_n(\{\bullet\})$ is \mathbb{Z} if n is even and is trivial if n is odd. A proof of a universal coefficient theorem for complex K-theory can be found in [27] and [932, (3.1)], the homological version then follows from [12, Note 9 and 15].

Rationally one can compute complex topological K-theory by Chern characters. (Equivariant versions will be explained in Section 11.7.) Namely, we get for any pair of CW-complexes (X, A) a natural \mathbb{Q}-isomorphism

\[\bigoplus_{p \in \mathbb{Z}, p \equiv n(2)} H_p(X, A; \mathbb{Q}) \xrightarrow{\cong} K_n(X, A) \otimes_{\mathbb{Z}} \mathbb{Q}, \tag{9.1} \]

and for any pair of finite CW-complexes (X, A) a natural \mathbb{Q}-isomorphism

\[K^n(X, A) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} \prod_{p \in \mathbb{Z}, p \equiv n(2)} H^p(X, A; \mathbb{Q}). \tag{9.2} \]

The condition that (X, A) is finite is needed in (9.2). The cohomological Chern character (9.2) is compatible with the multiplicative structures.

For integral computations one has to use the Atiyah-Hirzebruch spectral sequence which does not collapse in general.

Exercise 9.3. Let X be a finite CW-complex. Show for its Euler characteristic

\[\chi(X) = \text{rk}_\mathbb{Z}(K^0(X)) - \text{rk}_\mathbb{Z}(K^1(X)) = \text{rk}_\mathbb{Z}(K_0(X)) - \text{rk}_\mathbb{Z}(K_1(X)). \]

The groups $K^*(BG)$ can be computed explicitly for all finite groups G using the Completion Theorem due to Atiyah-Segal [45] [53], see for instance [591 Theorem 0.3]. Namely, if for a prime p we denote by $r(p)$ the number of conjugacy classes (g) of elements $g \in G$ whose order $|g|$ is p^d for some integer $d \geq 1$, and by \mathbb{Z}_p the p-adic integers, then there are isomorphisms of abelian groups
9.2 Topological K-Theory of Spaces

\[(9.4) \quad K^0(BG) \cong \mathbb{Z} \times \prod_{p \text{ prime}} (\mathbb{Z}_p^r)^{(p)}; \]
\[(9.5) \quad K^1(BG) \cong 0. \]

One can also figure out the multiplicative structure on $K^0(BG)$ in (9.4). This shows how accessible topological K-theory is, for instance, one does not know the group cohomology $H^*(BG)$ of all finite groups G.

If X is a finite CW-complex, $K^*(X)$ can be described in terms of vector bundles. For instance, $K^0(X)$ is the Grothendieck group associated to the abelian monoid of isomorphism classes of (finite dimensional complex) vector bundles over X under the Whitney sum. Naturality comes from the pullback construction, the multiplicative structure from the tensor product of vector bundles.

There are a Thom isomorphism and a Künneth Theorem for finite CW-complexes for topological complex K-cohomology see [50, Corollary 2.7.12 on page 111 and Corollary 2.7.15 on page 113].

Using exterior powers one can construct the so called Adams operations on topological complex K-cohomology. They were a key ingredient in the work of Adams on the Hopf invariant one problem, see [3] [14], and on linear independent vector fields on spheres, see [4] [5] [6]. Atiyah [46] introduced the groups $J(X)$, where vector bundles are considered up to fiber homotopy equivalence. They were studied by Adams [8] [9] [10] [11].

Complex topological K-theory is one of the first generalized cohomology theories. There are other generalized cohomology theories such as complex bordism, see for instance [761], Morava K-theory, see for instance [930], elliptic cohomology, see for instance [622] [860] and topological modular forms tmf, see for instance [448] [449], which have been in the focus of algebraic topology over the last decades.

The connection between topological K-theory and spaces of Fredholm operators was explained by Jänich [466]. Namely, there exists a natural bijection of abelian groups for finite CW-complexes X

\[(9.6) \quad [X, \text{Fred}] \cong K^0(X), \]

where Fred is the space of Fredholm operators, i.e., bounded operators with finite dimensional kernel and cokernel. This shows that there is a relation between topological K-theory and index theory. For instance, we get from (9.6) applied to $X = \{\bullet\}$ an isomorphism $\pi_0(\text{Fred}) = K^0(\{\bullet\}) \cong \mathbb{Z}$ that sends a Fredholm operator to its classical index which is the difference of the dimension of its kernel and the dimension of its cokernel. The bijection of (9.6) assigns to a map $X \to \text{Fred}$, which can be interpreted as a family of Fredholm operators parametrized by X, its family index which is essentially the difference of the class of the vector bundle over X whose fiber over x is the kernel of the Fredholm operator associated to $x \in X$ and the vector bundle over X whose fiber over x is the cokernel of the Fried-
holm operator associated to \(x \in X \). Good introductions to index theory are the seminal papers \([52, 54, 55, 57, 58]\). Other references about index theory are \([126, 768, 931]\).

9.2.2 Real Topological \(K \)-Theory of Spaces

There is also real topological \(K \)-theory of spaces, sometimes also called real topological \(KO \)-cohomology of spaces, \(KO^*(X, A) \) and real topological \(K \)-homology \(KO_*(X, A) \), where one considers real vector bundles instead of complex vector bundles and \(BO \) instead of \(BU \). One uses a specific homotopy equivalence \(\mathbb{Z} \times BO \cong \Omega^8(\mathbb{Z} \times BO) \) to construct so the called real \(K \)-theory spectrum \(K_{\mathbb{R}} \). A much more sophisticated and structured symmetric spectrum representing real \(K \)-theory in terms of Fredholm operators was constructed by Joachim \([469, 470]\) and Mitchener \([668]\) based on ideas of Atiyah-Singer \([56]\).

The main difference between the real and the complex version is that \(KO_* \) is 8-periodic and \(KO_*(\{\bullet\}) = KO^{-n}(\{\bullet\}) \) is given by \(\mathbb{Z}, \mathbb{Z}/2, \mathbb{Z}/2, 0, \mathbb{Z}, 0, 0, 0 \) for \(n = 0, 1, 2, 3, 4, 5, 6, 7 \). There are natural transformations \(i^*: KO^*(X) \rightarrow K^*(X) \) and \(r^*: K^*(X) \rightarrow KO^*(X) \) which corresponds to assigning to a real vector bundle its complexification and to a complex vector bundle its restriction to a real vector bundle. They satisfy \(r \circ i = 2 \cdot \text{id} \). They also exist on \(K \)-homology. It is sometimes useful to consider the real topological \(K \)-theory instead of the complex version, since one does loose information when passing to the complex topological version. On the other hand computations for the real topological \(K \)-theory are harder than for the complex topological \(K \)-theory, since the the real version is 8-periodic and its value at \(\{\bullet\} \) contains 2-torsion, whereas the complex version is 2-periodic and its evaluation at \(\{\bullet\} \) is much simpler than for the real version.

Rationally we get again a Chern character, namely, for any pair of \(CW \)-complexes \((X, A)\) a natural \(\mathbb{Q} \)-isomorphism

\[
(9.7) \quad \bigoplus_{p \in \mathbb{Z}, p \equiv n(4)} H_p(X, A; \mathbb{Q}) \cong KO_n(X, A) \otimes \mathbb{Z} \mathbb{Q},
\]

and for any pair of finite \(CW \)-complexes \((X, A)\) a natural \(\mathbb{Q} \)-isomorphism

\[
(9.8) \quad KO^n(X, A) \otimes \mathbb{Z} \mathbb{Q} \cong \prod_{p \in \mathbb{Z}, p \equiv n(4)} H^p(X, A; \mathbb{Q}).
\]

There is a natural transformation of homology theories called \(KO \)-orientation of Spin bordism due to Atiyah-Bott-Shapiro \([51]\), which can be interpreted by sending a Spin manifold to the index class of the associated Dirac operator.
(9.9) \[D: \Omega Spin^n(X) \to KO^n(X). \]

It plays an important role for the question when a closed spin manifold admits a Riemannian metric of positive sectional curvature, see Subsection 13.8.2.

A relation of \(KO \)-theory to surgery theory has already been explained in Remark 8.130.

Another variant of topological \(K \)-theory denoted by \(KR^* \) was defined by Atiyah [47]. Twisted topological \(K \)-theory has recently been in the focus of interest, see for instance [43, 44, 362, 496].

More information about topological \(K \)-theory of spaces can be found for instance in [7, 42, 49, 50, 455, 456, 495, 559].

9.2.3 Equivariant Topological \(K \)-Theory of Spaces

Equivariant topological \(K \)-theory has been considered for compact topological groups acting on compact spaces, see for instance [50, 820]. For our purpose it will be important to treat the more general case of a proper action of a not necessarily compact group. It suffices for our purposes to consider discrete groups \(G \) and proper \(G\)-CW-complexes, or, equivalently, \(CW \)-complexes with a \(G \)-action such that all isotropy groups are finite and for every open cell \(e \) of \(X \) with \(g \cdot e \cap e \neq \emptyset \) we have \(gx = x \) for all \(x \in e \). This is difficult enough, but not as hard as the much less understood case of a topological group acting properly on locally compact Hausdorff space.

If \(G \) is a discrete group, \(G \)-cohomology theories \(K_G^* \) and \(KO_G^* \) are constructed by Lück-Oliver [02] for pairs of proper \(G\)-CW-complexes \((X, A) \) using classifying spaces for \(G \)-vector bundles. More precisely, for every pair of proper \(G\)-CW-complexes \((X, A) \) one obtains \(\mathbb{Z} \)-graded abelian groups \(K_G^*(X, A) \) and \(KO_G^*(X, A) \) such that one has naturality, \(G \)-homotopy invariance, long exact sequence of pairs, excision, and the disjoint union axiom holds, see Definition 11.1. The complex version \(K_G^* \) is 2-periodic, the real version is 8-periodic.

Let \(H \subseteq G \) be a finite subgroup, then

(9.10) \[K_G^0(G/H) = \begin{cases} \text{Rep}_\mathbb{C}(H) & \text{if } n \text{ is even;} \\ \{0\} & \text{if } n \text{ is odd.} \end{cases} \]

There is a decomposition of the real group ring \(\mathbb{R}H \) as a direct product \(\prod_{i=0}^r M_{n_i, n_i}(D_i) \) of matrix algebras over skew-fields \(D_i \), where \(D_i \) is \(\mathbb{R} \), \(\mathbb{C} \) or \(\mathbb{H} \). Then one obtains a decomposition for each \(n \in \mathbb{Z} \)

(9.11) \[KO_G^{-n}(G/H) = \prod_{i=1}^r KO_G^{-n}(G/H)_i, \]
where

\[KO^{-n}_G(G/H)_i = \begin{cases}
 KO_n(\{\bullet\}) & \text{if } D_i = \mathbb{R}; \\
 K_n(\{\bullet\}) & \text{if } D_i = \mathbb{C}; \\
 KO_{n+4}(\{\bullet\}) & \text{if } D_i = \mathbb{H}.
\end{cases} \]

There is a natural external multiplicative structure, i.e., there is a natural pairing

\[K^m_G(X, A) \otimes \mathbb{Z} K^n_H(Y, B) \rightarrow K^{m+n}_{G \times H}(X \times Y, A \times B) \quad (9.12) \]

for discrete groups \(G\) and \(H\) and a pair \((X, A)\) of proper \(G\)-CW-complexes and a pair \((Y, B)\) of proper \(H\)-CW-complexes. There exists a natural restriction homomorphism for any inclusion \(i: H \rightarrow G\) of discrete groups

\[i^* : K^*_G(X, A) \rightarrow K^*_H(i^*(X, A)), \quad (9.13) \]

where \((X, A)\) is a pair of proper \(G\)-CW-complexes and \(i^*(X, A)\) is its restriction to \(H\). Applying this to the diagonal map \(G \rightarrow G \times G\) and the external product and using the diagonal embedding \(X \rightarrow X \times X\), one obtains a natural internal multiplicative structure, i.e., natural pairings

\[K^m_G(X, A) \otimes K^n_G(X, B) \rightarrow K^{m+n}_G(X, A \cup B) \quad (9.14) \]

for a discrete group \(G\) and a proper \(G\)-CW-complex \(X\) with \(G\)-CW-subcomplexes \(A\) and \(B\). In particular \(K^*_G(X)\) becomes a \(\mathbb{Z}\)-graded algebra for any proper \(G\)-CW-complex \(X\). Given a group homomorphism \(\alpha: H \rightarrow G\), there is an induction homomorphism

\[\text{ind}_\alpha : K^*_H(X, A) \rightarrow K^*_G(\text{ind}_\alpha(X, A)), \quad (9.15) \]

where \((X, A)\) is a proper \(H\)-CW-complex and \(\text{ind}_\alpha(X, A)\) is the proper \(G\)-CW-complex \(G \times_\alpha (X, A)\). If \(\text{ker}(\alpha)\) acts freely on \((X, A)\), the map \(\text{ind}_\alpha\) is bijective.

All the constructions and results above are carried out in [602] and the corresponding statements do hold also for the real version \(KO^{-n}_G\). If \(G\) is finite, they all reduce to the classical constructions and results.

One can give a description for pairs \((X, A)\) of finite proper \(G\)-CW-complexes for a discrete group \(G\) in terms of \(G\)-vector bundles such that for instance \(K^0_G(X)\) and \(KO^0_G(X)\) respectively agree with the Grothendieck groups of isomorphism classes of \(G\)-equivariant complex and real respectively vector bundles over the finite proper \(G\)-CW-complex \(X\). This follows from [603, Theorem 3.2 and Theorem 3.15] and [602, Proposition 1.5]. (A \(C^*\)-theoretic analogue of this result is discussed in [103, Section 6].) However, the interpretation of \(K^0_G(X)\) in terms of vector bundles does not hold if \(G\) is a Lie group, as explained in [603, Section 5]. A description in terms of infinite di-
9.2 Topological K-Theory of Spaces

The question how the Grothendieck group of isomorphism classes of G-vector bundles over a classifying space BG of a compact Lie group G looks like and is related to $K^0(BG)$ is treated in [465]. (Note that this is a non-trivial question already for finite groups since BG does not have a finite dimensional CW-model for non-trivial finite groups.)

Let G be a discrete group. For any cyclic group $C \subseteq G$ of order $n < \infty$ we denote by $\mathbb{Z}[\zeta_C] \subseteq \mathbb{Q}(\zeta_C)$ the cyclotomic ring and field generated by the n-th roots of unity, but regarded as quotient rings of the group rings $\mathbb{Z}[\text{hom}(C, \mathbb{C}^*)] \subseteq \mathbb{Q}[\text{hom}(C, \mathbb{C}^*)]$. In other words, we fix an identification of the n-th roots of unity in $\mathbb{Q}(\zeta_C)$ with the irreducible characters of C. Let $\mathcal{C}(G)$ be a set of conjugacy class representatives for the cyclic subgroups $C \subseteq G$ of finite order. Denote by $C_G C$ the centralizer and by $N_G C$ the normalizer of C in G. Then for any pair of finite proper G-complexes (X, A), there is the following version of an equivariant Chern character, namely, a natural isomorphism of rings

$K^*_G(X; A) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \prod_{C \in \mathcal{C}(G)} (H^*((X, A)^C/C_G C; \mathbb{Q}(\zeta_C)))^{N_G C/C_G C}$,

where $N_G C/C_G C$ acts via the conjugation action on $\mathbb{Q}(\zeta_C)$ and on $X^C/C_G C$ in terms of the given G-action on X.

Equivariant Chern characters can be used to compute $K^*(BG) \otimes_{\mathbb{Z}} \mathbb{Q}$ for infinite groups possessing a finite G-CW-model for its classifying space of proper G-actions, i.e., for instance for hyperbolic groups G or compact lattices G in connected Lie groups, see [471] and also [15, 16]. More information about $K^*(BG)$ for infinite groups can be found in [471, Theorem 0.1], and about cohomological Chern characters in [588].

Exercise 9.17. Let G be an abelian group. Let X be a finite proper G-CW-complex. Show that there is a \mathbb{Q}-isomorphism

$K^*_G(X) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \prod_{C \in \mathcal{C}(G)} H^*(X^C/G; \mathbb{Q})^{\varphi(|C|)}$

for the Euler Phi-function φ.

We will construct in Section 9.6 the equivariant K-homology K^*_G, which is a G-homology theory defined for pairs of G-CW-complexes for discrete groups G and satisfies the disjoint union axiom.

An equivariant *Universal Coefficient Theorem for equivariant complex K-theory* for discrete groups G and finite proper G-CW-complexes X is given in [471] Theorem 0.3], namely, there are short exact sequences, natural in X,

$(9.18) \ 0 \to \text{Ext}_{\mathbb{Z}}(K^*_G(X), \mathbb{Z}) \to K^*_G(X) \to \text{hom}_{\mathbb{Z}}(K^*_G(X), \mathbb{Z}) \to 0$;

$(9.19) \ 0 \to \text{Ext}_{\mathbb{Z}}(K^{*-1}_G(X), \mathbb{Z}) \to K^{*-1}_G(X) \to \text{hom}_{\mathbb{Z}}(K^{*-1}_G(X), \mathbb{Z}) \to 0$.

It reduces for a finite group G to the one of Bökstedt [171] Remark 5.21.

An external Künneth Theorem for complex K-theory relating $K^*_G(X \times Y)$ to $K^*_G(X)$ and $K^*_H(Y)$ is given in [655] for compact Lie groups G and H and finite G-CW-complexes X and Y, namely, there is a short exact sequence

$$0 \to \bigoplus_{i+j=n} K^i_G(X) \otimes_{\mathbb{Z}} K^j_H(Y) \to K^n_{G \times H}(X \times Y) \to \bigoplus_{i+j=n+1} \text{Tor}_2(K^i_G(X), K^j_H(Y)) \to 0. \tag{9.20}$$

The situation is much more complicated and much less understood if one wants to relate $K^*_G(X \times Y)$ to $K^*_G(X)$ and $K^*_H(Y)$ for a finite group G and finite G-CW-complexes X and Y, see [147, 779]. This complication is not surprising since it is related to the difficult question to compute $K^*_G(X \times Y)$ for the diagonal G-action on $X \times Y$ from $K^*_G(X \times Y)$ for a finite group G and finite G-CW-complexes X and Y.

Exercise 9.21. Let G and H be discrete groups. Let (X, A) be a pair of finite proper G-CW-complexes and let (Y, B) be a pair of finite proper H-CW-complexes. Suppose that either $K^i_G(X)$ is torsionfree for $i \in \mathbb{Z}$ or that $K^j_H(Y)$ is torsionfree for all $j \in \mathbb{Z}$.

Then the external multiplicative structure induces for every $n \in \mathbb{Z}$ an isomorphism

$$\bigoplus_{i+j=n} K^i_G(X, A) \otimes_{\mathbb{Z}} K^j_H(Y, B) \xrightarrow{\cong} K^n_{G \times H}((X, A) \times (Y, B)).$$

Consider a discrete group G and a complex G-vector bundle $p: E \to X$ with Hermitian metric over a finite proper G-CW-complex. Let $p_{DE}: DE \to X$ be the disk bundle and $p_{SE}: SE \to X$ be the sphere bundle associated to p whose fiber over $x \in X$ is the disk and sphere in $p^{-1}(x)$. Then there exists a Thom class $\lambda_E \in K^0_G(DE, SE)$ and the composite

$$T_E: K^*_G(X) \xrightarrow{K^*_G(p_{DE})} K^*_G(DE) \xrightarrow{- \cup \lambda_E} K^*_G(DE, SE) \tag{9.22}$$

is an isomorphism of \mathbb{Z}-graded abelian groups called Thom isomorphism, see [603] Theorem 3.14.

Exercise 9.23. For a discrete group G and a complex G-vector bundle $p: E \to X$ over a finite proper G-CW-complex define its Euler class $e(p) \in K^0_G(X)$ to be the image of the Thom class under the composite

$$K^0_G(DE, SE) \xrightarrow{K^0_G(j)} K^0_G(DE) \xrightarrow{K^0_G(p_{DE})^{-1}} K^0_G(X)$$

for $j: DE \to (DE, SE)$ the inclusion. Show that there exists a long exact Gysin sequence
A Completion Theorem for complex and real topological K-theory allowing families of subgroups is proved in [602, Theorem 6.5] for a discrete group G and a finite proper G-CW-complex X in terms of isomorphisms of pro-systems, see also [603, Theorem 4.3]. Let $p: EG \to BG$ be the universal covering of BG, or, equivalently, the universal principal G-bundle. Up to G-homotopy EG is uniquely characterized by the property that it is a free G-CW-complex which is (after forgetting the group action) contractible. A consequence of the Completion Theorem is that the inverse system

(9.25) $K^n_G(X) \hat{=} K^*(EG \times_G X)$

satisfies the Mittag-Leffler condition and we obtain isomorphisms

(9.26) $0 \to \colim_{n \geq 1} \text{Ext}_G^1(K_{G}^{n+1}(X)/I^n \cdot K_G^{n+1}(X), \mathbb{Z}) \to K_4(EG \times_G X) \\
\to \colim_{n \geq 1} \text{hom}_G(K_G^n(X)/I^n \cdot K_G^n(X), \mathbb{Z}) \to 0.$

The Completion and Cocompletion Theorems are not only interesting in its own right, they are needed in the computation of the topological K-theory of certain group C^*-algebras, see for instance [254, 255, 558].

Another important tool for equivariant K-theory over compact Lie groups is the Localization Theorem for equivariant topological complex K-theory of Segal [820, Proposition 4.1]. Given a prime ideal \mathcal{P} of $\text{Rep}_C(G) = K_C^0(\bullet)$,
there is a topologically cyclic group S associated to \mathcal{P}, its so called support. If X is a finite G-CW-complex, let $X^{(S)}$ be the G-CW-subcomplex $G \cdot X^S$. Then after localization at \mathcal{P} the inclusion $X^{(S)} \to X$ induces an isomorphism

\[(9.27) \quad K^*_G(X)(\mathcal{P}) \cong K^*_G(X^{(S)})(\mathcal{P}).\]

Localization for equivariant cohomology theories for compact Lie groups is treated in general in [865, Chapter 7] and [866, III.3 and III.4].

Equivariant topological K-theory was designed for and is a key ingredient when one considers indices of equivariant operators. See for instance [52, 54, 55], where also applications such as Lefschetz Theorems, Riemann-Roch Theorems and G-Signature Theorems are treated for compact Lie groups.

The K_G-degree of G-maps between spheres of unitary G-representations for a compact Lie group G is an important tool, see [866, II.5]. A discussion about equivariant K-theory and orbifold K-theory can be found in [18, Chapter 3].

A geometric description of equivariant K-homology for proper actions in term cycles built by proper cocompact G-Spin^c-manifolds and smooth complex G-vector bundles over them is given in [103], extending the non-equivariant version of Baum-Douglas [98, 102].

9.3 Topological K-Theory of C^*-Algebras

9.3.1 Basics about C^*-algebras

For this section let F be \mathbb{R} or \mathbb{C}. For $\lambda \in F$, denote by $\overline{\lambda}$ the complex conjugate of λ.

A Banach algebra over F is an associative F-algebra $A = (A, +, \cdot)$ together with a norm $\|\cdot\|$ for the underlying F-vector space such that the underlying F-vector space is complete with respect to the given norm and we have the inequality $\|ab\| \leq \|a\| \cdot \|b\|$ for all elements $a, b \in A$.

A Banach $*$-algebra is a Banach algebra together with an involution $*: A \to A$, $a \mapsto a^*$ satisfying $(a*)^* = a$, $(ab)^* = b^* \cdot a^*$, $(\lambda \cdot a + \mu \cdot b)^* = \overline{\lambda} \cdot a^* + \overline{\mu} \cdot b^*$, and $\|a^*\| = \|a\|$ for $a, b \in A$ and $\lambda, \mu \in F$. If G is a discrete group, $L^1(G, F)$ carries the structure of a Banach $*$-algebra coming from the convolution product, the L^1-norm and the involution sending $\sum_{g \in G} \lambda_g \cdot g$ to $\sum_{g \in G} \overline{\lambda_g} \cdot g^{-1}$.

A C^*-algebra is a Banach $*$-algebra A which satisfies additionally the C^*-identity $\|aa^*\| = \|a\|^2$ for all $a \in A$. A homomorphism of C^*-algebras $f: A \to B$ is a homomorphism of F-algebras in the algebraic sense which respects the involutions. A consequence of the C^*-identity is that a homomorphism of C^*-algebras $f: A \to B$ automatically satisfies $\|f(a)\| \leq \|a\|$ for all $a \in A$ and is in particular continuous. Moreover, any injective homomorphism of
C*-algebras $f: A \to B$ is automatically isometric, i.e., satisfies $\|f(a)\| = \|a\|$ for all $a \in A$, and two C*-algebras, which are isomorphic as F-algebras with involutions in the purely algebraic sense, are automatically isomorphic as C*-algebras. Two homomorphisms $f, g: A \to B$ are homotopic if there is a path $\{\gamma_t \mid t \in [0, 1]\}$ of homomorphisms of C*-algebras $\gamma_t: A \to B$ such that $\gamma_0 = f$ and $\gamma_1 = g$ and for every a the evaluation map $[0, 1] \to B, t \mapsto \gamma_t(a)$ is continuous with respect to the C*-norm on B. Equivalently, there is a homomorphism of C*-algebras $\gamma: A \to C([0, 1], B)$ to the C*-algebra of continuous functions from $[0, 1]$ to B under the supremum norm such that its composition with the evaluation maps at $t = 0$ and $t = 1$ from $C([0, 1], B)$ to B are f and g.

If H is a Hilbert F-space, then the algebra of bounded operators $B(H)$ with the involution given by taking adjoint operators and the operator norm is a C*-algebra. In particular any subalgebra $A \subseteq B(H)$ which is closed in the norm topology and closed under taking adjoints, inherits the structure of a C*-algebra and any C*-algebra is isomorphic as C*-algebra to such A.

We are not requiring a unit for the multiplication. If the Banach algebra or C*-algebra A has a unit for the multiplication, we call A a unital Banach algebra or unital C*-algebra.

Given a C*-algebra A, an ideal in A is a two-sided ideal of the underlying F-algebra which is closed in the norm topology. It is automatically closed under the involution and hence inherits the structure of a C*-algebra. The quotient A/I inherits the structure of a C*-algebra by the obvious F-algebra structure and the norm $\|a + I\|_{A/I} := \inf \{\|a + i\|_A \mid i \in I\}$. Kernels of C*-homomorphisms $f: A \to B$ are ideals A and each ideal in A is the kernel of some homomorphism of C*-algebras with A as source, namely, of the projection $A \to A/I$.

Fix an infinite dimensional separable F Hilbert space H. Let B be the unital C*-algebra of bounded operators $H \to H$. An element $T \in B(H)$ is compact if for any bounded subset $B \subseteq H$ the closure of $T(B)$ is a compact subset of H. The compact operators form an ideal K in B. The Calkin algebra is the unital C*-algebra B/K.

Let X be a locally compact Hausdorff space. Denote by $C_0(X, F)$ the C*-algebra of continuous functions $f: X \to F$ which vanish at infinity, i.e., for every $\epsilon > 0$ there exists a compact subset $C \subseteq X$ such that $|f(x)| \leq \epsilon$ holds for all $x \in X \setminus C$. If F is clear from the context, we often abbreviate $C_0(X) = C_0(X, F)$. Define an involution $*: C_0(X, F) \to C_0(X, F)$ by sending f to the function mapping $x \in X$ to $\overline{f(x)}$. Equip $C_0(X, F)$ with the supremum norm. Then $C_0(X; F)$ is a C*-algebra. If X is compact, the constant function on X with value 1 is a unit. Moreover, $C_0(X, F)$ is unital if and only if X is compact.

Example 9.28 (One-point and Stone-Čech compactification). If X is a locally compact Hausdorff space, then we can assign to it two compactifications, the one-point compactification X_+ and the Stone-Čech compactification βX, see [677] page 183 and Section 5.3. Then $C_0(X_+, F)$ agrees with
$C_0(X, F)_+$ and $C(\beta X, F)$ agrees with $C_0(X, F)$, the C^*-algebra of bounded continuous functions $X \to F$. (Actually $C_0(X, F)$ is the so called multiplier algebra of $C_0(X; F)$.) See for instance Example 2.1.2 on page 28 and Example .2.2.4 on page 32.

Let $L^2(G, F)$ be the Hilbert F-space whose orthonormal basis is G. If F is clear from the context, we often abbreviate $L^2(G) = L^2(G, F)$. Let $\mathcal{B}(L^2(G, F))$ denote the bounded linear operators on the Hilbert F-space $L^2(G, F)$, the reduced group C^*-algebra $C^*_r(G, F)$ is the closure in the norm topology of the image of the regular representation $FG \to \mathcal{B}(L^2(G, F))$, which sends an element $u \in FG$ to the (left) G-equivariant bounded operator $L^2(G, F) \to L^2(G, F)$ given by right multiplication with u. Let $L^1(G, F)$ be the Banach $*$-algebra of formal sums $\sum_{g \in G} \lambda_g \cdot g$ with coefficients in F such that $\sum_{g \in G} |\lambda_g| < \infty$. If F is clear from the context, we often abbreviate $L^1(G) = L^1(G, F)$. There are natural inclusions

$$FG \subseteq L^1(G, F) \subseteq C^*_r(G, F) \subseteq \mathcal{B}(L^2(G, F))^{\text{eq}} \subseteq \mathcal{B}(L^2(G, F)).$$

Exercise 9.29. Show for a discrete group G that $L^1(G; F)$ is a C^*-algebra if and only if G is trivial or (G has order 2 and $F = \mathbb{R}$).

For a group G let $C^*_m(G, F)$ be its maximal group C^*-algebra, which is the norm closure of the image of the so called universal representation $FG \to \mathcal{B}(H_u)$, compare [720] 7.1.5 on page 229. The maximal group C^*-algebra has the advantage that every homomorphism of groups $\phi: G \to H$ induces a homomorphism $C^*_m(G, F) \to C^*_m(H, F)$ of C^*-algebras. This is not true for the reduced group C^*-algebra $C^*_r(G, F)$. Here is a counterexample: since $C^*_r(G, F)$ is a simple algebra if G is a non-abelian free group [731], there is no unital algebra homomorphism $C^*_r(G, F) \to C^*_r(\{1\}, F) \cong F$. There is a canonical homomorphism of C^*-algebras $C^*_m(G, F) \to C^*_r(G, F)$ which is an isomorphism of C^*-algebra, if and only if G is amenable, see [720] Theorem 7.3.9 on page 243.

If F is clear from the context, we often abbreviate $C^*_m(G) = C^*_m(G, F)$ and $C^*_n(G) = C^*_m(G, F)$.

Given a discrete group G, a G-C^*-algebra A is a C^*-algebra together with a G-action $\rho: G \to \text{aut}(A)$ by C^*-automorphisms. One can associate to a G-C^*-algebra A two new C^*-algebras, its reduced crossed product $A \rtimes_r G$ and its maximal crossed product $A \rtimes_m G$, see [720] 7.6.5 on page 257 and 7.7.4 on page 262]. There is a canonical homomorphism from the maximal crossed product to the reduced crossed product which is an isomorphism if G is amenable, see [720] Theorem 7.7.7. on page 263. If we take $A = F$ with the trivial G-action, then $F \rtimes_r G$ and $F \rtimes_m G$ are just $C^*_r(G, F)$ and $C^*_m(G, F)$.

Let $\{A_i \mid i \in I\}$ be a directed system of C^*-algebras. Then its colimit, often also called inductive limit, or direct limit, is a C^*-algebra denoted by $\text{colim}_{i \in I} A_i$, together with homomorphisms of C^*-algebras $\psi_j: A_i \to \text{colim}_{i \in I} A_i$ for every $j \in I$ such that $\psi_j \circ \phi_{i,j} = \psi_i$ holds for $i, j \in I$ with $i \leq j$.
and the following universal property is satisfied: For every C^*-algebra B and every system of homomorphisms of C^*-algebras $\{\mu_i : A_i \to B \mid i \in I\}$ such that $\mu_j \circ \phi_{i,j} = \mu_i$ holds for $i, j \in I$ with $i \leq j$, there is precisely one homomorphism of C^*-algebras $\mu : \text{colim}_{i \in I} A_i \to B$ satisfying $\mu \circ \psi_i = \mu_i$ for every $i \in I$. The colimit exists and is unique up to isomorphism of C^*-algebras.

An extensive discussions about tensor products $A \hat{\otimes} B$ of C^*-algebras can be found in [902, Appendix T]. There are various ways for two C^*-algebras A and B to complete their algebraic tensor product $A \otimes F B$ to a new C^*-algebra $A \hat{\otimes} B$. One is the spatial norm which turns out to be the minimal norm and leads to the spatial tensor product, sometimes also called the minimal tensor product. A second is the maximal norm which leads to the maximal tensor product. Any C^*-norm on the algebraic tensor product lies between the minimal and the maximal norm. The favorite situation is the case, where A is a so called nuclear C^*-algebra, i.e., the minimal and the maximal norm on the algebraic tensor product $A \otimes F B$ agree for any C^*-algebra B. Then for any C^*-algebra B there exists only one C^*-norm on the algebraic tensor product $A \otimes F B$ and hence there is a unique tensor product C^*-algebra $A \hat{\otimes} B$. Commutative C^*-algebras and finite dimensional C^*-algebras are nuclear. The class of nuclear C^*-algebras is closed under taking colimits limits over directed systems and extensions. In particular the C^*-algebra of compact operators K is nuclear. Ideals in and quotients of nuclear C^*-algebras are again nuclear. The reduced group C^*-algebra of G is nuclear if and only if G is amenable.

Given a C^*-algebra A, define $M_n(A) = A \hat{\otimes} M_n(F)$ which is well defined since $M_n(F) = B(F^n)$ is nuclear. Actually, the underlying F-algebra of $M_n(A)$ is the algebraic tensor product $A \otimes F M_n(F)$ itself, one does not have to complete.

The C^*-algebra K of compact operators on an infinite dimensional separable Hilbert F-space is the colimit of the directed system $M_1(F) \to M_2(F) \to M_3(F) \to \cdots$ where the structure maps are given by taking the block sum with the $(1,1)$-zero matrix (0). Given a C^*-algebra A, the tensor product $A \hat{\otimes} K$ is the colimit of the directed system $M_1(A) \to M_2(A) \to M_3(A) \to \cdots$.

A C^*-algebra is called separable if its underlying topological space is separable, i.e., contains a dense countable subset.

A C^*-algebra SA is called stable if A is isomorphic as C^*-algebra to $A \hat{\otimes} K$. Since $K \hat{\otimes} K$ is isomorphic to K, the tensor product $A \hat{\otimes} K$ is a stable C^*-algebra for every C^*-algebra A.

More information about C^*-algebras can be found for instance in [40, 125, 221, 248, 281, 351, 483, 484, 720].
9.3.2 Basic Properties of the Topological K-Theory of C^*-Algebras

Topological K-theory assigns to any (not necessarily unital) C^*-algebra A a \mathbb{Z}-graded abelian group $K_\ast(A)$ such that the following properties hold:

(i) **Functoriality**

A homomorphism $f: A \to B$ of C^*-algebras induces a map of \mathbb{Z}-graded abelian groups $K_\ast(f): K_\ast(A) \to K_\ast(B)$. If $g: B \to C$ is another homomorphism of C^*-algebras, we have $K_\ast(g \circ f) = K_\ast(g) \circ K_\ast(f)$. Moreover $K_\ast(\text{id}_A) = \text{id}_{K_\ast(A)}$;

(ii) **Homotopy invariance**

Homotopic homomorphisms of C^*-algebras induce the same map on the topological K-theory;

(iii) **Finite direct products**

If A and B are C^*-algebras, their direct product $A \times B$ inherits the structure of a C^*-algebra by

\[\|(a, b)\| = \min\{\|a\|, \|b\|\}. \]

The projections to the factors are homomorphisms of C^*-algebras and induce a natural isomorphism of \mathbb{Z}-graded abelian groups

\[K_\ast(A \times B) \xrightarrow{\cong} K_\ast(A) \times K_\ast(B); \]

(iv) **Compatibility with colimits over directed systems**

Let $\{A_i \mid i \in I\}$ be a directed system of C^*-algebras. Then the canonical map of \mathbb{Z}-graded abelian groups is an isomorphism

\[\text{colim}_{i \in I} K_\ast(A_i) \xrightarrow{\cong} K_\ast(\text{colim}_{i \in I} A_i); \]

(v) **Morita equivalence**

There are canonical isomorphisms $K_\ast(A) \to K_\ast(M_n(A))$;

(vi) **Stabilization**

The canonical inclusion $F = M_1(F) \to K$ yields an inclusion $i_A: A \to A \hat{\otimes} K$. The induced map of \mathbb{Z}-graded abelian groups $K_\ast(i_A): K_\ast(A) \to K_\ast(A \hat{\otimes} K)$ is an isomorphism;

(vii) **Long exact sequence of an ideal**

Let I be a (two-sided closed) ideal in the C^*-algebra A. Denote by $i: I \to A$ the inclusion and by $p: A \to A/I$ the projection. Then there exists a long exact sequence, natural in (A, I) and infinite to both sides,

\[\cdots \to K_{n+1}(I) \xrightarrow{\partial_n} K_n(A) \xrightarrow{K_n(i)} K_n(A \otimes I) \to K_n(A/I) \xrightarrow{\partial_n} K_{n-1}(I) \to K_{n-1}(A) \xrightarrow{K_{n-1}(i)} K_{n-1}(A \otimes I) \to K_{n-1}(A/I) \xrightarrow{\partial_{n-1}} \cdots; \]

(viii) **Bott periodicity**

For any C^*-algebra A over F there exists an isomorphism of degree $b(F)$
\[\beta_*(A) : K_*(A) \xrightarrow{\cong} K_{*+b(F)}(A), \]

which is natural in \(A \), compatible with the boundary operator \(\partial_* \) of the long exact sequence of an ideal, where \(b(F) = 2 \) if \(F = \mathbb{C} \) and \(b(F) = 8 \) if \(F = \mathbb{R} \);

(ix) **Commutative \(C^* \)-algebras**

Let \(X \) be a finite \(CW \)-complex (or more generally, compact Hausdorff space). Then there are isomorphisms of \(\mathbb{Z} \)-graded abelian groups, natural in \(X \),

\[
K^*(X) \xrightarrow{\cong} K_*(C(X, \mathbb{C}));
KO^*(X) \xrightarrow{\cong} K_*(C(X, \mathbb{R})),
\]

from the topological complex or real \(K \)-theory of \(X \) to the topological \(K \)-theory of the unital \(C^* \)-algebra \(C(X, F) \) of continuous functions \(X \to F \).

Of course the last property about commutative \(C^* \)-algebras is closely related to the material in Section 2.4 about Swan’s Theorem 2.28.

Notation 9.30 (K and KO). If one considers a real \(C^* \)-algebra, one often writes \(KO_*(A) \) instead of \(K_*(A) \) to indicate that the \(C^* \)-algebra under consideration lives over \(\mathbb{R} \).

The 0-th topological \(K \)-group \(K_0(A) \) of a \(C^* \)-algebra \(A \) agrees with the projective class group \(K_0(A) \) of the underlying ring (possibly without unit) in the sense of Definition 3.88. In contrast to \(K_0(A) \) the topology of \(A \) enters in the definition of \(K_1(A) \) as explained next.

If \(A \) is a \(C^* \)-algebra (with or without unit), then we define the unital \(C^* \)-algebra \(A_+ \) as follows. The underlying unital \(F \)-algebra is \(A \oplus F \) with the addition \((a, \lambda) + (b, \mu) = (a+b, \lambda+\mu)\), multiplication \((a, \lambda) \cdot (b, \mu) = (a\cdot b+\lambda\cdot b+\mu\cdot a, \lambda\cdot \mu)\) and unit \((0, 1)\). The \(C^* \)-norm is explained for instance in [720, 1.1.3 on page 1] or [902, Proposition 2.1.7 on page 30]. Let \(p : A_+ \to F \) be the canonical projection sending \((a, \lambda)\) to \(\lambda \). It induces maps \(M_n(A_+) \to M_n(F) \) and \(GL_n(A_+) \to GL_n(F) \), denoted again by \(p \). Define

\[
GL^+_n(A) := \{ B \in GL_n(A_+) \mid p(B) = 1 \}.
\]

This becomes a topological group by the subspace topology with respect to the inclusion \(GL^+_n(A) \subseteq M_n(A_+) \). There is an obvious directed system of topological groups

\[
GL^+_n(A) \subseteq GL^+_2(A) \subseteq GL^+_3(A) \subseteq \cdots
\]

coming from embedding \(M_n(A_+) \) into \(M_{n+1}(A_+) \) by taking the block sum with the \((1, 1)\)-identity matrix \((1)\). Its colimit is a topological group denoted
by $\text{GL}^+(A)$. Let $\text{GL}^+(A)_0$ be the path component of the unit element in $\text{GL}^+(A)$. Then we get

$$K_1(A) = \text{GL}^+(A)/\text{GL}^+(A)_0 = \pi_0(\text{GL}^+(A)).$$

More generally, we have

$$K_n(A) = \pi_{n-1}(\text{GL}^+(A)) \quad \text{for } n \geq 1. \tag{9.33}$$

If A is unital, then one defines the topological group $\text{GL}(A) = \colim_{n \to \infty} \text{GL}_n(A)$ and obtains a canonical isomorphism

$$K_n(A) \cong \pi_{n-1}(\text{GL}(A)) \quad \text{for } n \geq 1. \tag{9.34}$$

Exercise 9.35. Compute for $F = \mathbb{C}$ the topological K-theory of \mathcal{B}, \mathcal{K} and \mathcal{B}/\mathcal{K}.

Remark 9.36 (Six term sequence of an ideal). Let $F = \mathbb{C}$ in this Remark 9.36. Since K_* is two-periodic, one thinks often about it as a $\mathbb{Z}/2$-graded theory. The long exact sequence of an extension $0 \to I \overset{i}{\to} A \overset{p}{\to} A/I \to 0$ becomes the six-term exact sequence of an ideal

$$
\begin{array}{cccccc}
K_1(I) & \overset{K_1(i)}{\longrightarrow} & K_1(A) & \overset{K_1(p)}{\longrightarrow} & K_1(A/I) \\
\downarrow \partial_0 & & \downarrow & & \downarrow \partial_1 \\
K_0(A/I) & \overset{K_0(p)}{\longrightarrow} & K_0(A) & \overset{K_0(i)}{\longrightarrow} & K_0(I)
\end{array}
$$

Remark 9.37 (Topological K-theory in terms of unitary groups). Let $F = \mathbb{C}$ in this Remark 9.37. Let $U_n(A)$ be the group of unitary (n,n)-matrices over A, i.e., (n,n)-matrices U which are invertible and satisfy $U^{-1} = U^*$, where U^* is defined by transposing and applying to each entry the involution on A. Define $U^+_n(A) := \{ U \in U_n(A_+) \mid p(U) = 1 \}$. Put $U(A) = \colim_{n \to \infty} U_n(A)$ and $U^+(A) := \colim_{n \to \infty} U^+_n(A)$. Then we have isomorphisms of groups, see [902, Proposition 4.2.6 on page 77],

$$K_1(A) = \text{GL}^+(A)/\text{GL}^+(A)_0 \cong \text{GL}(A^+)/\text{GL}(A^+_0) \cong \text{U}^+(A)/\text{U}^+(A)_0 \cong U(A^+)/U(A^+_0).$$

Example 9.38 (On the boundary map and indices). Let $F = \mathbb{C}$ in this Example 9.38. Let A be a unital C^*-algebra, $I \subseteq A$ be an ideal and $p: A \to A/I$ be the projection. Let u be a unitary element in A/I. Let $a \in A$ be any element in A with $p(a) = u$ and $|a| = 1$. Consider the $(2,2)$-matrices over A
onto the kernel of a of such that H is a separable Hilbert space, see [438, Proposition 4.8.10 (b) on page 109].

If we can additionally arrange that $1 - a a^*$ is a partial isometry, i.e., of the form $b^* b$ for some $b \in A$, and satisfies $(1 - a a^*)^{1/2} \cdot (1 - a a^*)^{1/2} = 1 - a a^*$, and analogously for $(1 - a^* a)^{1/2}$. Then P is a projection, i.e., $P^2 = P$ and $P^* = P$, and Q is a projection. Moreover, $P - Q$ lies in $M_2(I)$. Define matrices in $M_2(I)$ by

\[
P_+ := \begin{pmatrix} (a a^* - 1, 1) & (a (1 a^* a)^{1/2}, 0) \\ (a^* (1 - a a^*)^{1/2}, 0) & (1 - a^* a, 0) \end{pmatrix},
Q := \begin{pmatrix} (0, 1) & (0, 0) \\ (0, 0) & (0, 0) \end{pmatrix}
\]

One easily checks $P_+^2 = P_+$ and $Q_+^2 = Q_+$ and $P_+ - Q_+ \in I$. Hence P_+ and Q_+ determine elements $[P_+] , [Q_+] \in K_0(I_+)$ such that the difference $[P_+] - [Q_+]$ is mapped under the canonical projection $K_0(I_+) \to K_0(\mathbb{C})$ to zero. Hence $[P_+] - [Q_+]$ defines an element in $K_0(I)$. It turns out that the image $\partial_1([u])$ of the class $[u] \in K_1(A)$ under the boundary homomorphism $\partial_1 : K_1(A/I) \to K_0(I)$ is the class $[P_+] - [Q_+]$, see [433] Proposition 4.8.10 (a) on page 109.

If we can additionally arrange that a is a partial isometry, i.e., $a a^*$ is a projection, then $1 - a a^* a$ and $1 - a a^*$ lie in I and are projections, and we obtain an element $[1 - a a^*] - [1 - a a^*]$ in $K_0(I)$ which agrees with $\partial_1([u])$, see [433] Proposition 4.8.10 (b) on page 109.

Now we apply this to $A = B = B(H)$ and $I = K = K(H)$ for an infinite dimensional separable Hilbert space H. Let $a \in B$ be a Fredholm operator such that a is a partial isometry. Then $1 - a a^*$ is the orthogonal projection onto the kernel of a and $1 - a a^*$ is the orthogonal projection onto the cokernel of a. Hence the element $[1 - a^* a] - [1 - a a^*] \in K_0(K)$ becomes under the standard identification $K_0(K) \cong \mathbb{Z}$ the difference of the dimension of the kernel of a and the dimension of the cokernel of a which is by definition the classical index of the Fredholm operator a. This shows that $\partial_1 : K_1(B/K) \to K_0(K) \cong \mathbb{Z}$ sends the class of $[a]$ to the classical index of a.

It will often occur in many more general and important situations that ∂_1 can be viewed as an index map.

Example 9.39 (Suspensions and cones). The suspension of a C^*-algebra A is the C^*-algebra ΣA of continuous functions $f : [0, 1] \to A$ with $f(0) = f(1) = 1$ equipped with the obvious algebra structure and involution and the suprema norm inherited from A. Denote by $\Sigma^n(A)$ the n-fold suspension. It can be identified with the tensor product of C^*-algebras $A \hat{\otimes} C_0(\mathbb{R}^n)$. The cone is defined analogously as the C^*-algebra cone(A) of continuous functions.
$f : [0, 1] \to A$ with $f(0) = 0$. It can be identified with the tensor product of C^*-algebras $A \hat{\otimes} C_0((0, 1])$. There is an obvious exact sequence of C^*-algebras $0 \to \Sigma A \to \text{cone}(A) \to A \to 0$. Moreover, the C^*-algebra $\text{cone}(A)$ is contractible, i.e., the zero and the identity endomorphism are homotopic. The desired homotopy is given by the formula $f_t(s) := f(ts)$. Hence $K_\bullet(\text{cone}(A))$ is trivial and the boundary operator in the associated long exact sequence induces isomorphisms

$$\partial_n : K_n(A) \xrightarrow{\cong} K_{n-1}(\Sigma A).$$

For complex C^*-algebras A and B for which A lies in the so called bootstrap category N a Künneth Theorem, i.e., an exact sequence $0 \to K_\bullet(A) \otimes K_\bullet(B) \to K_\bullet(\hat{\otimes} B) \to \text{Tor}_2(K_\bullet(A), K_\bullet(B)) \to 0$ is established in [818]. The case of real C^*-algebras is treated in [129].

Remark 9.40 (Topological K-theory and the classification of C^*-algebras). One prominent feature is that for certain classes of C^*-algebras their isomorphism type is determined by their topological K-theory, sometimes taking the order structure on $K_0(A)$ coming from the positive cone of those elements which are represented by finitely generated projective modules into account. If one considers the topological K-theory of spaces such nice classification results are not available.

One example is the class of AF-algebras, i.e., C^*-algebras which occur as a colimit of a sequence of finite dimensional C^*-algebras, due to Elliot, see [325], [771] Chapter 7], [902] 12.1]. The index n of the Cuntz C^*-algebra \mathcal{O}_n is determined by the topological K-theory since $K_0(\mathcal{O}_n) \cong \mathbb{Z}/n$ and $K_1(\mathcal{O}_n) = 0$, see [238], [902] 12.2]. A very important result about the classification of so called Kirchberg C^*-algebras in terms of their topological K-theory is due to Kirchberg, see for instance [770] Chapter 8].

Remark 9.41 (Topological K-theory and generalized index theory). One important motivation to study the topological K-theory of C^*-algebras is index theory and its generalizations. A first introduction how one can assign to a Fredholm operator over a C^*-algebra A an element in $K_0(A)$ is given in [902] Chapter 17] following Mingo [657]. There are many other index theorems taking values in the topological K-theory of C^*-algebras. Often they are generalizations of the classical family index theorem for families of operators parametrized over a closed manifold M which take values in $K^*(M) = K_\bullet(C(M))$.

One can attach to geometric or topological situations new C^*-algebras and considers their topological K-theory and indices of appropriate operators, where it is not possible anymore to work with topological spaces. Examples are foliations and coarse geometry. There are also plenty other generalizations of the classical index theorems using topological K-theory of C^*-algebras. For information about these topics we refer for instance to [221] [242] [138] [662].
More information about the topological K-theory of C^*-algebras can be found for instance in [124, 221, 242, 438, 771, 902].

9.4 The Baum-Connes Conjecture for Torsionfree Groups

Let G be a group. Then there exist for all $n \in \mathbb{Z}$ assembly maps

$$(9.42) \quad \text{asmb}^{G,C}(BG)_n : K_n(BG) \to K_n(C^*_r(G; \mathbb{C}));$$

$$(9.43) \quad \text{asmb}^{G,\mathbb{R}}(BG)_n : KO_n(BG) \to KO_n(C^*_r(G; \mathbb{R})).$$

Conjecture 9.44 (Baum-Connes Conjecture for torsionfree groups).

The assembly maps appearing in (9.42) and (9.43) are isomorphisms for all $n \in \mathbb{Z}$, provided that G is torsionfree.

It is crucial for the Baum-Connes Conjecture to work with the reduced group C^*-algebra, it is definitely not true for the maximal group C^* algebra in general. Moreover, Conjecture 9.44 in general fails for groups with torsion. The general version which makes sense for all groups will be discussed in Chapter 13.

Exercise 9.45. Show for a finite group G that the following statements are equivalent:

(i) $K_0(BG)$ and $K_0(C^*_r(G))$ are rationally isomorphic;
(ii) $KO_0(BG)$ and $KO_0(C^*_r(G))$ are rationally isomorphic;
(iii) G is trivial.

One benefit of Conjecture 9.44 is that the right side is of great interest because of index theory but hard to compute, whereas the left side is accessible to standard methods from algebraic topology.

Example 9.46 (Three-dimensional Heisenberg group). Let $\text{Hei}(\mathbb{R})$ be the three-dimensional Heisenberg group which is the subgroup of $\text{GL}_3(\mathbb{R})$ consisting of upper triangular matrices whose diagonal entries are all equal to 1. The three-dimensional discrete Heisenberg group Hei is the intersection of $\text{Hei}(\mathbb{R})$ with $\text{GL}_3(\mathbb{Z})$. Obviously Hei is a torsionfree discrete subgroup of the contractible Lie group $\text{Hei}(\mathbb{R})$. Hence $\text{Hei} \setminus \text{Hei}(\mathbb{R})$ is a model for $B\text{Hei}$ which is an orientable closed 3-manifold.

Define elements in Hei

$$u := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad v := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad w := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.\]
Then we get the presentation
\[\text{Hei} = \langle u, v, w \mid [u, w] = v, [u, v] = 1, [w, v] = 1 \rangle. \]

Therefore we have a central extension \(1 \to \mathbb{Z} \xrightarrow{i} \text{Hei} \xrightarrow{p} \mathbb{Z}^2 \to 1 \), where \(i \) sends the generator of \(\mathbb{Z} \) to \(v \) and \(p \) sends \(v \) to \((0,0)\), \(u \) to \((1,0)\) and \(w \) to \((0,1)\). Hence the map \(H_1(B\text{Hei}) \to H_1(B\mathbb{Z}^2) \) is an isomorphism. Using Poincaré duality we conclude
\[
H_n(B\text{Hei}) = \begin{cases}
\mathbb{Z} & \text{if } n = 0, 3; \\
\mathbb{Z}^2 & \text{if } n = 1, 2.
\end{cases}
\]

We conclude from the Chern character \((9.1)\) for every \(n \in \mathbb{Z} \)
\[
K_n(B\text{Hei}) \otimes \mathbb{Q} \cong \mathbb{Q}^3.
\]

Next we consider the Atiyah-Hirzebruch spectral sequence converging to \(K_{p+q}(B\text{Hei}) \) whose \(E^2 \)-term is \(E^2_{p,q} = H_p(B\text{Hei}; K_q(\{\bullet\})) \). Its \(E^2 \)-page looks as follows
\[
\begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbb{Z} & \mathbb{Z}^2 & \mathbb{Z}^2 & \mathbb{Z} & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\mathbb{Z} & \mathbb{Z}^2 & \mathbb{Z}^2 & \mathbb{Z} & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}
\]

Each entry is a finitely generated free \(\mathbb{Z} \)-module and we have for every \(n \in \mathbb{Z} \)
\[
\sum_{p+q=n} \dim_{\mathbb{Q}}(E^2_{p,q}) \otimes \mathbb{Q} = 3 = K_n(B\text{Hei}) \otimes \mathbb{Q}.
\]

This implies that all differentials must vanish and we get for every \(n \in \mathbb{Z} \)
Conjecture 9.44 is known to be true for Hei and hence we conclude for every $n \in \mathbb{Z}$

$$K_n(\mathbb{C}^\ast_r(\text{Hei})) \cong \mathbb{Z}^3.$$

Exercise 9.47. Let G be the semi-direct product $\mathbb{Z} \rtimes \mathbb{Z}$, where the generator of \mathbb{Z} acts on \mathbb{Z} by $-\text{id}$. Compute $K_\ast(\mathbb{C}^\ast_r(G))$ using the fact that Conjecture 9.44 is known to be true for G.

Next we discuss some consequences of the Baum-Connes Conjecture for torsionfree groups 9.44.

9.4.1 The Trace Conjecture in the Torsionfree Case

The assembly map appearing in the Baum-Connes Conjecture has an interpretation in terms of index theory. Namely, an element $\eta \in K_0(BG)$ can be represented by a pair (M, P^\ast) consisting of a cocompact free proper smooth G-manifold M with a G-invariant Riemannian metric together with an elliptic G-complex P^\ast of differential operators of order 1 on M, see [98]. To such a pair one can assign an index $\text{ind}_{C^\ast_r(G)}(M, P^\ast)$ in $K_0(C^\ast_r(G))$, see [662] which is the image of η under the assembly map $K_0(BG) \to K_0(C^\ast_r(G))$ appearing in Conjecture 9.44. With this interpretation the surjectivity of the assembly map for a torsionfree group says that any element in $K_0(C^\ast_r(G))$ can be realized as an index. This allows to apply index theorems to get interesting information. It is of the same significance as the interpretation of the L-theoretic assembly map as the map σ appearing in the exact surgery sequence discussed in the proof of Theorem 8.163.

Here is a prototype of such an argument. The *standard trace* \begin{equation}
(9.48)
\text{tr}_{C^\ast_r(G)} : C^\ast_r(G) \to \mathbb{C}
\end{equation}
sends an element $f \in C^\ast_r(G) \subseteq B(l^2(G))$ to $\langle f(1), 1 \rangle_{l^2(G)}$. Applying the trace to idempotent matrices yields a homomorphism

$$\text{tr}_{C^\ast_r(G)} : K_0(C^\ast_r(G)) \to \mathbb{R}.$$

Let $\text{pr} : BG \to \{\bullet\}$ be the projection. For a group G the following diagram commutes

\begin{equation}
\text{pr}^\ast : K_\ast(BG) \to K_\ast(C^\ast_r(G))
\end{equation}
256 Topological K-Theory

\[(9.49) \quad K_0(BG) \xrightarrow{\text{asmb}^G \circ C(BG)_\ast} K_0(C^*_r(G)) \xrightarrow{\text{tr}_{C^*_r(G)}} \mathbb{R} \]

\[K_0(pr) \]

\[K_0(\mathbb{C}) \xrightarrow{\simeq} K_0(\mathbb{C}) \xrightarrow{\simeq} \mathbb{Z} \]

where \(i: \mathbb{Z} \rightarrow \mathbb{R} \) is the inclusion. This non-trivial statement follows from Atiyah’s \(L^2 \)-index theorem [48]. Atiyah’s theorem says that the \(L^2 \)-index \(\text{tr}_{C^*_r(G)} \circ \text{asmb}_\ast(\eta) \) of an element \(\eta \in K_0(BG) \), which is represented by a pair \((M, P^*)\), agrees with the ordinary index of \((G \setminus M; G \setminus P^*)\), which is given by \(\text{tr}_C \circ K_0(pr)(\eta) \in \mathbb{Z} \).

The following conjecture is taken from [96, page 21].

Conjecture 9.50 (Trace Conjecture for torsionfree groups). For a torsionfree group \(G \) the image of

\[\text{tr}_{C^*_r(G)}: K_0(C^*_r(G)) \rightarrow \mathbb{R} \]

consists of the integers.

The commutativity of diagram (9.49) shows

Lemma 9.51. If the Baum-Connes assembly map \(K_0(BG) \rightarrow K_0(C^*_r(G)) \) of (9.42) is surjective, then the Trace Conjecture for Torsionfree Groups 9.50 holds for \(G \).

A Modified Trace Conjecture for not necessarily torsionfree groups is discussed in Subsection 13.8.1.

9.4.2 The Kadison Conjecture

Conjecture 9.52 (Kadison Conjecture). If \(G \) is a torsionfree group, then the only idempotent elements in \(C^*_r(G) \) are 0 and 1.

Lemma 9.53. The Trace Conjecture for Torsionfree Groups 9.50 implies the Kadison Conjecture 9.52.

Proof. Assume that \(p \in C^*_r(G) \) is an idempotent different from 0 or 1. From \(p \) one can construct a non-trivial projection \(q \in C^*_r(G) \), i.e. \(q^2 = q, q^* = q \), with \(\text{im}(p) = \text{im}(q) \) and hence with \(0 < q < 1 \). Since the standard trace \(\text{tr}_{C^*_r(G)} \) is faithful, we conclude \(\text{tr}_{C^*_r(G)}(q) \in \mathbb{R} \) with \(0 < \text{tr}_{C^*_r(G)}(q) < 1 \). Since \(\text{tr}_{C^*_r(G)}(q) \) is by definition the image of the element \([\text{im}(q)] \in K_0(C^*_r(G)) \) under \(\text{tr}_{C^*_r(G)}: K_0(C^*_r(G)) \rightarrow \mathbb{R} \), we get a contradiction to the assumption \(\text{im}(\text{tr}_{C^*_r(G)}) \subseteq \mathbb{Z} \).

\(\square \)
Remark 9.54 (The Kadison Conjecture \[9.52\] and the Kaplansky Conjecture \[2.62\]). Obviously the Kadison Conjecture \[9.52\] implies the Kaplansky Conjecture \[2.62\] in the case that \(R\) can be embedded in \(\mathbb{C}\). Because of Remark 2.71 the Kadison Conjecture \[9.52\] implies the Kaplansky Conjecture \[2.62\] if \(R\) is any field of characteristic zero. The Bost Conjecture \[13.23\] implies that there are no non-trivial idempotents in \(L^1(G)\) and hence the Kaplansky Conjecture \[2.62\] for fields of characteristic zero, see \[115, Corollary 1.6\].

9.4.3 The Zero-in-the-Spectrum Conjecture

The following Conjecture is due to Gromov \[391, page 120\].

Conjecture 9.55 (Zero-in-the-spectrum Conjecture). Suppose that \(\tilde{M}\) is the universal covering of an aspherical closed Riemannian manifold \(M\) (equipped with the lifted Riemannian metric). Then zero is in the spectrum of the minimal closure

\[
(\Delta_p)_{\text{min}}: L^2\Omega^p(\tilde{M}) \supset \text{dom}(\Delta_p)_{\text{min}} \rightarrow L^2\Omega^p(\tilde{M}),
\]

for some \(p \in \{0, 1, \ldots, \dim M\}\), where \(\Delta_p\) denotes the Laplacian acting on smooth \(p\)-forms on \(\tilde{M}\).

Theorem 9.56 (The strong Novikov Conjecture implies the Zero-in-the-spectrum Conjecture). Suppose that \(M\) is an aspherical closed Riemannian manifold with fundamental group \(G\), then the injectivity of the assembly map

\[
K_* (BG) \otimes \mathbb{Q} \rightarrow K_* (C^*_r(G)) \otimes \mathbb{Q}
\]

implies the Zero-in-the-spectrum Conjecture \[9.55\] for \(\tilde{M}\).

Proof. We give a sketch of the proof. More details can be found in \[376, Corollary 4\]. We only explain that the assumption that in every dimension zero is not in the spectrum of the Laplacian on \(\tilde{M}\), yields a contradiction in the case that \(n = \dim(M)\) is even. Namely, this assumption implies that the \(C^*_r(G)\)-valued index of the signature operator twisted with the flat bundle \(\tilde{M} \times_G C^*_r(G) \rightarrow M\) in \(K_0(C^*_r(G))\) is zero, where \(G = \pi_1(M)\). This index is the image of the class \([S]\) defined by the signature operator in \(K_0(BG)\) under the assembly map \(K_0(BG) \rightarrow K_0(C^*_r(G))\). Since by assumption the assembly map is rationally injective, this implies \([S]\) = 0 in \(K_0(BG) \otimes \mathbb{Q}\). Note that \(M\) is aspherical by assumption and hence \(M = BG\). The homological Chern character defines an isomorphism

\[
K_0(BG) \otimes \mathbb{Q} = K_0(M) \otimes \mathbb{Q} \xrightarrow{\cong} \bigoplus_{p \geq 0} H_{2p}(M; \mathbb{Q})
\]
which sends \([S]\) to the Poincaré dual \(L(M) \cap [M]_Q\) of the Hirzebruch \(L\)-class \(L(M) \in \bigoplus_{p \geq 0} H^{2p}(M; \mathbb{Q})\). This implies that \(L(M) \cap [M]_Q = 0\) and hence \(L(M) = 0\). This contradicts the fact that the component of \(L(M)\) in \(H^0(M; \mathbb{Q})\) is 1.

More information about the Zero-in-the-Spectrum Conjecture \(9.55\) can be found for instance in [576] and [585, Section 12].

9.5 Kasparov’s \(KK\)-Theory

Kasparov introduced the bivariant \(KK\)-theory which assigns to two separable \(C^*\)-algebras \(A\) and \(B\) a \(\mathbb{Z}\)-graded abelian group \(KK_*(A, B)\). We give a very brief summary of it. In the sequel all \(C^*\)-algebras are assumed to be separable.

9.5.1 Basic Properties of \(KK\)-theory for \(C^*\)-Algebras

(i) Bi-functoriality
A homomorphism \(f : A \to B\) of \(C^*\)-algebras induces homomorphisms of \(\mathbb{Z}\)-graded abelian groups

\[
KK_*(f, \text{id}_D) : KK_* (B, D) \to KK_* (A, D);
\]

\[
KK_*(\text{id}_D, f) : KK_* (D, A) \to KK_* (D, B).
\]

If \(g : B \to C\) is another homomorphism of \(C^*\)-algebras, we have \(KK_* (g \circ f, \text{id}) = KK_* (f, \text{id}_D) \circ K_* (g, \text{id}_D)\) and \(KK_* (\text{id}_D, g \circ f) = KK_* (\text{id}_D, g) \circ K_* (\text{id}_D, f)\). Moreover \(K_* (\text{id}_A, \text{id}_B) = \text{id}_{KK_* (A, B)}\). In particular \(KK_* (-, D)\) is a contravariant and \(KK_* (D, -)\) is a covariant functor from the category of \(C^*\)-algebras to the category of \(\mathbb{Z}\)-graded abelian groups;

(ii) Homotopy invariance
If \(f, g : A \to B\) are homotopic homomorphisms of \(C^*\)-algebras, then \(KK_* (f, \text{id}_C) = KK_* (g, \text{id}_C)\) and \(KK_* (\text{id}_C, f) = KK_* (\text{id}_C, g)\);

(iii) Finite direct products
If \(A\) and \(B\) are \(C^*\)-algebras, there are a natural isomorphism of \(\mathbb{Z}\)-graded abelian groups

\[
KK_* (A \times B, C) \cong KK_* (A, C) \times KK_* (B, C);
\]

\[
KK_* (C, A \times B) \cong KK_* (C, A) \times KK_* (C, B);
\]

(iv) Countable direct sums in the first variable
If \(A = \bigoplus_{i=0}^{\infty} A_i\) is a countable direct sum of \(C^*\)-algebras, then there is a natural isomorphism
9.5 Kasparov’s KK-Theory

\[\KK_n \left(\bigoplus_{i=0}^{\infty} A_i, B \right) \cong \prod_{i=0}^{\infty} \KK_n(A_i, B); \]

(v) **Morita equivalence**

For any integers \(m, n \geq 1 \) there are natural isomorphisms of \(\Z \)-graded abelian groups \(\KK_*(A, B) \cong \KK_*(M_m(A), M_n(B)); \)

(vi) **Stabilization**

There are natural isomorphisms of \(\Z \)-graded abelian groups

\[\KK_*(A, B) \cong \KK_*(A \hat{\otimes} K, B) \cong \KK_*(A, B \hat{\otimes} K); \]

(vii) **Long exact sequence of an ideal**

Let \(0 \to I \xrightarrow{i} A \xrightarrow{p} A/I \to 0 \) be an extensions of (separable) \(C^* \)-algebras. If it is semisplit in the sense of [124, Definition 19.5.1. on page 195] (what is automatically true if \(A \) is nuclear) then there exists a long exact sequence, natural in \((A, I) \) and infinite to both sides,

\[
\cdots \xrightarrow{\delta_{n-1}} \KK_n(A/I, B) \xrightarrow{KK_n(p, \id_B)} \KK_n(A, B) \xrightarrow{KK_n(i, \id_B)} \KK_n(I, B)
\]

\[
\xrightarrow{\delta_n} \KK_{n+1}(A/I, B) \xrightarrow{KK_{n+1}(p, \id_B)} \KK_{n+1}(A, B) \xrightarrow{KK_{n+1}(i, \id_B)} \KK_{n+1}(I, B)
\]

\[
\xrightarrow{\delta_{n+1}} \cdots ,
\]

If the extension is semisplit or if \(B \) is nuclear, then there exists a long exact sequence, natural in \((A, I) \) and infinite to both sides,

\[
\cdots \xrightarrow{\partial_{n+1}} \KK_n(B, I) \xrightarrow{KK_n(\id_B, i)} \KK_n(B, A) \xrightarrow{KK_n(\id_B, p)} \KK_n(B, A/I)
\]

\[
\xrightarrow{\partial_n} \KK_{n-1}(B, I) \xrightarrow{KK_{n-1}(\id_B, i)} \KK_{n-1}(B, A) \xrightarrow{KK_{n-1}(\id_B, p)} \KK_{n-1}(B, A/I)
\]

\[
\xrightarrow{\partial_{n-1}} \cdots ;
\]

(viii) **Bott periodicity**

There exists an isomorphism of degree \(b(F) \)

\[\beta_*(A) : \KK_*(A, B) \cong \KK_*(A, B^{b(F)}); \]

which is natural in \(A \) and \(B \), and compatible with the boundary operators \(\partial_* \) of the long exact sequence of an ideal, where \(b(F) = 2 \) if \(F = \C \) and \(b(F) = 8 \) if \(F = \R \);

(ix) **Connection to topological K-theory**

There is a natural isomorphism of \(\Z \)-graded abelian groups

\[K_*(A) \cong \KK_*(F, A); \]
Homomorphisms of C^*-algebras

A homomorphism $f: A \to B$ of C^*-algebras defines an element $[f]$ in $\text{KK}_*(A,B)$.

Remark 9.57 (Some failures). The second variable is in general not compatible with countable direct sums and in particular not with colimits over directed sets. However, in the special case $A = \mathbb{C}$, this is the case, since then $\text{KK}_*(\mathbb{C}, B)$ is just the topological K-theory of B.

The conditions about the existence of long exact sequence of an ideal such as semi-split or B being nuclear are needed.

9.5.2 The Kasparov’s Intersection Product

One of the basic features of KK-theory is Kasparov’s intersection product which is a bilinear pairing of \mathbb{Z}-graded abelian groups

\[(9.58) \quad \hat{\otimes}_B: \text{KK}_*(A,B) \otimes \text{KK}_*(B,C) \to \text{KK}_*(A,C).\]

It has the following properties

(i) Naturality
It is natural in A, B and C;

(ii) Associativity
It is associative;

(iii) Composition of homomorphisms
If $f: A \to B$ and $g: B \to C$ are homomorphisms of C^*-algebras, then we get for the associated elements $[f] \in \text{KK}_0(A,B)$, $[g] \in \text{KK}_0(B,C)$ and $[g \circ f] \in \text{KK}_0(A,C)$

\[[g \circ f] = [f] \otimes_B [g]; \]

(iv) Units
There is a unit $1_A := [\text{id}_A]$ in $\text{KK}_0(A,A)$ for the intersection product.

Remark 9.59 (KK-equivalence). One of the basic features of the product is that an element x in $\text{KK}_0(A,B)$ induces a homomorphism $-\otimes_B x: \text{K}_n(A) = \text{KK}_n(F, A) \to \text{K}_n(B) = \text{KK}_n(F, B)$. Of course $-\otimes_B [f]$ agrees with $\text{K}_n(f)$ if $f: A \to B$ is a homomorphism of C^*-algebras. An element $x \in \text{KK}_0(A,B)$ is called a KK-equivalence if there exists an element $y \in \text{KK}_0(B,A)$ satisfying $x \otimes_B y = 1_A$ and $y \otimes_A x = 1_B$. The basic feature of a KK-equivalence is that $-\otimes_B x: \text{K}_n(A) = \text{KK}_n(F, A) \to \text{K}_n(B) = \text{KK}_n(F, B)$ is automatically an isomorphism, the inverse is $-\otimes_B y$.

Remark 9.60 (K-homology of C^*-algebras). One can define topological K-homology of a C^*-algebra $\text{K}^*(A)$ by $\text{K}^*(A) := \text{KK}_{-n}(A,F)$. It is in some sense dual to the topological K-theory $\text{K}_*(A)$. Moreover, the intersection product yields the index pairing
If we take $n = 0$ and $A = C(M)$ for a smooth closed Riemannian manifold M, then an appropriate elliptic operator P over M defines an element in $[P]$ in $K^0(C(M)) = K_0(M)$ and a vector bundle ξ over M defines an element in $K_0(C(M)) = K^0(M)$ and the pairing $\langle [\xi], [P] \rangle$ is the classical index of the elliptic operator obtained from P by twisting with ξ.

There are Universal Coefficient Theorems and Künneth Theorems for KK-theory, see for instance [129, 130, 783, 818]. The Pimsner-Voiculescu sequences associated to an automorphisms of a C^*-algebra are explained for KK-theory in [124, Theorem 19.6.1 on page 198].

More information about KK-theory, for instance about its construction in terms of Kasparov modules or quasi-homomorphisms, other bivariant theories such as Ext for extensions of C^*-algebras, kk-theory, E-theory, and their relation to KK-theory, generalizations of these theories to more general operator algebras than C^*-algebras, universal properties of these theories, applications to index theory and the relevant literature can be found for instance in [124, 242, 428, 430, 438, 467], or in the papers of Kasparov [503, 504, 505, 506].

9.6 Equivariant Topological K-Theory and KK-Theory

In the sequel groups are assumed to be discrete. Given a group G, there exists an equivariant version of KK-theory. It assigns to two G-C^*-algebras A and B an abelian group $KK^G_0(A, B)$ and has essentially the same basic properties as non-equivariant KK-theory. Namely, it is a bi-functor, contravariant in the first and covariant in the second variable, is homotopy invariant, satisfies Morita equivalence and stabilization, is split exact, i.e., has long exact sequences for appropriate ideals, satisfies Bott periodicity, is compatible with finite direct products in both variables and countable direct sums in the first variable, and a homomorphism of G-C^*-algebras $f: A \to B$ defines an element $[f] \in KK^G_0(A, B)$. There is also an equivariant version of Kasparov’s intersection product

\[\hat{\otimes}_B: KK^G_{i+j}(A, B) \otimes KK^G_i(B, C) \to KK^G_{i+j}(A, C) \]

which has all the expected properties as in the non-equivariant case.

In particular we get on $KK^G_0(F, F)$ an interesting structure of a commutative ring with unit and it is sometimes called representation ring of G. If G is finite, $KK^G_0(F, F)$ is indeed isomorphic as ring to $Rep_F(G)$.

There exists certain additional structures in the equivariant setting. Given a homomorphism $\alpha: H \to G$, there are natural restriction homomorphisms
Let $i: H \to G$ be the inclusion of groups. Given an H-C^*-algebra A, we define its induction i_*A, to be the G-C^*-algebra of bounded functions $f: G \to A$ which satisfy $f(gh) = h^{-1} \cdot f(g)$ and vanish at infinity, i.e., for every $\epsilon > 0$ there exists a finite subset $S \subseteq G/H$ such that for every $g \in G$ with $gH \notin S$ we have $||f(g)|| \leq \epsilon$. The norm is the supremum norm. Given $g \in G$ and such a function f, define $g \cdot f$ to be the function sending $g' \in G$ to $f(g^{-1}g')$.

Note that the left FG-module $FG \otimes_{FH} A$, which is the algebraic induction of A viewed as FH-module, embeds as a dense FG-submodule into i_*A by sending $g \otimes a$ to the function which maps gh to $h^{-1}a$ for $h \in H$ and $g' \in G$ with $g'H \neq gH$ to zero. In other words, we can think of $FG \otimes_{FH} A$ as the set of elements $f \in i_*A$ such that $\{gH \in G/H \mid f(g) \neq 0\}$ is finite. In contrast to modules over group rings induction i_* and restriction i^* do not form an adjoint pair (i_*, i^*) for equivariant C^*-algebras as the following exercise illustrates.

Exercise 9.62. Let $i: \{1\} \to G$ be the inclusion of the trivial group into an infinite discrete group G. Show that $\text{hom}_G(i_*F, F)$ and $\text{hom}_{\{1\}}(F, i^*F)$ are not isomorphic, where $F = \mathbb{R}, \mathbb{C}$ denotes both the obvious $\{1\}$-C^*-algebra and the obvious G-C^*-algebra with trivial G-action.

If X is a proper H-CW-complex, then $G \times_H X$ is a proper G-CW-complex and we obtain an isomorphism of G-C^*-algebras $i_*C_0(X) \xrightarrow{\cong} C_0(G \times_H X)$ which sends $f \in i_*C_0(X)$ to the function $G \times_H X \to F, (g, x) \mapsto f(g)(x)$. Given a H-C^*-algebra A and a H-C^*-algebra B, there is a natural induction homomorphism

$$i_*: KK^*_H(A, B) \to KK^G(i_*A, i_*B).$$

It is compatible with the equivariant Kasparov’s intersection product respecting the units. If $j: G \to K$ is an inclusion, we get $(j \circ i)_* = j_* \circ i_*$. There are descent homomorphisms

$$j^G_*: KK^G(A, B) \to KK_*(A \rtimes_r G, B \rtimes_r G);$$

$$j^G_r: KK^G(A, \mathbb{C}) \to KK_*(A \rtimes_r G, \mathbb{C});$$

$$j^G_m: KK^G(A, B) \to KK_*(A \rtimes_m G, B \rtimes_m G).$$

The dual of the Green-Julg Theorem says that [9.65] is an isomorphism. The descent homomorphisms are natural and compatible with Kasparov’s intersection products respecting the units.
Define the *equivariant complex K-homology* of a pair of proper G-CW-complexes (X, A) with coefficients in the complex G-C^*-algebra B by

\[(9.67) \quad K^G_n(X, A; B) := \text{colim}_{C \subseteq X} K^G_n(C_0(C, C \cap A), B),\]

where the colimit is taken over the directed system of cocompact proper G-CW-subcomplexes $C \subseteq X$, directed by inclusion, and $C_0(C, C \cap A)$ is the G-C^*-algebra of continuous functions $C \to \mathbb{C}$ which vanish on $C \cap A$ and at infinity. This group is often denoted by $RK_n(X, A; B)$ in the literature and called *equivariant K-homology with compact support* but from a topologists point of view it is better to call it equivariant K-homology in view of its description in terms of spectra, see Section 11.4. If B is \mathbb{C} with the trivial G-action, we just write $K^G_n(X, A)$ for $K^G_n(X, A; \mathbb{C})$, and this is precisely the \mathbb{Z}-graded abelian group which we have mentioned already in Subsection 9.2.3 and will be constructed in terms of spectra in Section 11.4.

Next we explain the equivariant Chern character for equivariant complex K-homology. Denote for a proper G-CW-complex X by $F(X)$ the set of all subgroups $H \subseteq G$, for which $X^H \neq \emptyset$, and by

\[(9.68) \quad \Lambda^G(X) := \mathbb{Z}\left[\frac{1}{F(X)}\right]\]

the ring $\mathbb{Z} \subset \Lambda^G(X) \subset A^G$ obtained from \mathbb{Z} by inverting the orders of all subgroups $H \in F(X)$. Denote by $J^G(X)$ the set of conjugacy classes (C) of finite cyclic subgroups $C \subseteq G$ for which X^C is non-empty. Let $C \subseteq G$ be a finite cyclic subgroup. Let $C_G C$ be the centralizer and $N_G C$ be the normalizer of $C \subseteq G$. Let $W_G C$ be the quotient $N_G C/C_G C$. For a specific idempotent $\theta_C \in \Lambda^C \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{Q}(C)$ defined in 586 Section 3 the cokernel of

\[\bigoplus_{D \subset C, D \neq C} \text{ind}_D^C : \bigoplus_{D \subset C, D \neq C} \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(D) \to \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(C)\]

is isomorphic to the image of the idempotent endomorphism

\[\theta_C : \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(C) \to \mathbb{Z}\left[\frac{1}{|C|}\right] \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(C).\]

The element $\theta_C \in \Lambda^C \otimes_{\mathbb{Z}} \text{Rep}_{\mathbb{Q}}(C)$ is uniquely determined by the property that its character sends a generator of C to 1 and all other elements in C to 0.

The next theorem is taken from 586 Theorem 0.7.

Theorem 9.69 (Equivariant Chern character for equivariant K-homology). Let X be a proper G-CW-complex. Put $\Lambda = \Lambda^G(X)$ and $J = J^G(X)$. Let $\text{im}(\theta_C) \subseteq \Lambda \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(C)$ be the image of $\theta_C : \Lambda \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(C) \to \Lambda \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{C}(C)$.
Then there is for $n \in \mathbb{Z}$ a natural isomorphism

$$
\text{ch}^G_p(X): \bigoplus_{(C) \in J^G} \mathbb{A} \otimes \mathbb{Z} K_n(C_G \backslash X^C) \otimes_{A[W_GC]} \text{im}(\theta_C) \xrightarrow{\cong} \mathbb{A} \otimes \mathbb{Z} K^n_G(X).
$$

Note that the isomorphism appearing in Theorem 9.69 exists already over \mathbb{A}, one does not have to pass to \mathbb{Q} or \mathbb{C}. This will be important when we will deal with the Modified Trace Conjecture in Subsection 13.8.1.

Example 9.70. In the special case, where G is finite, X is the one-point-space $\{\ast\}$ and $n = 0$, the equivariant Chern character appearing in Theorem 9.69 reduces to an isomorphism

$$
\bigoplus_{(C) \in J^G} \mathbb{Z} \left[\frac{1}{|G|} \right] \otimes_{\mathbb{Z}[\frac{1}{|G|}]} \text{im}(\theta_C) \xrightarrow{\cong} \mathbb{Z} \left[\frac{1}{|G|} \right] \otimes \mathbb{Z} \text{Rep}_C(G).
$$

where J^G is the set of conjugacy classes (C) of cyclic subgroups $C \subset G$. This is a strong version of the well-known theorem of Artin that the map induced by induction

$$
\bigoplus_{(C) \in J^G} \mathbb{Q} \otimes \mathbb{Z} \text{Rep}_C(C) \rightarrow \mathbb{Q} \otimes \mathbb{Z} \text{Rep}_C(G)
$$

is surjective for any finite group G.

Exercise 9.71. Let p be an odd prime and let V be an orthogonal \mathbb{Z}/p-representation of dimension d such that $V^\mathbb{Z}/p \neq \{0\}$. Denote by SV the \mathbb{Z}/p-CW-complex consisting of elements $v \in V$ of norm 1. Show

$$
\mathbb{Z}[1/p] \otimes \mathbb{Z} K_n^{\mathbb{Z}/p}(SV) \cong \begin{cases}
\mathbb{Z}[1/p]^p & \text{if } d \text{ is even}; \\
\mathbb{Z}[1/p]^{2p} & \text{if } d \text{ is odd and } n \text{ is even}; \\
0 & \text{if } d \text{ is odd and } n \text{ is even}.
\end{cases}
$$

Analogously to the complex case one defines equivariant real K-homology $KO^G(X, A; B)$ of a pair of proper G-CW-complexes (X, A) with coefficients in the real G-\ast-algebra B. We will abbreviate $KO^G(X, A) := KO^G_0(X, A; \mathbb{R})$, where \mathbb{R} carries the trivial G-action, This is precisely the \mathbb{Z}-graded abelian group which we will be constructed in terms of spectra in Section 11.4.

For discussions of universal coefficient theorems for equivariant K-theory see [628, 782, 783].

Further information about equivariant KK-theory can be found for instance in [124, Section 20], [507], and [863].
9.7 Comparing Algebraic and Topological K-theory of C^\ast-Algebras

Let A be a C^\ast-algebra. Then $K_n(A)$ denotes in most cases topological K-theory, but it can also mean the algebraic K-theory of A considered just as a ring. To avoid this ambiguity, we will use in this Section 9.7 the superscripts top and alg to make clear what we mean.

There is for any C^\ast-algebra over \mathbb{R} or \mathbb{C} a canonical map of spectra

$$t(A): K^\text{alg}(A) \to K^\text{top}(A)$$

from the non-connective algebraic K-theory spectrum of A just considered as ring to the topological K-theory spectrum associated to the C^\ast-algebra A, see [777, Theorem 4 on page 851]. It induces homomorphisms of abelian groups for all $n \in \mathbb{Z}$

$$t_n(A) = K_n(t(A)): K_n^\text{alg}(A) \to K_n^\text{top}(A).$$

It is always an isomorphism for $n = 0$, but in general far from being a bijection as illustrated by the following

Exercise 9.74. Let X be a finite non-empty CW-complex. Prove that the comparison map $K_1(C(X)) \to K_1^\text{top}(C(X))$ is never injective.

The situation is different if A is stable or if one uses coefficients in \mathbb{Z}/k. Namely, the following result is proved in [849, Theorem 10.9] over \mathbb{C} and $n \geq 1$, but holds in the more general form below by [777, Theorem 19 on page 863], see also Higson [429].

Theorem 9.75 (Karoubi’s Conjecture). Karoubi’s Conjecture is true, i.e., for any stable C^\ast-algebra A over \mathbb{R} or \mathbb{C} the canonical map t of (9.72) is weak homotopy equivalence i.e., the maps t_n of (9.73) are bijective for $n \in \mathbb{Z}$.

Given an integer $k \geq 2$, we have introduced $K_n^\text{alg}(A; \mathbb{Z}/k)$ in Section 6.4. The analogous construction works for topological K-theory and there is the analogue of (9.73), a natural homomorphisms

$$t_n(A; \mathbb{Z}/k): K_n^\text{alg}(A; \mathbb{Z}/k) \to K_n^\text{top}(A; \mathbb{Z}/k).$$

We mention the following conjecture of Rosenberg [773, Conjecture 4.1] or [777, Conjecture 26 on page 869].

Conjecture 9.77 (Comparing algebraic and topological K-theory with coefficients for C^\ast-algebras). If A is a C^\ast-algebra and $k \geq 2$ an integer, then the comparison map
$K_n^{alg}(A; \mathbb{Z}/k) \rightarrow K_n^{top}(A; \mathbb{Z}/k)$

is bijective for $n \geq 0$.

The map $K_n^{alg}(A; \mathbb{Z}/k) \rightarrow K_n^{top}(A; \mathbb{Z}/k)$ appearing in Conjecture 9.77 is known to be bijective for $n = 1$ and to be surjective for $n \geq 1$ by [494, Theorem 2.5]. Conjecture 9.77 is true if A is stable by Theorem 9.75, or if A is commutative, see [355, 733], [773, Theorem 4.2], and [777, Theorem 27 on page 870].

A discussion about K_i-regularity and the homotopy invariance of $K_n^{alg}(A)$ for $n \leq -1$ is discussed for C^*-algebras in [777, Section 3.3.4 on page 865ff].

More information about the relation between algebraic and topological K-theory can be found in [231].

9.8 Comparing Algebraic L-Theory and Topological K-theory of C^*-Algebras

Whereas the algebraic and the topological K-theory of a C^*-algebra are very different in general, the topological K-theory of a C^* algebra is closely related to the L-theory of the C^*-algebra just considered as ring with involution. This is illustrated by the following result.

(i) A generalized signature defines for any unital C^*-algebra over \mathbb{R} or \mathbb{C} a natural isomorphism

$$L_0^0(A) \cong K_0(A);$$

(ii) Let A be a unital C^*-algebra over \mathbb{C}. Then there is for all $n \in \mathbb{Z}$ a natural isomorphism

$$K_n(A) \cong L_n^p(A);$$

(iii) Let A be a unital C^*-algebra over \mathbb{R}. Then there is a natural homomorphism

$$K_1(A) \cong L_1^h(A)$$

which is surjective and whose kernel has at most order two;

(iv) For any unital C^*-algebra over \mathbb{R} or \mathbb{C} there are natural isomorphisms

$$K_n(A)[1/2] \cong L_n^p(A)[1/2].$$

Proof. See [776, Theorem 1.6].

See [647, Theorem 0.2], [661, 776, Theorem 1.8].

See [776, Theorem 1.9].
9.9 Topological K-Theory for Finite Groups

Note that $\mathbb{C}G = l^1(G) = C^*_r(G) = C^*_{\text{max}}(G)$ holds for a finite group, and analogous for the real versions.

Theorem 9.79 (Topological K-theory of the C^*-algebra of finite groups). Let G be a finite group.

(i) We have

$$K_n(C^*_r(G)) \cong \begin{cases} R(G) \cong \mathbb{Z}^{r_c(G)} & \text{for } n \text{ even;} \\ 0 & \text{for } n \text{ odd,} \end{cases}$$

where $r_c(G)$ is the number of irreducible complex G-representations;

(ii) There is an isomorphism of topological K-groups

$$KO_n(C^*_r(G;\mathbb{R})) \cong KO_n(\mathbb{R})^{r_R(G;\mathbb{R})} \times KO_n(\mathbb{C})^{r_R(G;\mathbb{C})} \times KO_n(\mathbb{H})^{r_R(G;\mathbb{H})},$$

where $r_R(G;\mathbb{R})$, $r_R(G;\mathbb{C})$, or $r_R(G;\mathbb{H})$ is the number of irreducible real G-representations real, complex, or quaternionic type.

Moreover $KO_n(\mathbb{C}) = K_n(\mathbb{C})$ is 2-periodic with values \mathbb{Z}, 0 for $n = 0, 1$.

$KO_n(\mathbb{R}) = K_n(\mathbb{R})$ is 8-periodic with values \mathbb{Z}, $\mathbb{Z}/2$, $\mathbb{Z}/2$, 0, \mathbb{Z}, 0, 0 for $n = 0, 1, \ldots, 7$ and $KO_n(\mathbb{H}) = KO_{n+4}(\mathbb{R})$ for $n \in \mathbb{Z}$.

Proof. One gets isomorphisms of C^*-algebras

$$C^*_r(G) \cong \prod_{j=1}^{r_c(G)} M_{n_j}(\mathbb{C})$$

and

$$C^*_r(G;\mathbb{R}) \cong \prod_{i=1}^{r_R(G;\mathbb{R})} M_{m_i}(\mathbb{R}) \times \prod_{i=1}^{r_R(G;\mathbb{C})} M_{n_i}(\mathbb{C}) \times \prod_{i=1}^{r_R(G;\mathbb{H})} M_{p_i}(\mathbb{H})$$

from [823] Theorem 7 on page 19, Corollary 2 on page 96, page 102, page106].

Now the claim follows from Morita invariance and the well-known values for $K_n(\mathbb{R})$, $K_n(\mathbb{C})$ and $K_n(\mathbb{H})$, see for instance [856] page 216.\qed
9.10 Notes

Bivariant algebraic K-theory is investigated in [233, 376]. More information about index theory and non-commutative geometry can be found for instance in [221, 384].

last edited on 05.02.2022
last compiled on March 21, 2022
name of texfile: ic
Chapter 10
Classifying Spaces for Families

10.1 Introduction

This chapter is devoted to classifying spaces for families of subgroups. They are key input in the general formulations of the Baum-Connes Conjecture and the Farrell-Jones Conjecture.

If one only wants to understand these conjectures, one only needs to know the following:

• A family of subgroups \mathcal{F} is a set of subgroups of G, closed under conjugation and passing to subgroups;
• A G-CW-model for the classifying space $E_{\mathcal{F}}(G)$ is a G-CW-complex whose isotropy groups belong to \mathcal{F} and whose H-fixed point set is contractible for every $H \in \mathcal{F}$;
• Such a G-CW-model always exists, and two such G-CW-models are G-homotopy equivalent.

Only if one is interested in concrete computations, it is very useful to know situations where one can find small G-CW-models for specific G and \mathcal{F}.

Nevertheless, we give much more information about classifying spaces for families, since they are interesting in their own right and are important tools for investigating groups. After we have explained the basic G-homotopy theoretic aspects, we pass to the classifying space $E_G = E_{\mathcal{CM}}(G)$ for proper action which is the same as the classifying space for the family \mathcal{CM} of compact subgroups. There are many prominent groups for which the are nice geometric models for EG. The G-CW-complex EG is relevant for the Baum-Connes Conjecture. For the Farrell-Jones Conjecture we also have to deal with $EG = E_{\mathcal{VCY}}(G)$ for the family \mathcal{VCY} of virtually cyclic subgroups which is much harder to analyze. We systematically address the question whether there are finite or finite dimensional G-CW-models and what the minimal dimension of such G-CW-models for $E_{\mathcal{F}}(G)$ are for $\mathcal{F} = \mathcal{FIN}, \mathcal{VCY}$.

10.2 Definition and Basic Properties of G-CW-Complexes

Remark 10.1 (Compactly generated spaces). In the sequel we will work in the category of compactly generated spaces. This convenient category is
explained in detail in [619, Appendix A], [840] and [916, I.4]. A reader may ignore this technical point without harm, but we nevertheless give a short explanation.

A Hausdorff space X is called *compactly generated* if a subset $A \subseteq X$ is closed if and only if $A \cap K$ is closed for every compact subset $K \subseteq X$. Given a topological space X, let $k(X)$ be the compactly generated topological space with the same underlying set as X and the topology for which a subset $A \subseteq X$ is closed if and only if for every compact subset $K \subseteq X$ the intersection $A \cap K$ is closed in the given topology on X. The identity induces a continuous map $k(X) \to X$ which is a homeomorphism if and only if X is compactly generated. The spaces X and $k(X)$ have the same compact subsets. Locally compact Hausdorff spaces and every Hausdorff space which satisfies the first axiom of countability are compactly generated. In particular metrizable spaces are compactly generated.

Working in the category of compactly generated spaces means that one only considers compactly generated spaces and whenever a topological construction such as the cartesian product or the mapping space leads out of this category, one retopologizes the result as described above to get a compactly generated space. The advantage is for example that in the category of compactly generated spaces the exponential map $\text{map}(X \times Y, Z) \to \text{map}(X, \text{map}(Y, Z))$ is always a homeomorphism, for an identification $p: X \to Y$ the map $p \times \text{id}_Z: X \times Z \to Y \times Z$ is always an identification and for a filtration by closed subspaces $X_1 \subset X_2 \subseteq \ldots \subseteq X$ such that X is the colimit $\text{colim}_{n \to \infty} X_n$, we always get $X \times Y = \text{colim}_{n \to \infty} (X_n \times Y)$.

One may also work in the category of weak Hausdorff spaces, see for instance Strickland [845].

In the sequel G is a topologically group (which is compactly generated). Subgroups are understood to be closed.

Definition 10.2 (G-CW-complex). A G-CW-complex X is a G-space together with a G-invariant filtration
\[
\emptyset = X_{-1} \subseteq X_0 \subset X_1 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \geq 0} X_n = X
\]
such that X carries the colimit topology with respect to this filtration (i.e., a set $C \subseteq X$ is closed if and only if $C \cap X_n$ is closed in X_n for all $n \geq 0$) and X_n is obtained from X_{n-1} for each $n \geq 0$ by attaching equivariant n-dimensional cells, i.e., there exists a G-pushout
\[
\begin{array}{ccc}
\coprod_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\coprod_{i \in I_n} q^n} & X_{n-1} \\
\downarrow & & \downarrow \\
\coprod_{i \in I_n} G/H_i \times D^n & \xrightarrow{\coprod_{i \in I_n} Q^n} & X_n.
\end{array}
\]
The space X_n is called the n-skeleton of X. Note that only the filtration by skeletons belongs to the G-CW-structure but not the G-pushouts, only their existence is required. An equivariant open n-dimensional cell is a G-component of $X_n - X_{n-1}$, i.e., the preimage of a path component of $G \setminus (X_n - X_{n-1})$. The closure of an equivariant open n-dimensional cell is called an equivariant closed n-dimensional cell. If one has chosen the G-pushouts in Definition 10.2 then the equivariant open n-dimensional cells are the G-subspaces $Q_i(G/H_i \times (D^n - S^{n-1}))$ and the equivariant closed n-dimensional cells are the G-subspaces $Q_i(G/H_i \times D^n)$.

It is obvious what a pair of G-CW-complexes is.

Remark 10.3 (G-CW-complexes versus CW-complexes with G-action). Suppose that G is discrete. A G-CW-complex X is the same as a CW-complex X with G-action such that for each open cell $e \subseteq X$ and each $g \in G$ with $ge \cap e \neq \emptyset$ left multiplication with g induces the identity on e. The definition of a G-CW-complex appearing in Definition 10.2 has the advantage that it makes also sense for topological groups.

Example 10.4 (Simplicial actions). Let X be a simplicial complex on which the group G acts by simplicial automorphisms. Then G acts also on the barycentric subdivision X' by simplicial automorphisms. The filtration of the barycentric subdivision X' by the simplicial n-skeleton yields the structure of a G-CW-complex what is not necessarily true for X. This becomes clear if one considers the standard 2-simplex with the obvious actions of the symmetric group S_3 given by permuting the three vertices.

A map $f : X \to Y$ between G-CW-complexes is called cellular if $f(X_n) \subseteq Y_n$ holds for all $n \geq 0$.

For a subgroup $H \subseteq G$ denote by $N_G H = \{ g \in G \mid gHg^{-1} = H \}$ its normalizer and by $W_G H = N_G H/H$ its Weyl group.

Lemma 10.5.

(i) Let X be a G-CW-complex and let Y be an H-CW-complex. Then $X \times Y$ with the product $G \times H$-action is a $G \times H$-CW-complex;

(ii) Let X be a G-CW-complex and let $H \subseteq G$ be a subgroup. Suppose that G is discrete or that H is open and closed in G. Then X viewed as an H-space by restriction inherits the structure of an H-CW-complex;

(iii) Consider a G-pushout

\[
\begin{array}{ccc}
X_0 & \xrightarrow{i_1} & X_1 \\
\downarrow{i_2} & & \downarrow{j_1} \\
X_2 & \xrightarrow{j_2} & X
\end{array}
\]

Suppose that X_i for $i = 0, 1, 2$ is a G-CW-complex and that i_1 is cellular and i_2 is the inclusion of a pair of G-CW-complexes. Then X inherits the structure of a G-CW-complex;
(iv) Let \(X \) be a \(G \)-\(CW \)-complex and let \(H \subseteq G \) be a subgroup. Then \(X^H \) viewed as an \(W_G H \)-space inherits the structure of a \(W_G H \)-\(CW \)-complex provided that \(G \) is discrete, or that \(K \subseteq G \) is open and closed, or that \(G \) is a Lie group and \(H \subseteq G \) is compact.

(v) Let \(X \) be a \(G \)-\(CW \)-complex and let \(H \subseteq G \) be a normal subgroup. Then \(X/H \) viewed as an \(G/H \)-space inherits the structure of a \(G/H \)-\(CW \)-complex.

Proof. The skeletal filtration on \(X \times Y \) is given by

\[
(X \times Y)_n = \bigcup_{p+q=n} X_p \times Y_q.
\]

To ensure that \(X \times Y \) is the colimit \(\operatorname{colim}_{n \to \infty} (X \times Y)_n \) one needs to work in the category of compactly generated spaces.

(ii) Use the same filtration on \(X \) viewed as an \(H \)-space as for the \(G \)-\(CW \)-complex \(X \).

(iii) Define the filtration on \(X^H \) given by

\[
X_n = j_1((X_1)_n) \cup j_2((X_2)_n).
\]

(iv) The \(G \)-action on \(X \) induces a \(N_G H \)-action on \(X^H \) which in turn passes to a \(W_G H \)-action on \(X^H \). Take the \(n \)-skeleton of \(X^H \) to be \((X_n)^H \). Use the fact that for every \(K \subseteq G \) the space \((G/K)^H \) is a disjoint union of \(W_G H \)-orbits what is obvious if \(G \) is discrete, or if \(K \subseteq G \) is open and closed, and follows for a Lie group \(G \) and compact \(K \subseteq G \) for instance from [579, Theorem 1.33 on page 23].

(v) The \(n \)-skeleton of \(X/H \) is the image of \(X_n \) under the canonical projection \(X \to X/H \). \(\square \)

Exercise 10.6. Let \(p: \tilde{X} \to X \) be the universal covering of the connected \(CW \)-complex \(X \) with fundamental group \(\pi \). Show that the \(\pi \)-space \(\tilde{X} \) inherits the structure of a \(\pi \)-\(CW \)-complex.

Exercise 10.7. Let \(p \) be a prime number and let \(X \) be a compact \(\mathbb{Z}/p \)-\(CW \)-complex. Show that \(X \) and \(X^{\mathbb{Z}/p} \) are compact \(CW \)-complexes and their Euler characteristics satisfy

\[
\chi(X) \equiv \chi(X^{\mathbb{Z}/p}) \mod p.
\]

Definition 10.8 (Type of a \(G \)-\(CW \)-complex). A \(G \)-\(CW \)-complex is called **finite** if it is built by finitely many equivariant cells.

A \(G \)-\(CW \)-complex is called **of finite type** if each \(n \)-skeleton is a finite \(G \)-\(CW \)-complex.
A G-CW-complex is called of dimension $\leq n$ if $X = X_n$. It is called n-dimensional or of dimension n if $X = X_n$ and $X \neq X_{n-1}$ holds. It is called finite dimensional if it is of dimension $\leq n$ for some integer n.

Remark 10.9 (Slice Theorem). A Slice Theorem for G-CW-complexes is proved in [619, Theorem 7.1]. It says roughly, that for a G-CW-complex X we can find for any $x \in X$ an arbitrary small G_x-subspace S_x and an arbitrary small open G-invariant neighborhood U of x such that the closure of S_x is contained in U, the inclusion $\{x\} \to S_x$ is a G_x-homotopy equivalence and the canonical G-map

$$G \times_{G_x} S_x \to U, \quad (g, s) \mapsto g \cdot s$$

is a G-homeomorphism.

10.3 Proper G-Spaces

Definition 10.10 (Proper G-space). A G-space X is called proper if for each pair of points x and y in X there are open neighbourhoods V_x of x and W_y of y in X such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of G is compact.

Lemma 10.11. A G-CW-complex X is proper if and only if all its isotropy groups are compact.

Proof. This is shown in [579, Theorem 1.23 on page 18].

In particular a free G-CW-complex is always proper. However, not every free G-space is proper.

Exercise 10.12. Find a free compact \mathbb{Z}-space which is not proper.

Remark 10.13 (Lie Groups acting properly and smoothly on manifolds). Let G be a Lie group. If M is a (smooth) proper G-manifold, then an equivariant smooth triangulation induces a G-CW-structure on M. For the proof and for equivariant smooth triangulations we refer to [410, Theorem I and II].

Exercise 10.14. Let p be an odd prime. Show that there is no smooth free \mathbb{Z}/p-action on an even-dimensional sphere.
10.4 Maps between G-CW-Complexes

Theorem 10.15 (Equivariant cellular approximation Theorem). Let (X, A) be a pair of G-CW-complexes and let Y be a G-CW-complex. Let $f : X \to Y$ be a G-map such that $f|_A : A \to Z$ is cellular.

Then there exists a cellular G-map $f' : X \to Y$ such that $f|_A = f'|_A$ and f and f' are G-homotopic relative A.

Proof. Since $X = \text{colim}_{n \to \infty} X_n$ by definition, it suffices to construct inductively for $n = -1, 0, 1, 2, \ldots$ G-maps

$$h_n : X_n \times [0, 1] \cup X \times \{0\} \to Y$$

such that $h_n(x, 0) = f(x)$ for every $x \in X_n$ and $h_n(x, t) = h_{n-1}(x, t)$ for every $x \in X_{n-1}$ and $t \in [0, 1]$ hold and the map $f'_n : X \to Y$ sending $x \in X_n$ to $h_n(x, 1)$ is cellular. The induction beginning $n = -1$ is trivial, define $h_{-1} : A \times [0, 1] \cup X \times \{0\} \to Y$ by sending (x, t) to $f(x)$. The induction step from $(n - 1)$ to n is done as follows. Choose a G-pushout

$$\begin{array}{ccc}
\bigcup_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\bigcup_{i \in I_n} q_i} & X_{n-1} \cup A \\
\downarrow & & \downarrow \\
\bigcup_{i \in I_n} G/H_i \times D^n & \xrightarrow{\bigcup_{i \in I_n} Q_i} & X_n \cup A.
\end{array}$$

It yields the G-pushout

$$\begin{array}{ccc}
\bigcup_{i \in I_n} G/H_i \times (S^{n-1} \times [0, 1] \cup D^n \times \{0\}) & \xrightarrow{\bigcup_{i \in I_n} q'_i} & X_{n-1} \times [0, 1] \cup X \times \{0\} \\
\downarrow & & \downarrow \\
\bigcup_{i \in I_n} G/H_i \times D^n \times [0, 1] & \xrightarrow{\bigcup_{i \in I_n} Q'_i} & X_n \times [0, 1] \cup X \times \{0\}.
\end{array}$$

Because of the G-pushout property it suffices to explain for every $i \in I_n$ how to extend the composite

$$\phi_i : G/H_i \times (S^{n-1} \times [0, 1] \cup D^n \times \{0\}) \xrightarrow{q'_i} X_{n-1} \times [0, 1] \cup X \times \{0\} \xrightarrow{h_{n-1}}$$

to a G-map

$$\Phi_i : G/H_i \times D^n \times [0, 1] \to Y$$

such that $\Phi_i(G/H_i \times D^n \times \{1\}) \subseteq Y_n$. This is the same as the non-equivariant problem to extend the map

$$\phi'_i : S^{n-1} \times [0, 1] \cup D^n \times \{0\} \to Y^H$$
obtained from ϕ_i by restriction to $\{eH_i\} \times (S^{n-1} \times [0,1] \cup D^n \times \{0\})$ to a map

$$\Phi'_i : D^n \times [0,1] \to Y^H$$

such that $\Phi'_i(D^n \times \{1\}) \subseteq Y_n$, since we can then define $\Phi_i(gH, x, t) := g \cdot \Phi'_i(x, t)$. It is not hard to check that this non-equivariant problem can be solved if the inclusion $Y^H_{m-1} \to Y^H_m$ is m-connected for every $m \geq 0$. Since we have the pushout of spaces

$$\coprod_{i \in I_m} G/H^H_i \times S^{m-1} \coprod_{i \in I_m} q^m_{Y_{m-1}} \to \coprod_{i \in I_n} G/H^H_i \times D^n \coprod_{i \in I_n} q^m_{Y_n}$$

the inclusion $G/H^H_i \times S^{m-1} \to G/H^H_i \times D^n$ is m-connected and $G/H^H_i \times S^{m-1}$ is a deformation retract of an open neighborhood in $G/H^H_i \times D^n$, this follows from Blakers-Massey excision theorem, see [867, Proposition 6.4.2 on page 133].

A map $f : X \to Y$ of spaces is called a weak homotopy equivalence if f induces a bijection $\pi_0(f) : \pi_0(X) \to \pi_0(Y)$ and for every $x \in X$ and $n \geq 1$ an isomorphism $\pi_n(f, x) : \pi_n(X, x) \to \pi_n(Y, f(x))$. A G-map $f : X \to Y$ of G-spaces is called a weak G-homotopy equivalence if $f^H : X^H \to Y^H$ is a weak equivalence of spaces for all subgroups $H \subseteq G$.

Theorem 10.16 (Equivariant Whitehead Theorem).

(i) Let $f : Y \to Z$ be a G-map between G-spaces. Then f is a weak G-homotopy equivalence if for every G-CW-complex X the map induced by f between the G-homotopy classes of G-maps

$$f_* : [X, Y]^G \to [X, Z]^G, \quad [h] \mapsto [f \circ h]$$

is bijective;

(ii) Let $f : Y \to Z$ be a G-map between G-CW-complexes. Then the following assertions are equivalent:

(a) f is a G-homotopy equivalence;
(b) f is a weak G-homotopy equivalence;
(c) For every $H \subseteq G$ which occurs as isotropy group of some point in X or Y, the map $f^H : X^H \to Y^H$ is a weak homotopy equivalence of spaces.

Proof. See [869 II.2.6], [579 Theorem 2.4 on page 36].

Exercise 10.17. Let Y be a G-space. A G-CW-approximation of Y is a G-CW-complex X together with a weak G-homotopy equivalence $f : X \to Y$. Show that two G-CW-approximations of Y are G-homotopy equivalent.
10.5 Definition and Basic Properties of Classifying Spaces for Families

Recall that we have defined the notion of a family of subgroups of a group G in Definition 2.52, namely, to be a set of subgroups of G which is closed under conjugation with elements of G and under passing to subgroups, and listed some examples in Notation 2.53, for instance the family \mathcal{TR} consisting of the trivial subgroup, the family \mathcal{FIN} of finite subgroups, the family \mathcal{VCY} of virtually cyclic subgroups, and the family \mathcal{ALL} of all subgroups. Actually one could replace the condition that \mathcal{F} is closed under taking subgroups by the weaker condition that the intersection of finitely many elements of \mathcal{F} belongs to \mathcal{F}. Then the set of compact open subgroups is a family.

Definition 10.18 (Classifying G-CW-complex for a family of subgroups). Let \mathcal{F} be a family of subgroups of G. A model $E_{\mathcal{F}}(G)$ for the classifying G-CW-complex for the family \mathcal{F} of subgroups of G or classifying spaces for the family \mathcal{F} of subgroups of G is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

(i) All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
(ii) For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to X$.

We abbreviate $E_G := E_{\mathcal{COM}}(G)$ and call it the universal G-CW-complex for proper G-actions.

If G is discrete, we have $E_G := E_{\mathcal{FIN}}(G)$.

In other words, $E_{\mathcal{F}}(G)$ is a terminal object in the G-homotopy category of G-CW-complexes, whose isotropy groups belong to \mathcal{F}. In particular two models for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent and for two families $\mathcal{F}_0 \subseteq \mathcal{F}_1$ there is up to G-homotopy precisely one G-map $E_{\mathcal{F}_0}(G) \to E_{\mathcal{F}_1}(G)$.

Theorem 10.19 (Homotopy characterization of $E_{\mathcal{F}}(G)$). Let \mathcal{F} be a family of subgroups.

(i) There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F};
(ii) A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible, i.e., X^H is non-empty and path connected and $\pi_n(X^H, y)$ vanishes for all $n \geq 1$ and one (and hence all) basepoints $y \in X^H$.

Proof. (i) A model can be obtained by attaching equivariant cells $G/H \times D^n$ for all $H \in \mathcal{F}$ to make the H-fixed point sets weakly contractible. See for instance [579, Proposition 2.3 on page 35]. There are also functorial constructions for discrete G generalizing the bar construction, see [252, Section 3 and Section 7].

(ii) Suppose that the G-CW-complex X is a model for $E_{\mathcal{F}}(G)$. Let Y be any
Let $H \in F$. Then there is up to G-homotopy precisely one G-map $G/H \times \tilde{Y} \to \tilde{X}$. Hence there is up to homotopy precisely one map $\tilde{Y} \to \tilde{X}^H$. This is equivalent to the condition that \tilde{X}^H is weakly contractible.

Suppose that \tilde{X}^H is weakly contractible for every $H \in F$. Let (\tilde{Y}, \tilde{B}) be a G-CW-pair such that the isotropy group of any point in $\tilde{Y} \setminus \tilde{B}$ belongs to F, and let $f_{-1} : \tilde{B} \to \tilde{X}$ be any G-map. We next show the existence of a G-map $f : \tilde{Y} \to \tilde{X}$ extending f_{-1}. Obviously this implies that \tilde{X} is a model for $E_{\mathcal{F}}(G)$. Since \tilde{Y} is the colimit over the skeletons \tilde{Y}_n for $n \geq -1$ and $\tilde{Y}_{-1} = \tilde{B}$, it suffices to prove for $n \geq 0$ that for a given G-map $f_{n-1} : \tilde{Y}_{n-1} \to \tilde{X}$ there exists a G-map $f_n : \tilde{Y}_n \to \tilde{X}$ extending f_{n-1}. Recall that by definition there exists a G-pushout

\[
\begin{array}{ccc}
\prod_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\coprod_{i \in I_n} q_i^n} & \tilde{Y}_{n-1} \\
\downarrow & & \downarrow \\
\prod_{i \in I_n} G/H_i \times D^n & \xrightarrow{\coprod_{i \in I_n} q_i^n} & \tilde{Y}_n
\end{array}
\]

such that each H_i belong to F. Because of the universal property of a G-pushout it remains to show for every $H \in F$ that every G-map $u : G/H \times S^{n-1} \to X$ can be extended to a G-map $v : G/H \times D^n \to X$. This is equivalent to showing that every map $u' : S^{n-1} \to X^H$ can be extended to a map $v' : D^n \to X^H$. This follows from the assumption that X^H is weakly contractible.

A model for $E_{\mathcal{ALL}}(G)$ is G/G. A model for $E_{\mathcal{FR}}(G)$ is the same as a model for EG, i.e., the universal covering of BG, or, equivalently, the total space of the universal G-principal bundle. In Section 10.6 we will give many interesting geometric models for classifying spaces $EG = E_{\mathcal{FIN}}(G)$.

Exercise 10.20. Show for a discrete group G that there exists a zero-dimensional model for $E_{\mathcal{FR}}(G)$ if and only if $G \in F$. Is there a non-trivial connected Lie group L with a 0-dimensional model for EL?

10.6 Special Models for the Classifying Space of Proper Actions

In this section we present some interesting geometric models for the classifying space of proper actions EG for some discrete groups. These models will often be small in the sense that they are finite, of finite type or finite dimensional. We will restrict ourselves to discrete groups G in this section. More information, also for non-discrete groups, can be found for instance in [97, 590].
10.6.1 Simplicial Model

Let $P_\infty(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k+1)$-tuples (g_0, g_1, \ldots, g_k) of elements g_i in G. There is an obvious simplicial G-action of G on $P_\infty(G)$ coming from the group structure. We get for instance from [I, Example 2.6].

Theorem 10.21 (Simplicial model). $P_\infty(G)$ is a model for EG.

10.6.2 Operator Theoretic Model

Let $C_0(G)$ be the Banach space of complex valued functions of G with finite support, where the Banach structure comes from the supremum norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$. Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Let X_G be the space

$$X_G = \left\{ f : G \to [0, 1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem 10.22 (Operator theoretic model). Both $PC_0(G)$ and X_G are G-homotopy equivalent to a G-CW-model for EG.

Proof. See [I, Theorem 2.4] and [97, page 248]. □

Remark 10.23 (Comparing $P_\infty(G)$ and X_G). The simplicial G-complex $P_\infty(G)$ of Theorem 10.21 and the G-space X_G of Theorem 10.22 have the same underlying sets but in general they have different topologies. The identity map induces a (continuous) G-map $P_\infty(G) \to X_G$ which is a G-homotopy equivalence, but in general not a G-homeomorphism, see also [875, A.2].

10.6.3 Discrete Subgroups of Almost Connected Lie Groups

The next result is a special case of a much more general result due to Abels [I, Corollary 4.14]. Recall that a topological group L is called almost connected if $\pi_0(L)$ is finite.

Theorem 10.24 (Discrete subgroups of almost connected Lie groups).

Let L be an almost connected Lie group. Let $G \subseteq L$ be a discrete subgroup.
Then L contains a maximal compact subgroup K which is unique up to conjugation, and the G-space L/K is a model for EG.

10.6.4 Actions on Simply Connected Non-Positively Curved Manifolds

Theorem 10.25 (Actions on simply connected non-positively curved manifolds). Suppose that G acts properly and isometrically on the simply-connected complete Riemannian manifold M with non-positive sectional curvature. Then M is a model for EG.

Proof. See [1, Theorem 4.15]. \square

10.6.5 Actions on Trees and Graphs of Groups

A tree is a 1-dimensional CW-complex which is contractible.

Theorem 10.26 (Actions on trees). Suppose that G acts on a tree T such that for each element $g \in G$ and each open cell e with $g \cdot e \cap e \neq \emptyset$ we have $gx = x$ for any $x \in e$. Assume that the isotropy group of each $x \in T$ is finite.

Then T is a model for EG.

Proof. Obviously T is a G-CW-complex, see Remark [10.3]. Let $H \subseteq G$ be finite. If e_0 is a zero-cell in T, then $H \cdot e_0$ is finite. Let T' be the union of all geodesics with extremities in $H \cdot e$. This is an H-invariant subtree of T of finite diameter. One shows now inductively over the diameter of T' that T' has a vertex which is fixed under the H-action, see [825, page 20] or [279, Proposition 4.7 on page 17]. Hence T^H is non-empty. If e and f are vertices in T^H, the geodesic in T from e to f must be H-invariant. Hence T^H is a connected CW-subcomplex of the tree T and hence is itself a tree. This shows that T^H is contractible. Now apply Theorem [10.19]. \square

10.6.6 Actions on CAT(0)-Spaces

For the notion of a CAT(0)-space we refer for instance to [143, Definition 1.1 in II.1 on page 158].

Theorem 10.27 (Actions on CAT(0)-spaces). Let X be a proper G-CW-complex. Suppose that X has the structure of a complete CAT(0)-space on which G acts by isometries. Then X is a model for EG.

Proof. By [143, Corollary 2.8 in II.2 on page 179] the K-fixed point set of X is a non-empty convex subset of X and hence contractible for any compact subgroup $K \subset G$. □

This result contains as special case Theorem 10.25 and Theorem 10.26 since simply-connected complete Riemannian manifolds with non-positive sectional curvature and trees are complete CAT(0)-spaces.

10.6.7 The Rips Complex of a Hyperbolic Group

A metric space $X = (X,d)$ is called δ-hyperbolic for a given real number $\delta \geq 0$ if for any four points x, y, z, t the following inequality holds

\begin{equation}
(10.28) \quad d(x, y) + d(z, t) \leq \max\{d(x, z) + d(y, t), d(x, t) + d(y, z)\} + 2\delta.
\end{equation}

A group G with a finite set S of generators is called δ-hyperbolic if the metric space (G,d_S) given by G and the word-metric d_S with respect to the finite set of generators S is δ-hyperbolic.

The Rips complex $P_d(G,S)$ of a group G with a finite set S of generators for a natural number d is the geometric realization of the abstract simplicial complex, whose set of k-simplices consists of subseteq $S' \subseteq S$ of cardinality $k + 1$ such that $d_S(g,g') \leq d$ holds for all $g,g \in S'$. The obvious G-action by simplicial automorphisms on $P_d(G,S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G,S)'$, see Example 10.4.

Theorem 10.29 (Rips complex). Let G be a group with a finite set S of generators. Suppose that (G,S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G,S)'$ is a finite G-CW-model for EG.

Proof. See [639], [640]. □

A metric space is called hyperbolic if it is δ-hyperbolic for some real number $\delta \geq 0$. A finitely generated group G is called hyperbolic if for one (and hence all) finite set S of generators the metric space (G,d_S) is a hyperbolic metric space. Since for metric spaces the property hyperbolic is invariant under quasisimetry and for two finite sets S_1 and S_2 of generators of G the metric spaces (G,d_{S_1}) and (G,d_{S_2}) are quasiisometric, the choice of S does not matter. Theorem 10.29 implies that for a hyperbolic group there is a finite G-CW-model for EG.

The notion of a hyperbolic group is due to Gromov and has intensively been studied, see for example [143, 151, 152]. The prototype is the fundamental group of a closed hyperbolic manifold.
10.6 Special Models for the Classifying Space of Proper Actions

10.6.8 Arithmetic Groups

An arithmetic group A in a semisimple connected linear \mathbb{Q}-algebraic group possesses a finite A-CW-model for E_A. Namely, let $G(\mathbb{R})$ be the \mathbb{R}-points of a semisimple \mathbb{Q}-group $G(\mathbb{Q})$ and let $K \subseteq G(\mathbb{R})$ be a maximal compact subgroup. If $A \subseteq G(\mathbb{Q})$ is an arithmetic group, then $G(\mathbb{R})/K$ with the left A-action is a model for E_A as already explained in Theorem 10.24. The A-space $G(\mathbb{R})/K$ is not necessarily cocompact. The Borel-Serre completion of $G(\mathbb{R})/K$, see [134], [824], is a finite A-CW-model for EG as pointed out in [19, Remark 5.8], where a private communication with Borel and Prasad is mentioned.

10.6.9 Mapping Class Groups

Let $\Gamma_{g,r}$ be the mapping class group of an orientable compact surface $F_{g,r}$ of genus g with s punctures and r boundary components. This is the group of isotopy classes of orientation preserving selfdiffeomorphisms $F_{g,r} \to F_{g,r}$, which preserve the punctures individually and restrict to the identity on the boundary. We require that the isotopies leave the boundary pointwise fixed. We will always assume that $2g + s + r > 2$, or, equivalently, that the Euler characteristic of the punctured surface $F_{g,r}$ is negative. It is well-known that the associated Teichmüller space $T_{g,r}$ is a contractible space on which $\Gamma_{g,r}$ acts properly.

Theorem 10.30 (Mapping class group). The Teichmüller space $T_{g,r}$ is a model for $E \Gamma_{g,r}$.

Proof. This follows from [518]. \qed

Remark 10.31 (Finite model for $E \Gamma_{g,r}$). There exist a finite $\Gamma_{g,r}$-CW-model for $E \Gamma_{g,r}$, see [665].

10.6.10 Outer Automorphism Groups of Finitely Generated Free Groups

Let F_n be the free group of rank n. Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms. Culler and Vogtmann [237, 882] have constructed a space X_n, called outer space, on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface. Fix a graph R_n with one vertex v and n-edges and identify F_n with
A marked metric graph \((g, \Gamma)\) consists of a graph \(\Gamma\) with all vertices of valence at least three, a homotopy equivalence \(g: R_n \to \Gamma\) called marking, and to every edge of \(\Gamma\) there is assigned a positive length which makes \(\Gamma\) into a metric space by the path metric. We call two marked metric graphs \((g, \Gamma)\) and \((g', \Gamma')\) equivalent if there is a homothety \(h: \Gamma \to \Gamma'\) such that \(g \circ h\) and \(h'\) are homotopic. Homothety means that there is a constant \(\lambda > 0\) with \(d(h(x), h(y)) = \lambda \cdot d(x, y)\) for all \(x, y\). Elements in outer space \(X_n\) are equivalence classes of marked graphs. The main result in [237] is that \(X_n\) is contractible. Actually, for each finite subgroup \(H \subseteq \text{Out}(F_n)\) the \(H\)-fixed point set \(X_n^H\) is contractible [536, Proposition 3.3 and Theorem 8.1], [915, Theorem 5.1].

The space \(X_n\) contains a spine \(K_n\) which is an \(\text{Out}(F_n)\)-equivariant deformation retraction. This space \(K_n\) is a simplicial complex of dimension \((2n-3)\) on which the \(\text{Out}(F_n)\)-action is by simplicial automorphisms and cocompact. Actually the group of simplicial automorphisms of \(K_n\) is \(\text{Out}(F_n)\), see [144].

Hence the barycentric subdivision \(K'_n\) is a finite \((2n-3)\)-dimensional model of \(E\text{Out}(F_n)\).

10.6.11 Special Linear Groups of \((2,2)\)-Matrices

In order to illustrate some of the general statements above we consider the special example \(\text{SL}_2(\mathbb{Z})\).

Let \(\mathbb{H}^2\) be the 2-dimensional hyperbolic space. We will use either the upper half-plane model or the Poincaré disk model. The group \(\text{SL}_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by Möbius transformations, i.e., a matrix \(
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\) acts by sending a complex number \(z\) with positive imaginary part to \(\frac{az + b}{cz + d}\). This action is proper and transitive. The isotropy group of \(z = i\) is \(\text{SO}(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(\text{SL}_2(\mathbb{Z})\)-space \(\mathbb{H}^2\) is a model for \(E\text{SL}_2(\mathbb{Z})\) by Theorem 10.25.

One easily checks that \(\text{SL}_2(\mathbb{R})\) is a connected Lie group and \(\text{SO}(2) \subseteq \text{SL}_2(\mathbb{R})\) is a maximal compact subgroup. Since the \(\text{SL}_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(\text{SO}(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(\text{SL}_2(\mathbb{R})\)-manifolds \(\text{SL}_2(\mathbb{R})/\text{SO}(2)\) and \(\mathbb{H}^2\) are \(\text{SL}_2(\mathbb{R})\)-diffeomorphic.

As \(\text{SL}_2(\mathbb{Z})\) is a discrete subgroup of \(\text{SL}_2(\mathbb{R})\), the space \(\mathbb{H}^2 = \text{SL}_2(\mathbb{R})/\text{SO}(2)\) with the obvious \(\text{SL}_2(\mathbb{Z})\)-action is a model for \(E\text{SL}_2(\mathbb{Z})\) by Theorem 10.24.

The group \(\text{SL}_2(\mathbb{Z})\) is isomorphic to the amalgamated free product \(\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6\). This implies that \(\text{SL}_2(\mathbb{Z})\) acts cell preserving with finite stabilizers on a tree \(T\), which has alternately two and three edges emanating from each vertex, see [825, Theorem 7 in I.4.1 on page 32 and Example 4.2 (c) in I.4.2 on page 35]. This tree is a model for \(E\text{SL}_2(\mathbb{Z})\) by Theorem 10.26.
The other model \mathbb{H}^2 is a manifold. These two models must be $\text{SL}_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.

Divide the Poincaré disk or the half plane model \mathbb{H}^2 into fundamental domains for the $\text{SL}_2(\mathbb{Z})$-action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $\text{SL}_2(\mathbb{Z})$-action. This is the tree model above. The tree is a $\text{SL}_2(\mathbb{Z})$-equivariant deformation retraction of \mathbb{H}^2. A retraction is given by moving a point p in \mathbb{H}^2 along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T, see for instance [825, Example 4.2 (c) in I.4.2 on page 35].

10.6.12 Groups with Appropriate Maximal Finite Subgroups

Let G be a discrete group. Let \mathcal{MFN} be the subset of \mathcal{FN} consisting of elements in \mathcal{FN} which are maximal with respect to inclusion in \mathcal{FN}. Consider the following assertions concerning G:

(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;

(NM) $M \in \mathcal{MFN}, M \neq \{1\} \implies N_G M = M$;

For such a group there is a nice model for EG with as few non-free cells as possible. Let $\{M_i \mid i \in I\}$ be a complete set of representatives for the conjugacy classes of maximal finite subgroups of G, i.e., each M_i is a maximal finite subgroup of G and any maximal finite subgroup of G is conjugated to M_i for precisely one element $i \in I$. By attaching free G-cells we get an inclusion of G-CW-complexes $j_1: \coprod_{i \in I} G \times M_i EM_i \to EG$, where EG is the same as $E_{\mathcal{TR}}(G)$, i.e., a contractible free G-CW-complex.

Theorem 10.32 (Passage from EG to EG). Suppose that G satisfies (M) and (NM). Let X be the G-CW-complex define by the G-pushout

$$
\begin{array}{c}
\coprod_{i \in I} G \times M_i EM_i \xrightarrow{j_1} EG \\
\downarrow u_1 \\
\coprod_{i \in I} G/M_i \xrightarrow{k_1} X
\end{array}
$$

where u_1 is the obvious G-map obtained by collapsing each EM_i to a point.

Then X is a model for EG.

Proof. We have to explain why EG is a model for the classifying space for proper actions of G. Obviously it is a G-CW-complex. Its isotropy groups
are all finite. We have to show for $H \subseteq G$ finite that X^H contractible. We begin with the case $H \neq \{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_0 \in I$ such that H is subconjugated to M_{i_0} and is not subconjugated to M_i for $i \neq i_0$ and we get

$$\left(\prod_{i \in I} G/M_i \right)^H = (G/M_{i_0})^H = \{\bullet\}.$$

Hence $X^H = \{\bullet\}$. It remains to treat $H = \{1\}$. Since u_1 is a non-equivariant homotopy equivalence and j_1 is a cofibration, f_1 is a non-equivariant homotopy equivalence and hence EG is contractible (after forgetting the group action).

Here are some examples of groups Q which satisfy conditions (M) and (NM):

- Extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ for finite F such that the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$.

 The conditions (M) and (NM) are satisfied by [615, Lemma 6.3].

- Fuchsian groups F

 The conditions (M) and (NM) are satisfied by [615, Lemma 4.5]. In [615] the larger class of cocompact planar groups (sometimes also called cocompact NEC-groups) is treated.

- One-relator groups G

 Let G be a one-relator group. Let $G = \langle (q_i)_{i \in I} \mid r \rangle$ be a presentation with one relation. There is up to conjugacy one maximal finite subgroup C which is

Remark 10.33 (Passing to larger families). Theorem 10.32 is a special case of a general recipe to construct for two families $F \subseteq G$ an efficient model for $E_G(G)$ from $E_F(G)$ in [620, Section 2]. These models are important for concrete calculations of the left hand side appearing in the Baum-Conjecture or the Farrell-Jones Conjecture, see Chapter 16.

10.6.13 One-Relator Groups

Let G be a one-relator group. Let $G = \langle (q_i)_{i \in I} \mid r \rangle$ be a presentation with one relation. There is up to conjugacy one maximal finite subgroup C which is
cyclic. Let \(p: \ast_{i \in I} \mathbb{Z} \to G \) be the epimorphism from the free group generated by the set \(I \) to \(G \), which sends the generator \(i \in I \) to \(q_i \). Let \(Y \to \bigvee_{i \in I} S^1 \) be the \(G \)-covering associated to the epimorphism \(p \). There is a 1-dimensional unitary \(C \)-representation \(V \) and a \(C \)-map \(f: SV \to \text{res}_G Y \) such that the induced action on the unit sphere \(SV \) is free and the following is true: If we equip \(SV \) with the \(C \)-\(CW \)-structure with precisely one equivariant 0-cell and precisely one equivariant 1-cell \(DV \) with the \(C \)-\(CW \)-complex structures coming from the fact that \(DV \) is the cone over \(SV \), then the \(C \)-map \(f \) can be chosen to be cellular and we obtain a \(G \)-\(CW \)-model for \(EG \) by the \(G \)-pushout

\[
\begin{array}{ccc}
G \times_C SV & \xrightarrow{T} & Y \\
\downarrow & & \downarrow \\
G \times_C DV & \xrightarrow{} & E \mathbb{G}
\end{array}
\]

where \(T \) sends \((g, x)\) to \(gf(x)\). Thus we get a 2-dimensional \(G \)-\(CW \)-model for \(E \mathbb{G} \) such that \(E \mathbb{G} \) is obtained from \(G/C \) for a maximal finite cyclic subgroup \(C \subseteq G \) by attaching free cells of dimensions \(\leq 2 \). The \(CW \)-\(CW \)-complex structure on \(E \mathbb{G} \) has precisely one 0-cell \(G/C \times D^0 \), one 0-cell \(G \times D^0 \), \((2 \cdot |I|)\) many 1-cells \(G \times D^1 \) and \(|I|\) many 2-cells \(G \times D^2 \). All these claims follow from [149, Exercise 2 (c) II. 5 on page 44].

If \(G \) is torsionfree, the 2-dimensional complex associated to a presentation with one relation is a model for \(BG \), see [623, Chapter III §§9 -11].

Exercise 10.34. Let \(G \) be a one-relator group. Let \(M \subseteq G \) be a maximal cyclic subgroup. Show that the inclusion induces for \(n \geq 3 \) an isomorphism \(H_n(BM) \xrightarrow{\cong} H_n(BG) \).

Exercise 10.35. Let \(G \) be a finitely generated group. Suppose that for every integer \(K \) there is \(k \geq K \) with \(H_k(BG; \mathbb{Q}) \neq 0 \). Show that \(G \) cannot be a hyperbolic group, an arithmetic group, \(\text{Out}(F_n) \), a mapping class group or a one-relator group.

10.7 Special Models for the Classifying Space for the Family of Virtually Cyclic Subgroups

In general the \(G \)-\(CW \)-models for \(\mathbb{E} \mathbb{G} \) are not as nice and small than the ones for \(\mathbb{E} \mathbb{Z} \mathbb{G} \). We illustrate this in the case \(G = \mathbb{Z}^n \) for \(n \geq 2 \). Then a \(\mathbb{Z}^n \)-\(CW \)-model for \(\mathbb{E} \mathbb{Z}^n = \mathbb{E} \mathbb{Z}^n \) is \(\mathbb{R}^n \) with the standard translation action of \(\mathbb{Z}^n \).
An explicite \mathbb{Z}^n-CW-model for $E\mathbb{Z}^n$ can be constructed as follows. Choose an enumeration $\{C_i \mid i \in \mathbb{Z}\}$ of the infinite cyclic subgroups of \mathbb{Z}^n. Consider the space $\mathbb{R}^n \times \mathbb{R}$. For each $i \in \mathbb{Z}$ we identify in $\mathbb{R}^n \times \{i\}$ the subspace given by the \mathbb{R}-span of $C_i \subseteq \mathbb{Z}^n \subseteq \mathbb{R}^n$ to a point. Then we obtain a \mathbb{Z}^n-CW-complex X. Since the C_i-fixed point set of X consists of precisely one point, the underlying topological space X is contractible, and all isotropy groups of the \mathbb{Z}^n-action are infinite cyclic or trivial, X is a \mathbb{Z}^n-CW-model for $E\mathbb{Z}^n$. Note that the dimension of X is $(n + 1)$. One can actually show that any \mathbb{Z}^n-CW-model for $E\mathbb{Z}^n$ has dimension greater or equal to $(n + 1)$, see [620, Example 5.21].

10.7.1 Groups with Appropriate Maximal Virtually Cyclic Subgroups

Let G be a discrete group. Let \mathcal{MVCY} be the subset of \mathcal{VCY} consisting of elements in \mathcal{VCY} which are maximal with respect to inclusion in \mathcal{VCY}. Consider the following assertions concerning G:

(M) Every infinite virtually cyclic subgroup of G is contained in a unique maximal virtually cyclic subgroup;

(NM) $V \in \mathcal{MVCY}, |V| = \infty \implies N_G V = V$.

For such a group there is a nice model for EG with as few cells of type G/V with infinite virtually cyclic V as possible. Let $\{V_i \mid i \in I\}$ be a complete set of representatives for the conjugacy classes of maximal infinite virtually cyclic subgroups of G. By attaching G-cells of the type G/H for finite subgroups $H \subseteq G$ we get an inclusion of G-CW-complexes $j_1: \coprod_{i \in I} G \times V_i EV_i \to EG$.

The next result is proved in [620, Corollary 2.11].

Theorem 10.36 (Passage from EG to EG). Suppose that G satisfies (M) and (NM). Let X be the G-CW-complex define by the G-pushout

$$
\begin{array}{ccc}
\coprod_{i \in I} G \times V_i EV_i & \xrightarrow{j_1} & EG \\
\downarrow u_1 & & \downarrow f_1 \\
\coprod_{i \in I} G/V_i & \xrightarrow{k_1} & X
\end{array}
$$

where u_1 is the obvious G-map obtained by collapsing each EV_i to a point.

Then X is a model for EG.

A useful criterion for a group G to satisfy both (M) and (NM) can be found in [620, Theorem 3.1]. It implies that any hyperbolic group satisfies both (M) and (NM), see [620, Example 3.6]. On the other hand the Klein bottle group $\mathbb{Z} \rtimes \mathbb{Z}$ does not satisfy (M), see [620, Example 3.7].
10.8 Finiteness Conditions

one of the few instances, where EG behaves nicer than EG since the class of groups for which both (M) and $\langle \text{NM} \rangle$ hold is much richer than the class for which both (M) and $\langle \text{NM} \rangle$ hold.

Theorem 10.36 will be very helpful for computing the left hand side appearing in the Farrell-Jones Conjecture, see Section 16.6.

10.8 Finiteness Conditions

It has been very fruitful in group theory to investigate the question whether one can find small models for BG, for instance a finite CW-model, a CW-model of finite type or a finite dimensional CW-model, or equivalently, small G-CW-models for EG. The same question can be asked for EG and EG. For torsionfree groups there is no difference between EG and EG, but for groups with torsion the space EG seems to carry much more information than EG.

In this section we collect some information about finite conditions on EG, EG and EG. Having small models is also important for computation of the left hand sides appearing in the Baum-Connes Conjecture and the Farrell-Jones Conjecture, see Subsection 16.6.1.

Throughout this section G will be a discrete group.

10.8.1 Review of Finiteness Conditions on BG

As an illustration we review what is known about finiteness properties of G-CW-models for EG for a discrete group G. This is equivalent to the same question about BG.

We introduce the following notation. Let R be a commutative associative ring with unit. The trivial RG-module is R viewed as RG-module by the trivial G-action. The cohomological dimension $cd_R(M)$ of a RG-module M is ∞ if there is no finite dimensional projective RG-resolution and is equal to the integer n if there exists a projective resolution of dimension $\leq n$ for M but not of dimension $\leq n - 1$. Note that M possesses a projective RG-resolution of dimension n if and only if for any RG-module N we have $\text{Ext}_{RG}^i(M, N) = 0$ for $i \geq n + 1$. The cohomological dimension over R of a group G, which is denoted by $cd_R(G)$, is the cohomological dimension of trivial RG-module R.

If $R = \mathbb{Z}$, we abbreviate $\text{cd}(G) := \text{cd}_{\mathbb{Z}}(G)$.

An RG-module M is of type FP_n, if it admits a projective RG-resolution P_\bullet such that P_i is finitely generated for $i \leq n$, and of type FP_∞ if it admits a projective RG-resolution P_\bullet such that P_i is finitely generated for all i. A group G is of type FP_n or FP_∞ respectively if the trivial ZG-module Z is of type FP_n or FP_∞ respectively.
Here is a summary of well-known statements about finiteness conditions on BG.

Theorem 10.37 (Finiteness conditions for BG). Let G be a discrete group.

(i) If there exists a finite dimensional model for BG, then G is torsionfree;
(ii) (a) There exists a CW-model for BG with finite 1-skeleton if and only if G is finitely generated;
(b) There exists a CW-model for BG with finite 2-skeleton if and only if G is finitely presented;
(c) For $n \geq 3$ there exists a CW-model for BG with finite n-skeleton if and only if G is finitely presented and of type FP$_n$;
(d) There exists a CW-model for BG of finite type, i.e., all skeleta are finite, if and only if G is finitely presented and of type FP$_\infty$;
(e) There exists groups G which are of type FP$_2$ and which are not finitely presented;
(iii) There is a finite CW-model for BG if and only if G is finitely presented and there is a finite free $\mathbb{Z}G$-resolution F_\ast for the trivial $\mathbb{Z}G$-module \mathbb{Z};
(iv) The following assertions are equivalent:
(a) The cohomological dimension over \mathbb{Z} of G is ≤ 1;
(b) There is a model for BG of dimension ≤ 1;
(c) G is free;
(v) The following assertions are equivalent for $d \geq 3$:
(a) There exists a CW-model for BG of dimension d;
(b) The cohomological dimension over \mathbb{Z} of G is d;
(vi) For Thompson’s group F there is a CW-model of finite type for BG but no finite dimensional model for BG.

Proof. (i) Suppose we can choose a finite dimensional model for BG. Let $C \subseteq G$ be a finite cyclic subgroup. Then $C \backslash BG = C \backslash EG$ is a finite dimensional model for BC. Hence there is an integer d such that we have $H_i(BC) = 0$ for $i \geq d$. This implies that C is trivial [149] (2.1) in II.3 on page 35]. Hence G is torsionfree.

See [119] and [149] Theorem 7.1 in VIII.7 on page 205].

See [149] Theorem 7.1 in VIII.7 on page 205].

See [837] and [853].

See [149] Theorem 7.1 in VIII.7 on page 205].

See [150].

\qed
10.8 Finiteness Conditions

10.8.2 Cohomological Criteria for Finiteness Properties in Terms of Bredon Cohomology

We have seen that we can read off finiteness properties of BG or EG from the group cohomology of G. If one wants to investigate the same question for $E_F(G)$ analogous statements are true if one considers modules over the F-restricted orbit category $Or_F(G)$ in the sense of Definition 2.54. This is explained in [590, Subsection 5.2]. For instance, if $d \geq 3$ is a natural number, then there is a G-CW-model of dimension $\leq d$ for $E_F(G)$ if and only if the trivial $\mathbb{Z}Or_F(G)$-module \mathbb{Z} has projective $\mathbb{Z}Or_F(G)$-resolution of dimension $\leq d$, see [590, Theorem 5.2 (i)]. The role of the cohomology of a group is now played by the Bredon cohomology of $E_F(G)$. We will deal with Bredon cohomology in Example 11.2.

Other papers related to the topic of connecting geometric dimension or other finiteness properties for classifying spaces for families to algebraic analogues are [140, 357, 359, 688, 689].

10.8.3 Finite Models for the Classifying Space for Proper Actions

The specific constructions of Sections 10.6 show that there is a finite G-CW-model for the classifying space of proper actions EG if G is a cocompact discrete subgroups of an almost connected Lie group, a hyperbolic group, an arithmetic group, the outer automorphism group of a finitely generated free groups, a mapping class group, or a finitely generated one-relator group. This is also the case for an elementary amenable group of type FP_∞, see [534, Theorem 1.1].

If $1 \to K \to G \to Q \to 1$ is an extension of groups and there are finite models for EK and EQ, one may ask whether there is a finite model for EG. Some sufficient conditions for this question are given in [582, Theorem 3.2 and Theorem 3.3], for instance that K is hyperbolic or virtually poly-cyclic. However, even in the case that Q is finite and K is torsionfree with a finite model for BK, it can happen that there is no finite model for EG, see [562, Example 3 on page 149 in Section 7].

10.8.4 Models of Finite Type for the Classifying Space for Proper Actions

The following result is proved in [582, Theorem 4.2].

Theorem 10.38 (Models for EG of finite type).

The following statements are equivalent for the group G.
(i) There is a G-CW-model for EG of finite type;
(ii) There are only finitely many conjugacy classes of finite subgroups of G and for any finite subgroup $H \subset G$ there is a CW-model for BW_GH of finite type, where $W_GH := N_GH/H$;
(iii) There are only finitely many conjugacy classes of finite subgroups of G and for any finite subgroup $H \subset G$ the Weyl group W_GH is finitely presented and is of type FP_∞.

The comments about extensions in Subsection 10.8.3 for finite models carry over to models of finite type.

10.8.5 Finite Dimensional Models for the Classifying Space for Proper Actions

The following result follows from Dunwoody [290, Theorem 1.1].

Theorem 10.39 (A criterion for 1-dimensional models for EG). Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only the cohomological dimension of G over \mathbb{Q} is less or equal to one.

If G is finitely generated, then there is a 1-dimensional model for EG if and only if G contains a finitely generated free subgroup of finite index [498, Theorem 1]. If G is torsionfree, we rediscover the results due to Swan and Stallings stated in Theorem 10.37(4) from Theorem 10.39.

If G is virtually torsionfree, one defines its virtual cohomological dimension $vcd(G)$ by the cohomological dimension $cd(H)$ of any torsionfree subgroup $H \subseteq G$ of finite index. Since for any other torsionfree subgroup $K \subseteq G$ of finite index we have $cd(H) = cd(K)$, this notion is well-defined.

Definition 10.40 (Homotopy dimension). Given a G-space X, the homotopy dimension $hdim^G(X) \in \{0, 1, \ldots\} \cup \{\infty\}$ of X is defined to be the infimum over the dimensions of all G-CW-complexes Y which are G-homotopy equivalent to X.

Notation 10.41. Put for a group G

$$gd(G) := hdim^G(EG);$$
$$gd(G) := hdim^G(EG).$$

Lemma 10.42. Suppose that G is virtually torsionfree. Then

$$vcd(G) \leq gd(G).$$

Proof. Choose a torsionfree subgroup $H \subseteq G$ of finite index. Then the restriction of EG to H is a model for EH. This implies $cd(H) \leq dim(EG)$ and hence $vcd(G) \leq gd(G)$. \qed
The next result is taken from [590, Theorem 5.24]

Theorem 10.43 (Dimension of EG for a discrete subgroup G of an almost connected Lie group). Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for EG.

Suppose additionally that G is virtually torsionfree. Then we have

$$\vcd(G) \leq \dim(L/K)$$

and equality holds if and only if $G \setminus L$ is compact.

The next result follows from [356, Theorem 1 and inequalities (1) and (2) on page 7], where also the notion of the Hirsch length for elementary amenable groups due to Hillman [442] is recalled. In the special case that there is a finite sequence $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{n-1} \supseteq G_n = \{1\}$ of subgroups such that G_{i+1} is normal in G_i and G_i/G_{i+1} is finitely generated abelian for $i = 0, 1, \ldots, (n-1)$, the Hirsch length $h(G)$ is $\sum_{i=0}^{n-1} \text{rk}_{\mathbb{Z}}(G_i/G_{i+1})$.

Theorem 10.44 (Dimension of EG for countable elementary amenable groups of finite Hirsch length). If G is an elementary amenable group, then its Hirsch length satisfies

$$h(G) \leq \text{gd}(G).$$

If G is a countable elementary amenable group, then

$$\text{gd}(G) \leq \max\{3, h(G) + 1\}.$$

If F is a virtually poly-cyclic group G, then G is virtually torsionfree, $\vcd(G)$ is finite and satisfies $\vcd(G) = h(G) = \text{gd}(G)$, see [590, Example 5.26].

If $H \subseteq G$ is a subgroup of finite index $[G : H]$. If there is a H-CW-model for EH of dimension $\leq d$, then there is a G-CW-model for EG of dimension $\leq d \cdot [G : H]$, see [582, Theorem 2.4]. In particular $\text{gd}(G) \leq [G : H] \cdot \text{gd}(H)$.

Theorem 10.45 (Dimension of EG and extension). Let $1 \to K \to G \to Q \to 1$ be an exact sequence of groups. Suppose that there exists a positive integer d which is an upper bound on the orders of finite subgroups of Q. Then

$$\text{gd}(G) \leq d \cdot \text{gd}(K) + \text{gd}(Q).$$

Remark 10.46 (gd(G) for locally finite groups). For a locally finite group of cardinality \aleph_n, the inequality $\text{gd}(G) \leq n + 1$ is proved in [280 and 620, Theorem 5.31]. The equality $\text{gd}(G) = n + 1$ is explained in [620, Example 5.32].
Exercise 10.47. Let F be a non-trivial finite group. Put $H = \bigoplus \mathbb{Z} F$. Let $H \rtimes \mathbb{Z}$ be the semidirect product with respect to the shift automorphism of H. Show $gd(H) = 1$ and $gd(H \rtimes \mathbb{Z}) = 2$.

10.8.6 Brown’s Problem about Virtual Cohomological Dimension and the Dimension of the Classifying Space for Proper Actions

The following problem, whether the converse of Lemma 10.42 is true, is stated by Brown [148, page 32].

Problem 10.48 (Brown’s problem about $\text{vcd}(G) = \dim(EG)$). For which virtually torsionfree groups G does the equality

$$\text{vcd}(G) = \text{gd}(G)$$

hold?

The length $l(H) \in \{0, 1, \ldots \}$ of a finite group H is the supremum over all l for which there is a nested sequence $H_0 \subset H_1 \subset \ldots \subset H_l$ of subgroups H_i of H with $H_i \neq H_{i+1}$. The following result is proved in [582, Theorem 6.4] and was motivated by Brown’s Problem 10.48.

Theorem 10.49 (Estimate on $\dim(EG)$ in terms of $\text{vcd}(G)$). Let G be a group with virtual cohomological dimension $\text{vcd}(G) \leq d$. Let $l \geq 0$ be an integer such that the length $l(H)$ of any finite subgroup $H \subset G$ is bounded by l.

Then there is a G-CW-model for EG such that for any finite subgroup $H \subset G$

$$\dim(EG^H) = \max\{3, d\} + l - l(H)$$

holds. In particular $\text{gd}(G) \leq \max\{3, d\} + l$.

However, we obtain from Leary-Petroysan [563, Corollary 1.2], see also Leary-Nucinkis [562, Example 12 on page 153 in Section 7].

Theorem 10.50 (Brown’s Problem 10.48 has a negative answer in general). Given a natural number m, there exists a group G such that there is a finite model for EG and we have $\text{vcd}(G) = 2m$ and $\text{gd}(G) \geq 3m$.

Moreover, Leary-Petroysan [563, page 732] show that the estimate in Theorem 10.49 cannot be improved, even if one considers only finite models for EG.
10.8.7 Finite Dimensional Models for the Classifying Space for the Family of Virtually Cyclic Subgroups

The following problem has triggered a lot of activities

Problem 10.51 (Relating the dimension of EG and \underline{EG}). For which countable groups G do the inequalities

$$\underline{gd}(G) - 1 \leq \underline{gd}(G) \leq \underline{gd}(G) + 1$$

hold?

The inequality appearing in Problem 10.51 holds for countable elementary amenable groups, see [271, Corollary 4.4]. There are groups of type FP_∞ for which the difference $\underline{gd}(G) - \underline{gd}(G)$ is arbitrary large, see [271, Example 6.5].

All possible cases of the inequality appearing in Problem 10.51 can occur, in particular there are examples of finitely presented groups G with $\underline{gd}(G) < \underline{gd}(G)$, see Remark 10.55.

The next result is proved in [271, Theorem A].

Theorem 10.52 (Dimension of \underline{EG} for elementary amenable groups of finite Hirsch length). If G is an elementary amenable group of cardinality \aleph_n such that the Hirsch length $h(G)$ of G is finite, then

$$\underline{gd}(G) \leq h(G) + n + 2.$$

Theorem 10.53 (The dimension of \underline{EG}).

(i) We have for any group G

$$\underline{gd}(G) \leq 1 + \underline{gd}(G);$$

(ii) We have

$$\underline{gd}(G \times H) \leq \underline{gd}(G) + \underline{gd}(H),$$

and

$$\underline{gd}(G \times H) \leq \underline{gd}(G) + \underline{gd}(H) + 3,$$

and these inequalities cannot be improved in general;

(iii) If G satisfies condition (M) and (NM), then

$$\underline{gd}(G) \begin{cases} = \underline{gd}(G) & \text{if } \underline{gd}(G) \geq 2; \\ \leq 2 & \text{if } \underline{gd}(G) \leq 1; \end{cases}$$

(iv) If $H \subseteq G$ is a subgroup of finite index $[G : H]$ then

$$\underline{gd}(G) \leq [G : H] \cdot \underline{gd}(H).$$
Proof. (i) See [620, Corollary 5.4 (1)].

(ii) This is obvious for \(gd(G \times H) \) and proved for \(gd(G \times H) \) in [620, Corollary 5.6 and Remark 5.7].

(iii) See [620, Theorem 5.8 (2)].

(iv) This is proved in [582, Theorem 2.4]. \(\square\)

Exercise 10.54. If \(G \) is the fundamental group of a hyperbolic closed Riemannian manifold \(M \), then
\[
\text{cd}(G) = \dim(N) = \text{gd}(G) = \text{gd}(G).
\]

Remark 10.55 (Virtually-poly-cyclic-groups). In [620, Theorem 5.13] a complete computation of \(\text{gd}(G) \) is presented for virtually poly-
\(\mathbb{Z} \) groups. The answer is much more complicated than the one for \(\text{gd}(G) \) which is equal to both \(\text{vcd}(G) \) and the Hirsch length \(h(G) \), see [590, Example 5.26]. This leads to some interesting examples in [620, Subsection 5.4]. For instance, one can construct, for \(k = -1, 0, 1 \), automorphisms \(f_k : \text{Hei} \to \text{Hei} \) of the three-dimensional Heisenberg group \(\text{Hei} \) such that
\[
\text{gd}(\text{Hei} \rtimes f_k \mathbb{Z}) = 4 + k.
\]
Note that \(\text{gd}(\text{Hei} \rtimes f \mathbb{Z}) = \text{cd}(\text{Hei} \rtimes f \mathbb{Z}) = 4 \) holds for any automorphism \(f : \text{Hei} \to \text{Hei} \).

The following result is taken from [593, Theorem 1.1].

Theorem 10.56 (Dimensions of \(\mathbb{E}G \) and \(\mathbb{E}G \) for groups acting on \(\text{CAT}(0) \)-spaces). Let \(G \) be a discrete group which acts properly and isometrically on a complete proper \(\text{CAT}(0) \)-space \(X \). Let \(\text{top-dim}(X) \) be the topological dimension of \(X \).

(i) We have
\[
\text{gd}(G) \leq \text{top-dim}(X);
\]

(ii) Suppose that \(G \) acts by semisimple isometries. (This is the case if we additionally assume that the \(G \)-action is cocompact.) Then
\[
\text{gd}(G) \leq \text{top-dim}(X) + 1.
\]

Remark 10.57 (\(\text{gd}(G) \) for locally virtually cyclic groups). For a locally virtually cyclic group of cardinality \(\aleph_n \), the inequality \(\text{gd}(G) \leq n + 1 \) is a special case of [620, Theorem 5.31].

The next result is taken from [268, Theorem A].
Theorem 10.58 (Finite dimensional models for EG for discrete subgroups of $GL_n(\mathbb{R})$). Every discrete subgroup G of $GL_n(\mathbb{R})$ admits a finite dimensional model for EG. More precisely, if m is the dimension of the Zariski closure of G in $GL_n(\mathbb{R})$, then

$$gd(G) \leq m + 1.$$

10.8.8 Low Dimensions

Besides Theorem 10.39 we have the following result proved in [620, Theorem 5.33].

Theorem 10.59 (Low-dimensional models for EG and EG).

(i) Let G be a countable group which is locally virtually cyclic. Then

$$gd(G) = \begin{cases}
0 & \text{if } G \text{ is finite;} \\
1 & \text{if } G \text{ is infinite and either locally finite or virtually cyclic;} \\
2 & \text{otherwise,}
\end{cases}$$

and

$$gd(G) = \begin{cases}
0 & \text{if } G \text{ is virtually cyclic;} \\
1 & \text{otherwise;}
\end{cases}$$

(ii) Let G be a countable group satisfying $gd(G) \leq 1$. Then

$$gd(G) = \begin{cases}
0 & \text{if } G \text{ is virtually cyclic;} \\
1 & \text{if } G \text{ is locally virtually cyclic but not virtually cyclic;} \\
2 & \text{otherwise.}
\end{cases}$$

Exercise 10.60. Let G be a countable group. Show that G is infinite locally finite if and only if $gd(G) = gd(G) = 1$ holds.

10.8.9 Finite Models for the Classifying Space for the Family of Virtually Cyclic Subgroups

If G is virtually cyclic, a model for EG is $\{\bullet\} = G/G$ which is in particular finite. There is no group known such that EG has a finite G-CW-model and
Conjecture 10.61 (Finite Models for EG). If a group G has a finite G-CW-model for EG, then G is virtually cyclic.

Conjecture 10.61 is known to be true in many cases, since the existence of a finite G-CW-model for EG implies that there is a finite G-CW-model for EG, see [477, Corollary 5.4 (2)], and that there are only finitely many conjugacy classes of infinite virtually cyclic groups of G. Conjecture 10.61 holds for instance for hyperbolic groups, see [477, Corollary 12], elementary amenable groups, see [527, Corollary 5.8], and linear groups, see [883].

10.9 On the Homotopy Type of the Quotient Space of the Classifying Space for Proper Actions

One may think that there are more homotopy classes of CW-complexes than isomorphism classes of groups. Namely, we can assign to any group G its classifying space BG and for two groups G and H the spaces BH and BG are homotopy equivalent if and only if G and H are isomorphic, and there are CW-complexes which are not homotopy equivalent to BG for any group G. However, here is a result due to Leary-Nucinkis [561, Theorem 1], which is in some sense the converse.

Theorem 10.62 (Every CW-complex occurs up to homotopy as quotient of a classifying space for proper group actions). Let X be a CW-complex. Then there exists a group G such that $G \backslash EG$ is homotopy equivalent to X. Moreover one can arrange that G contains a torsionfree subgroup of index two.

Exercise 10.63. Let X be a CW-complex. Show that there exists a $\mathbb{Z}/2$-CW-complex Y such that Y is aspherical and X is homotopy equivalent to the $\mathbb{Z}/2$-quotient space of Y.

Remark 10.64 (Metric Kan-Thurston Theorem). Leary proves a metric Kan-Thurston Theorem in [560, Theorem A]. It yields the following variant of Theorem 10.62; see [560, Theorem 8.3]. Given a group G and proper simplicial G-complex X with connected $G \backslash X$, there exists a group \tilde{G}, a cubical CAT(0)-complex E with simplicial G-action, an epimorphism of groups $p: \tilde{G} \to G$ and a map $f: E \to X$ such that E is a model for EG, the map f is $p: \tilde{G} \to G$-equivariant and for any equivariant homology theory in the sense of Definition 11.9 the pair (p, f) induces for all $n \in \mathbb{Z}$ isomorphisms $\mathcal{H}_n^\tilde{G}(E) \to \mathcal{H}_n^G(X)$. An application to Isomorphism Conjectures is discussed in [560, Section 10].
The understanding of $G\setminus EG$ and $G\setminus EG$ will be important for the computation of the left hand side appearing in the Baum-Conjecture or the Farrell-Jones Conjecture, see Chapter 16.

In contrast to the trivial family $\mathcal{T}R$, where EG and $BG = G\setminus EG$ carry the same information, this is not true for EG and $G\setminus EG$. For instance, $G\setminus EG$ is contractible, if G is the infinite dihedral group $D_\infty \cong \mathbb{Z} \rtimes \mathbb{Z}/2 \cong \mathbb{Z}/2 \ast \mathbb{Z}/2$, what can be seen by direct inspection, or if $G = \text{SL}_3(\mathbb{Z})$, see [834, Corollary on page 8].

10.10 Notes

The notion of a classifying space for a family was introduced by tom Dieck [864].

Classifying spaces for families play a role in computations of equivariant homology and cohomology for compact Lie groups such as equivariant bordism as explained in [865, Chapter 7] and [866, Chapter III].

Classifying spaces for topological groups and appropriate families of subgroups play a key role in the construction of classifying equivariant principal bundles in [619] or the construction of the topological K-cohomology for arbitrary proper equivariant CW-complexes in [672].

More information about classifying spaces for families can be found for instance in [1, 97, 66, 227, 269, 270, 271, 358, 535, 350, 600, 620, 737, 884, 883, 866].

last edited on 25.11.2021
last compiled on March 21, 2022
name of texfile: ic
Chapter 11
Equivariant Homology Theory

11.1 Introduction

This section is devoted to equivariant homology theories. They are key input in the general formulations of the Baum-Connes Conjecture and the Farrell-Jones Conjecture. If one only wants to understand these conjectures, one only needs to browse through the Definition 11.1 of a G-homology theory, nothing more is needed from this chapter. Since G-homology theories are of general importance, we have added more material to this section. It will also be useful for concrete computations of K- and L-groups of group rings and group C^*-algebras based on the Baum-Connes Conjecture and the Farrell-Jones Conjecture.

For a fixed group G, the notion of a G-homology theory H^G_* is the obvious generalization of the notion of a (generalized) homology theory in the non-equivariant sense. An important insight is to pass to an equivariant homology theory H^*_G, see Definition 11.9. Roughly speaking, it assigns to every group G a G-homology theory H^*_G and links for any group homomorphisms $\alpha : H \to G$ the theories H^*_H and H^*_G by a so called induction structure. This global point of view is the key for many applications and computations. Most of the interesting theories arise as equivariant homology theories.

Whenever one has a covariant functor from the category of small connected groupoids GROUPOIDS to the category of spectra SPECTRA, one obtains an associated equivariant homology theory, see Section 11.4. Thus one can construct our main examples for equivariant homology theories, which are based on K- and L-groups of group rings and group C^*-algebras, by extending these notions from groups to groupoids, see Section 11.5.

We will provide tools for computations, namely, the equivariant Atiyah-Hirzebruch spectral sequence, see Subsection 11.6.1, the p-chain spectral sequence, see Subsection 11.6.2, and the equivariant Chern character, see Section 11.7. We will present some concrete examples of such computations in Sections 11.8 and 11.9.

11.2 Basics about G-Homology Theories

In this section we describe the axioms of a (proper) G-homology theory and give some basic examples. The main examples for us will be the sources of the
assembly maps appearing in the Farrell-Jones Conjecture and Baum-Connes Conjecture.

Fix a discrete group G and an associative commutative ring A with unit.

Definition 11.1 (G-homology theory). A G-homology theory H^*_G with values in A-modules is a collection of covariant functors H^*_G from the category of G-CW-pairs to the category of A-modules indexed by $n \in \mathbb{Z}$ together with natural transformations

$$\partial^G_n(X, A): H^G_n(X, A) \to H^G_{n-1}(A) := H^G_{n-1}(A, \emptyset)$$

for $n \in \mathbb{Z}$ such that the following axioms are satisfied:

- **G-homotopy invariance**

 If f_0 and f_1 are G-homotopic G-maps of G-CW-pairs $(X, A) \to (Y, B)$, then $H^G_n(f_0) = H^G_n(f_1)$ for $n \in \mathbb{Z}$;

- **Long exact sequence of a pair**

 Given a pair (X, A) of G-CW-complexes, there is a long exact sequence

 $$\cdots \to H^G_{n+1}(j) \to H^G_{n+1}(X, A) \xrightarrow{\partial^G_{n+1}} H^G_n(A) \xrightarrow{H^G_{n}(i)} H^G_n(X) \xrightarrow{H^G_{n}(j)} H^G_n(X, A) \xrightarrow{\partial^G_{n}} \cdots,$$

 where $i: A \to X$ and $j: X \to (X, A)$ are the inclusions;

- **Excision**

 Let (X, A) be a G-CW-pair and let $f: A \to B$ be a cellular G-map of G-CW-complexes. Equip $(X \cup_f B, B)$ with the induced structure of a G-CW-pair. Then the canonical map $(F, f): (X, A) \to (X \cup_f B, B)$ induces an isomorphism

 $$H^G_n(F, f): H^G_n(X, A) \cong H^G_n(X \cup_f B, B)$$

 for all $n \in \mathbb{Z}$;

- **Disjoint union axiom**

 Let $\{X_i \mid i \in I\}$ be a family of G-CW-complexes. Denote by $j_i: X_i \to \coprod_{i \in I} X_i$ the canonical inclusion. Then the map

 $$\bigoplus_{i \in I} H^G_n(j_i): \bigoplus_{i \in I} H^G_n(X_i) \cong H^G_n\left(\bigcoprod_{i \in I} X_i\right)$$

 is bijective for all $n \in \mathbb{Z}$;

 If H^*_G is defined or considered only for proper G-CW-pairs (X, A), we call it a proper G-homology theory H^*_G with values in A-modules.

Example 11.2 (Bredon Homology). The most basic G-homology theory is Bredon homology, which was originally introduced in [141]. Recall that
Or(G) denotes the orbit category of G. Let X be a G-CW-complex. It defines a contravariant functor from the orbit category Or(G) to the category of CW-complexes by sending G/H to map_G(G/H, X) = X^H. Composing it with the functor “cellular chain complex” yields a contravariant functor

\[C_*^{Or(G)}(X) : Or(G) \to \text{Z-CHCOM} \]

to the category of Z-chain complexes. Let A be a commutative ring and let

\[M : Or(G) \to A-\text{MODULES} \]

be a covariant functor. If N : Or(G) \to Z-\text{MODULES} is a contravariant functor, one can form the tensor product over the orbit category N \otimes_{\text{Or(G)}} M, see for instance [579, 9.12 on page 166]. It is the quotient of the A-module

\[\bigoplus_{G/H \in \text{ob(Or(G))}} N(G/H) \otimes_Z M(G/H) \]

by the A-submodule generated by

\[\{ xf \otimes y - x \otimes fy \mid f : G/H \to G/K, x \in N(G/K), y \in M(G/H) \}, \]

where xf stands for N(f)(x) and fy for M(f)(y). Since this is natural, we obtain a A-chain complex \(C_*^{Or(G)}(X) \otimes_{\text{Or(G)}} M \). The homology of \(C_*^{Or(G)}(X) \otimes_{\text{Or(G)}} M \) is the Bredon homology of X with coefficients in M

\[H^n_G(X; M) := H_n(C_*^{Or(G)}(X) \otimes_{\text{Or(G)}} M). \]

This extends in the obvious way to G-CW-pairs. Thus we get a G-homology theory \(H_*^G \) with values in A-modules.

The description of \(C_*^{Or(G)}(X) \otimes_{\text{Or(G)}} M \) in terms of the orbit category is conceptually the right one since it is intrinsically defined and the basic properties are easily checked following closely the non-equivariant case. For computation, the following explicit description is useful.

Fix G-pushouts

\[
\begin{array}{c}
\prod_{i \in I_n} G/H_i \times S^{n-1} \\
\downarrow \\
\prod_{i \in I_n} G/H_i \times D^n \\
\downarrow \\
\bigoplus_{i \in I_n} q^n_i \\
\end{array}
\xrightarrow{\prod_{i \in I_n} q^n_i} X_{n-1}
\xrightarrow{\prod_{i \in I_n} q^n_i} X_n
\]

as they appear in Definition 10.2. Then the \(n \)-th A-chain module of the A-chain complex \(C_*^{Or(G)}(X) \otimes_{\text{Or(G)}} M \) can be identified with
\[C_n^{∥G}(X) \otimes \Omega(G) M = \bigoplus_{i \in I_n} M(G/H_i). \]

In order to specify the \(n \)-th differential

\[c_n: \bigoplus_{i \in I_n} M(G/H_i) \to \bigoplus_{j \in I_{n-1}} M(G/H_j) \]

we specify for each pair \((i, j) \in I_n \times I_{n-1}\) a \(G \)-homomorphism \(\alpha_{i,j}: M(G/H_i) \to M(G/H_j) \) such that for fixed \(i \in I_n \) there are only finitely many \(j \in I_{n-1} \) such that \(\alpha_{i,j} \neq 0 \).

We begin with the case \(n = 1 \). For \(i \in I_1 \), let \(j(i,+) \) and \(j(i,-) \) be the indices in \(I_0 \) for which \(q^n_i(G/H_i \times \{ \pm 1 \}) \subseteq G/H_j(i, \pm) \) holds. Let \(f(i, \pm): G/H_i \to G/H_j(i, \pm) \) be the map induced by \(q^n_i \). Define for \(i \in I_1 \) and \(j \in I_0 \)

\[\alpha_{i,j} = \begin{cases} M(f(i,+)) - M(f(i,-)) & \text{if } j = j(i,+) \text{ and } j = j(i,-); \\ M(f(i,+)) & \text{if } j = j(i,+) \text{ and } j \neq j(i,-); \\ -M(f(i,-)) & \text{if } j \neq j(i,+) \text{ and } j = j(i,-); \\ 0 & \text{if } j \neq j(i,+) \text{ and } j \neq j(i,-). \end{cases} \]

Next we deal with the case \(n \geq 2 \). Let \(X_{n-1,j} \) be the quotient of \(X_{n-1} \), where we collapse the \((n-2)\)-skeleton and all the equivariant \((n-1)\)-cells except the one for the index \(j \) to a point. The pushout above, but now for \((n-1)\) instead of \(n \), yields a \(G \)-homeomorphism

\[\overline{Q_j^{n-1}}: \bigvee_{G/H_i} S^{n-1} = (G/H_j \times D^{n-1}) / (G/H_j \times S^{n-2}) \xrightarrow{\cong} X_{n-1,j}, \]

where \(\bigvee_{G/H_i} S^{n-1} \) is the one-point union or wedge of as many copies of \(S^{n-1} \) as there are elements in \(G/H_j \). If \(p_{gH_j}: \bigvee_{G/H_i} S^{n-1} \to S^{n-1} \) is the projection onto the summand belonging to \(gH_j \in G/H_j \), \(k: S^{n-1} \to G/H_i \times S^{n-1} \) is the obvious inclusion to the summand belonging to \(eH_i \) and \(pr_j: X_{n-1} \to X_{n-1,j} \) the obvious projection, then we obtain a selfmap of \(S^{n-1} \) by the following composite

\[S^{n-1} \xrightarrow{k} G/H_i \times S^{n-1} \xrightarrow{q^n} X_{n-1} \xrightarrow{pr_j} X_{n-1,j} \]

\[\xrightarrow{\overline{Q_j^{n-1}}} \bigvee_{G/H_j} S^{n-1} \xrightarrow{p_{gH_j}} S^{n-1}. \]

Define \(d_{i,j,gH_j} \in \mathbb{Z} \) to be the mapping degree of the map above. For \(gH_j \in G/H_j^{H_i} \) we obtain a \(G \)-map

\[r_{gH_j}: G/H_i \to G/H_j \quad g'H_i \mapsto g'gH_j. \]
Define
\[\alpha_{i,j} : M(G/H_i) \to M(G/H_j) \]
to be the some of the maps \(\sum_{gH_j \in G/H_j} d_{i,j,gH_j} \cdot M(r_{gH_j}) \). Since because of the compactness of \(S^{n-1} \) there are for fixed \(i \in I_{n-1} \) only finitely many pairs \((j, gH_j) \) for \(j \in I_{n-1} \) and \(gH_j \in G/H_j \) with \(d_{i,j,gH_j} \neq 0 \), the definition of \(\alpha_{i,j} \) makes sense and we can indeed define \(c_n \) by sending \(\{ x_i \mid i \in I_n \} \) to \(\{ \sum_{i \in I_n} \alpha_{i,j}(x_i) \mid j \in I_{n-1} \} \).

Obviously Bredon homology reduces for \(G = \{ 1 \} \) to the cellular homology of a \(CW \)-complex with coefficients in the abelian group \(M \). It is the obvious generalization of this concept to the equivariant setting if one keeps in mind that in the equivariant situation the building blocks are equivariant cells given by \(G \)-spaces \(G/H_i \times D^n \).

Exercise 11.4. Let \(\mathbb{Z}/2 \) act on \(S^2 := \{ (x_0, x_1, x_2) \mid x_i \in \mathbb{R}, x_0^2 + x_1^2 + x_2^2 = 1 \} \) by the involution which sends \((x_0, x_1, x_2) \) to \((x_0, x_1, -x_2) \). Consider the covariant functor
\[R_C : \text{Or}(\mathbb{Z}/2) \to \text{\textsc{Z-modules}} \]
which sends \((\mathbb{Z}/2)/H \) to the complex representation ring \(R_C(H) \), any endomorphism in \(\text{Or}(\mathbb{Z}/2) \) to the identity and the morphism \(\text{pr} : (\mathbb{Z}/2)/\{ 1 \} \to (\mathbb{Z}/2)/(\mathbb{Z}/2) \) to the homomorphism \(R_C(\{ 1 \}) \to R_C(\mathbb{Z}/2) \) given by induction with the inclusion \(\{ 1 \} \to \mathbb{Z}/2 \).

Show that \(S^2 \) becomes a \(\mathbb{Z}/2-CW \)-complex if we take \(\{ (1, 0, 0) \} \) as 0-skeleton, \(\{ (x_0, x_1, 0) \mid x_0^2 + x_1^2 = 1 \} \) as 1-skeleton and \(S^2 \) itself as 2-skeleton and compute the abelian groups \(H_n^{\mathbb{Z}/2}(S^n; R_C) \).

Lemma 11.5. Let \(\mathcal{H}_*^G \) be a \(G \)-homology theory. Let \(X \) be a \(G \)-\(CW \)-complex and \(\{ X_i \mid i \in I \} \) be a directed system of \(G \)-\(CW \)-subcomplexes directed by inclusion such that \(X = \bigcup_{i \in I} X_i \). Then for all \(n \in \mathbb{Z} \) the natural map
\[\text{colim}_{i \in I} \mathcal{H}_n^G(X_i) \xrightarrow{\cong} \mathcal{H}_n^G(X) \]
is bijective.

Proof. The non-equivariant case is treated [856, Proposition 7.53 on page 121] for \(I = \mathbb{N} \). The proof extends extends directly to the equivariant case, provided that \(I = \mathbb{N} \). The proof of the general is left to the reader. \(\Box \)

Let \(\mathcal{H}_*^G \) and \(\mathcal{K}_*^G \) be \(G \)-homology theories. A **natural transformation of \(G \)-homology theories** \(T_* : \mathcal{H}_*^G \to \mathcal{K}_*^G \) is a sequence of natural transformations \(T_n : \mathcal{H}_n^G \to \mathcal{K}_n^G \) of functors from the category of \(G \)-\(CW \)-pairs to the category of \(\Lambda \)-modules which are compatible with the boundary homomorphisms.

Lemma 11.6. Let \(T_* : \mathcal{H}_*^G \to \mathcal{K}_*^G \) be a natural transformation of \(G \)-homology theories. Suppose that \(T_n(G/H) \) is bijective for every homogeneous space \(G/H \) and \(n \in \mathbb{Z} \).
Then $T_n(X,A)$ is bijective for every G-CW-pair (X,A) and $n \in \mathbb{Z}$.

Note that one needs in Lemma 11.6 the existence of the natural transformation T. Namely, there exists two (non-equivariant) homology theories H_\ast and K_\ast such that $H_n(\{\bullet\}) \cong K_n(\{\bullet\})$ holds for $n \in \mathbb{Z}$ but there exists a CW-complex X and $m \in \mathbb{Z}$ such that $H_m(X)$ and $K_m(X)$ are not isomorphic.

An example is topological K-homology theory K_\ast and the homology theory $H_\ast = \bigoplus_{n \in \mathbb{Z}} H_{2n}$ for H_\ast singular homology.

Exercise 11.7. Give the proof of Lemma 11.6.

11.3 Basics about Equivariant Homology Theories

In this section we describe the axioms of a (proper) equivariant homology theory and give some basic examples. The point is that an equivariant homology theory assigns to every group G a G-homology theory and links them by an induction structure. It will play a key role in computations, various proofs and the construction of the equivariant Chern character.

Let $\alpha : H \to G$ be a group homomorphism. Given an H-space X, define the induction of X with α to be the G-space

$$\text{ind}_\alpha X = G \times_\alpha X$$

which is the quotient of $G \times X$ by the right H-action $(g,x) \cdot h := (g \alpha(h), h^{-1}x)$ for $h \in H$ and $(g,x) \in G \times X$. The G-actions comes from $g' \cdot (g,x) = (g'g,x)$. If $\alpha : H \to G$ is an inclusion, we also write ind_G^H instead of ind_α.

Definition 11.9 (Equivariant homology theory). A (proper) equivariant homology theory with values in Λ-modules H_\ast^G assigns to each group G a (proper) G-homology theory H_\ast^G with values in Λ-modules (in the sense of Definition 11.1) together with the following so called induction structure:

Given a group homomorphism $\alpha : H \to G$ and a (proper) H-CW-pair (X,A), there are for every $n \in \mathbb{Z}$ natural homomorphisms

$$\text{ind}_\alpha : H_\ast^H(X,A) \to H_\ast^G(\text{ind}_\alpha(X,A))$$

satisfying:

- Compatibility with the boundary homomorphisms
 $$\partial_\ast^G \circ \text{ind}_\alpha = \text{ind}_\alpha \circ \partial_\ast^H;$$
- Functoriality

Let $\beta : G \to K$ be another group homomorphism. Then we have for $n \in \mathbb{Z}$

$$\text{ind}_{\beta \circ \alpha} = H_\ast^K(f_1) \circ \text{ind}_\beta \circ \text{ind}_\alpha : H_\ast^H(X,A) \to H_\ast^K(\text{ind}_{\beta \circ \alpha}(X,A)),$$
where \(f_1 : \text{ind}_K \circ \text{ind}_n (X,A) \xrightarrow{\simeq} \text{ind}_{K \cdot n} (X,A) \), \((k, g, x) \mapsto (k \beta(g), x)\) is the natural \(K\)-homeomorphism;

- Compatibility with conjugation

For \(n \in \mathbb{Z} \), \(g \in G \) and a (proper) \(G\)-CW-pair \((X, A)\) the homomorphism \(\text{ind}_{c(g)} : G \to G \) satisfies
\[
\text{ind}_{c(g)} : \mathcal{H}_n^G(X,A) \to \mathcal{H}_n^G(\text{ind}_{c(g)}(G) X,A)) \text{ agrees with the composite }
\]
\[
\mathcal{H}_n^G(X,A) \xrightarrow{\text{ind}_{c(g)}} \mathcal{H}_n^G(G \times_{c(g)} (X,A)) \text{ which sends } x \mapsto (1,g^{-1}x) \text{ in } G \times_{c(g)} (X,A);
\]

- Bijectivity

If \(\ker(\alpha) \) acts freely on \(X \setminus A \), then \(\text{ind}_n : \mathcal{H}_n^H(X,A) \to \mathcal{H}_n^G(\text{ind}_n(X,A)) \) is bijective for all \(n \in \mathbb{Z} \).

Exercise 11.11. Let \(\mathcal{H}_n^G \) be an equivariant homology theory. Show for any group \(G \), any element \(g \in G \) and \(n \in \mathbb{Z} \) that induction with \(c(g) : G \to G \) induces the identity on \(\mathcal{H}_n^G(\{\bullet\}) \).

We will later need

Lemma 11.12. Let \(\mathcal{H}_n^G \) be a (proper) equivariant homology theory. Consider (finite) subgroups \(H, K \subset G \) and an element \(g \in G \) with \(gHg^{-1} \subset K \). Let \(R_{g^{-1}} : G/H \to G/K \) be the \(G\)-map sending \(g' H \) to \(g' g^{-1} K \) and \(c(g) : H \to K \) be the homomorphism sending \(h \) to \(g h g^{-1} \). Let \(\text{pr}_1 : (\text{ind}_{c(g)} : H \to K \{\bullet\}) \to \{\bullet\} \) be the projection. Then the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{H}_n^H(\{\bullet\}) & \xrightarrow{\text{ind}_n^G} & \mathcal{H}_n^K(\{\bullet\}) \\
\downarrow \text{ind}_n^G & & \downarrow \text{ind}_n^G \\
\mathcal{H}_n^G(G/H) & \xrightarrow{\text{ind}_n^G(R_{g^{-1}})} & \mathcal{H}_n^G(G/K)
\end{array}
\]

Proof. Let \(f_1 : \text{ind}_{c(g)} : G \to G \text{ind}_H^G(\{\bullet\}) \to \text{ind}_F^G \text{ind}_{c(g)} : H \to K \{\bullet\} \) be the bijective \(G\)-map sending \((g_1, g_2, \{\bullet\})\) in \(G \times_{c(g)} G \times_H \{\bullet\} \) to \((g_1 g_2 g^{-1}, 1, \{\bullet\})\) in \(G \times_{K \cdot K} X \times_{c(g)} \{\bullet\} \). The condition that induction is compatible with composition of group homomorphisms means precisely that the composite

\[
\mathcal{H}_n^H(\{\bullet\}) \xrightarrow{\text{ind}_n^G \circ \text{ind}_F^G} \mathcal{H}_n^G(\{\bullet\}) \xrightarrow{\text{ind}_{c(g)} : G \to G} \mathcal{H}_n^G(\text{ind}_{c(g)} : G \to G \text{ind}_H^G(\{\bullet\}))
\]

agrees with the composite

\[
\mathcal{H}_n^H(\{\bullet\}) \xrightarrow{\text{ind}_{c(g)} : H \to K} \mathcal{H}_n^K(\{\bullet\}) \xrightarrow{\text{ind}_n^G \circ \text{ind}_{c(g)} : H \to K \{\bullet\}} \mathcal{H}_n^G(\text{ind}_n^G \circ \text{ind}_{c(g)} : H \to K \{\bullet\}).
\]

Naturality of induction implies \(\mathcal{H}_n^G(\text{ind}_K^G \circ \text{ind}_n^G \circ \text{ind}_K^G) = \mathcal{H}_n^G(\text{ind}_K^G \circ \text{ind}_n^G \circ \text{ind}_K^G) \). Hence the following diagram commutes
Example 11.13 (Borel homology). Let \(K \) be a homology theory for (non-equivariant) \(CW \)-pairs with values in \(\Lambda \)-modules. Examples are singular homology, oriented bordism theory or topological \(K \)-homology. Then we obtain two equivariant homology theories with values in \(\Lambda \)-modules in the sense of Definition [11.9] by the following constructions

\[
\begin{align*}
\mathcal{H}^G_n(X,A) &= K_n(G \times \alpha X); \\
\mathcal{H}^G_n(X,A) &= K_n(EG \times_G (X, A)).
\end{align*}
\]

The second one is called the equivariant Borel homology associated to \(K \).

By the axioms of \(\text{ind}_c(G): G \to G \) for the map \(f_2: G/H \to \text{ind}_c(G): G \to G/H \), then the map \(\text{ind}_c(G) \circ f_1 \circ f_2 \) is just \(R_{g^{-1}} \), Lemma [11.12] follows.

By the axioms of \(\text{ind}_c(G): G \to G \) for the map \(f_2: G/H \to \text{ind}_c(G): G \to G/H \), then the map \(\text{ind}_c(G) \circ f_1 \circ f_2 \) is just \(R_{g^{-1}} \), Lemma [11.12] follows.

Example 11.14 (Equivariant bordism). For a proper \(G-CW \)-pair \((X, A) \), one can define the \(G \)-bordism group \(N^G_n(X, A) \) as the abelian group of \(G \)-bordism classes of maps \(f: (M, \partial M) \to (X, A) \) whose sources are smooth manifolds with cocompact proper smooth \(G \)-actions. Cocompact means that the quotient space \(G \backslash M \) is compact. The definition is analogous to the one in the non-equivariant case. This is also true for the proof that this defines a proper \(G \)-homology theory. There is an obvious induction structure coming from induction of equivariant spaces, which is, however, only defined if the kernel of \(\alpha \) acts freely on \(X \backslash A \). It is well-defined because of the following fact. If \(\alpha: H \to G \) is a group homomorphism, \(M \) is an smooth \(H \)-manifold with cocompact proper smooth \(H \)-action, and \(\ker(\alpha) \) acts freely, then \(\text{ind}_\alpha M \) is a smooth \(G \)-manifold with cocompact proper smooth \(G \)-action. The boundary of \(\text{ind}_\alpha M \) is \(\text{ind}_\alpha \partial M \).

Example 11.15 (Equivariant topological \(K \)-theory). We have explained the notion of equivariant topological \(K \)-theory \(K^*_\alpha \) in [9.67]. If \(R_G(H) \) denotes
11.4 Constructing Equivariant Homology Theories Using Spectra

the complex representation ring of the finite subgroup $H \subseteq G$, then

$$K_n^G(G/H) \cong K_n^H(\{\bullet\}) \cong \begin{cases} R_C(H) & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$

Exercise 11.16. Compute $K_\ast^{D\mathcal{E}}(E D_{\infty})$.

11.4 Constructing Equivariant Homology Theories Using Spectra

We briefly fix some conventions concerning spectra. Let SPACES^+ be the category of pointed compactly generated spaces. (One may also work with weakly Hausdorff spaces.) Here the objects are (compactly generated) spaces X with base points for which the inclusion of the base point is a cofibration. Morphisms are pointed maps. If X is a space, denote by X_+ the pointed space obtained from X by adding a disjoint base point. For two pointed spaces (X, x) and (Y, y) define their smash product to be the pointed space

$$X \wedge Y = X \times Y / (\{x\} \times Y \cup X \times \{y\}),$$

and the reduced cone to be the pointed space

$$\text{cone}(X) := X \times [0, 1] / (X \times \{1\} \cup \{x\} \times [0, 1]).$$

A spectrum $E = \{(E(n), \sigma(n)) \mid n \in \mathbb{Z}\}$ is a sequence of pointed spaces $\{E(n) \mid n \in \mathbb{Z}\}$ together with pointed maps called structure maps $\sigma(n) : E(n) \wedge S^1 \to E(n + 1)$. A map of spectra $f : E \to E'$ is a sequence of maps $f(n) : E(n) \to E'(n)$ which are compatible with the structure maps $\sigma(n)$, i.e., we have $f(n + 1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge \text{id}_{S^1})$ for all $n \in \mathbb{Z}$. Maps of spectra are sometimes called functions in the literature, they should not be confused with the notion of a map of spectra in the stable category, see [13, III.2.]. The category of spectra and maps will be denoted SPECTRA. Recall that the homotopy groups of a spectrum are defined by

$$\pi_i(E) := \colim_{k \to \infty} \pi_{i+k}(E(k)),$$

where the ith structure map of the system $\pi_{i+k}(E(k))$ is given by the composite

$$\pi_{i+k}(E(k)) \xrightarrow{\sigma} \pi_{i+k+1}(E(k) \wedge S^1) \xrightarrow{\sigma(k)} \pi_{i+k+1}(E(k + 1))$$
of the suspension homomorphism S and the homomorphism induced by the structure map. A \textit{weak equivalence} of spectra is a map $f: E \rightarrow F$ of spectra inducing an isomorphism on all homotopy groups. A spectrum E is called an \textit{Ω-spectrum} if the adjoint $E_n \rightarrow E_{n+1}$ of each structure map is a weak homotopy equivalence.

Given a spectrum E and a pointed space X, we can define their smash product $X \wedge E$ by $(X \wedge E)(n) := X \wedge E(n)$ with the obvious structure maps. It is a classical result that a spectrum E defines a homology theory by setting

$$H_n(X, A; E) = \pi_n ((X_+ \cup A_+ \text{ cone}(A_+)) \wedge E).$$

We want to extend this to G-homology theories. This requires the consideration of spaces and spectra over the orbit category. Our presentation follows \cite{[252]}, where more details can be found.

In the sequel \mathcal{C} is a small category. Our main example will be the orbit category $\text{Or}(G)$.

\textbf{Definition 11.20.} A \textit{covariant (contravariant) \mathcal{C}-space} X is a covariant (contravariant) functor $X: \mathcal{C} \rightarrow \text{SPACES}$.

A map between \mathcal{C}-spaces is a natural transformation of such functors. Analogously a \textit{pointed \mathcal{C}-space} is a functor from \mathcal{C} to SPACES^+ and a \mathcal{C}-spectrum a functor to SPECTRA.

\textbf{Example 11.21.} Let Y be a left G-space. Define the associated \textit{contravariant $\text{Or}(G)$-space} map$_G(-, Y)$ by

$$\text{map}_G(-, Y): \text{Or}(G) \rightarrow \text{SPACES}, \; G/H \mapsto \text{map}_G(G/H, Y) = Y^H.$$

If Y has a G-invariant base point, then $\text{map}_G(-, Y)$ takes values in pointed spaces.

Let X be a contravariant and Y be a covariant \mathcal{C}-space. Define their \textit{balanced product} to be the space

$$(11.22) \quad X \times_{\mathcal{C}} Y := \coprod_{c \in \text{ob}(\mathcal{C})} X(c) \times Y(c)/ \sim$$

where \sim is the equivalence relation generated by $(x\phi, y) \sim (x, \phi y)$ for all morphisms $\phi: c \rightarrow d$ in \mathcal{C} and points $x \in X(d)$ and $y \in Y(c)$. Here $x\phi$ stands for $X(\phi)(x)$ and ϕy for $Y(\phi)(y)$. If X and Y are pointed, then one defines analogously their \textit{balanced smash product} to be the pointed space

$$(11.23) \quad X \wedge_{\mathcal{C}} Y := \bigvee_{c \in \text{ob}(\mathcal{C})} X(c) \wedge Y(c)/ \sim.$$
In [252] the notation $X \otimes_C Y$ was used for this space. Performing the same construction level-wise, one defines the balanced smash product $X \wedge_C E$ of a contravariant pointed C-space and a covariant C-spectrum E.

The proof of the next result is analogous to the non-equivariant case. Details can be found in [252, Lemma 4.4], where also cohomology theories are treated.

Theorem 11.24 (Constructing G-Homology Theories). Let E be a covariant $\text{Or}(G)$-spectrum. It defines a G-homology theory $H^G_*(-; E)$ by

$$H^G_n(X, A; E) := \pi_n\left(\text{map}_G\left(-, (X \cup_A \text{cone}(A+)) \wedge_{\text{Or}(G)} E\right)\right).$$

In particular we have

$$H^G_n(G/H; E) = \pi_n(E(G/H)).$$

A version of the Brown representability Theorem is proved for G-homology theories and $\text{Or}(G)$-spectra in [65], see also [267, Corollary 1.3.11].

Example 11.25 (Bredon homology in terms of spectra). Consider a covariant functor $M : \text{Or}(G) \to \text{Z-MODULES}$. Composing it with the functor sending a Z-module N to its Eilenberg-MacLane spectrum H_N, which is a spectrum such that $\pi_0(H_N) \cong N$ and $\pi_n(H_N) = \{0\}$ for $n \neq 0$, yields a covariant functor

$$H_M : \text{Or}(G) \to \text{SPECTRA}.$$

Then the G-homology theory $H^G_*(-; H_M)$ associated to H_M in Theorem 11.24 agrees with Bredon homology $H^*_G(-; M)$ defined in Example 11.2.

Recall that we seek an equivariant homology theory and not only a G-homology theory. If the $\text{Or}(G)$-spectrum in Theorem 11.24 is obtained from a GROUPOIDS-spectrum in a way we will now describe, then automatically we obtain the desired induction structure.

Let GROUPOIDS be the category of small connected groupoids with covariant functors as morphisms. Recall that a groupoid is a category in which all morphisms are isomorphisms and that it is called connected if between any two objects there exists an isomorphism between them. A covariant functor $f : \mathcal{G}_0 \to \mathcal{G}_1$ of groupoids is called injective, if for any two objects x, y in \mathcal{G}_0 the induced map $\text{mor}_{\mathcal{G}_0}(x, y) \to \text{mor}_{\mathcal{G}_1}(f(x), f(y))$ is injective. (We are not requiring that the induced map on the set of objects is injective.) Let $\text{GROUPOIDS}^{\text{inj}}$ be the subcategory of GROUPOIDS with the same objects and injective functors as morphisms. For a G-set S we denote by $\mathcal{G}^G(S)$ its associated transport groupoid. Its objects are the elements of S. The set of morphisms from s_0 to s_1 consists of those elements $g \in G$ which satisfy $gs_0 = s_1$. Composition in $\mathcal{G}^G(S)$ comes from the multiplication in G. It is connected if and only if G acts transitively on S. Thus we obtain for a group G a covariant functor
Equivariant Homology Theory

\(G^G : \text{Or}(G) \rightarrow \text{GROUPOIDS}^{\text{inj}} \), \(G/H \mapsto G^G(G/H) \).

A functor of small categories \(F : \mathcal{C} \rightarrow \mathcal{D} \) is called an equivalence if there exists a functor \(G : \mathcal{D} \rightarrow \mathcal{C} \) such that both \(F \circ G \) and \(G \circ F \) are naturally equivalent to the identity functor. This is equivalent to the condition that \(F \) induces a bijection on the set of isomorphisms classes of objects and for any objects \(x, y \in \mathcal{C} \) the map \(\text{mor}_\mathcal{C}(x, y) \rightarrow \text{mor}_\mathcal{D}(F(x), F(y)) \) induced by \(F \) is bijective.

Theorem 11.27 (Constructing equivariant homology theories using spectra). Consider a covariant \(\text{GROUPOIDS} \)-spectrum \(E : \text{GROUPOIDS} \rightarrow \text{SPECTRA} \).

Suppose that \(E \) respects equivalences, i.e., it sends an equivalence of groupoids to a weak equivalence of spectra. Then \(E \) defines an equivariant homology theory

\[H^*_E(_; E), \]

whose underlying \(G \)-homology theory for a group \(G \) is the \(G \)-homology theory associated to the covariant \(\text{Or}(G) \)-spectrum \(E \circ G^G : \text{Or}(G) \rightarrow \text{SPECTRA} \) in the previous Theorem 11.24, i.e.,

\[H^*_G(X, A; E) = H^*_G(X, A; E \circ G^G). \]

In particular we have

\[H_n^G(G/H; E) \cong H_n^H(\{\bullet\}; E) \cong \pi_n(E(I(H))), \]

where \(I(H) \) denotes \(H \) considered as a groupoid with one object. The whole construction is natural in \(E \).

Proof. We have to specify the induction structure for a homomorphism \(\alpha : H \rightarrow G \). We only sketch the construction in the special case \(A = \emptyset \).

The functor induced by \(\alpha \) on the orbit categories is denoted in the same way

\[\alpha : \text{Or}(H) \rightarrow \text{Or}(G), \quad H/L \mapsto \text{ind}_\alpha(H/L) = G/\alpha(L). \]

There is an obvious natural transformation of covariant functors \(\text{Or}(H) \rightarrow \text{GROUPOIDS} \)

\[T : G^H \rightarrow G^G \circ \alpha. \]

Its evaluation at \(H/L \) is the functor \(G^H(H/L) \rightarrow G^G(G/\alpha(L)) \) which sends an object \(hL \) to the object \(\alpha(h)\alpha(L) \) and a morphism given by \(h \in H \) to the morphism \(\alpha(h) \in G \). The desired homomorphism

\[\text{ind}_\alpha : H^*_n(X; E \circ G^H) \rightarrow H^*_n(X; \text{E} \circ G^G) \]

is induced by the following map of spectra.
11.4 Constructing Equivariant Homology Theories Using Spectra

\[
\alpha \mapsto \text{map}_H(-, X_+)^{\wedge_{\text{Or}(H)}} E \circ G^H \xrightarrow{\text{id} \wedge \text{E}(T)} \text{map}_H(-, X_+)^{\wedge_{\text{Or}(H)}} E \circ G^G \circ \alpha \xrightarrow{\sim} \text{map}_G(-, \text{ind}_\alpha X_+)^{\wedge_{\text{Or}(G)}} E \circ G^G.
\]

Here \(\alpha\) is the pointed \(\text{Or}(G)\)-space which is obtained from the pointed \(\text{Or}(H)\)-space \(\text{map}_H(-, X_+)\) by induction, i.e., by taking the balanced product over \(\text{Or}(H)\) with the (discrete) \(\text{Or}(H)\)-\(\text{Or}(G)\) biset \(\text{mor}_{\text{Or}(G)}(\alpha, \alpha(\alpha))\), see [252, Definition 1.8]. The second map is given by the adjunction homeomorphism of induction \(\alpha_*\) and restriction \(\alpha^*\), see [252, Lemma 1.9].

The third map is the homeomorphism of \(\text{Or}(G)\)-spaces which is the adjoint of the obvious map of \(\text{Or}(H)\)-spaces \(\text{map}_H(-, X_+) \rightarrow \alpha^* \text{map}_G(-, \text{ind}_\alpha X_+)\) whose evaluation at \(H/L\) is given by \(\text{ind}_\alpha\).

It remains to show \(\text{ind}_\alpha\) is a weak equivalence, provided that \(\ker(\alpha)\) acts freely on \(X\). Because the second and third maps appearing in the definition above are homeomorphisms, this boils down to prove that \(\text{id} \wedge \text{E}(T)\) is a weak equivalence, provided that \(\ker(\alpha)\) acts freely on \(X\). This follows from the fact that \(\text{T}(H/L)\) is an equivalence of groupoids and hence \(\text{E}(T)\)(\(G/L\)) is a weak equivalence of spectra for all subgroups \(L \subseteq G\) appearing as isotropy group in \(X\) since for such \(L\) the restriction of \(\alpha\) to \(L\) induces a bijection \(L \rightarrow \alpha(L)\).

Remark 11.28. In some cases the functor \(\text{E}\) to \(\text{SPECTRA}\) is only defined on \(\text{GROUPOIDS}^m\). Then one still gets an equivariant homology theory with the exception that for the induction structure one has to require that the group homomorphisms \(\alpha: H \rightarrow G\) are injective. This does exclude the projection \(G \rightarrow \{1\}\).

Example 11.29 (Bredon Homology). Let \(M\) be a covariant functor from \(\text{GROUPOIDS}\) to \(\text{Z-MODULES}\). Then Bredon homology yields an equivariant homology theory if we define its value at \(G\) as the Bredon homology with coefficients in the covariant functor \(M^G: \text{Or}(G) \rightarrow \text{Z-MODULES}\) sending to \(G/H\) to \(M(G^G(G/H))\). This is the same as the equivariant homology theory we obtain from applying Theorem [11.27] to the functor \(\text{GROUPOIDS} \rightarrow \text{SPECTRA}\) which sends a groupoid \(\mathcal{G}\) to the Eilenberg-MacLane spectrum associated with \(M(G)\).

Example 11.30 (Borel homology in terms of spectra). Let \(E\) be a spectrum. Let \(H(-, E)\) be the (non-equivariant) homology theory associated to \(E\). Given a groupoid \(\mathcal{G}\), denote by \(\mathcal{E}\mathcal{G}\) its classifying space. If \(\mathcal{G}\) has only one object and the automorphism group of this object is \(G\), then \(\mathcal{E}\mathcal{G}\) is a model for \(E\mathcal{G}\). We obtain two covariant functors

\[
\begin{align*}
\alpha_E: \text{GROUPOIDS} & \rightarrow \text{SPECTRA}, \quad \mathcal{G} \mapsto E; \\
\beta_E: \text{GROUPOIDS} & \rightarrow \text{SPECTRA}, \quad \mathcal{G} \mapsto E\mathcal{G} \wedge E.
\end{align*}
\]
Thus we obtain two equivariant homology theories $H^*_n(-; c_E)$ and $H^*_n(-; b_E)$ from Theorem 11.27. These coincide with the ones associated to $K_*=H(-; E)$ in Example 11.13. Namely, we get for any group G and any G-CW-complex X natural isomorphisms

(11.31) $H^G_n(X; c_E) \cong H_n(G\backslash X; E)$;

(11.32) $H^G_n(X; b_E) \cong H_n(EG \times_G X; E)$.

Exercise 11.33. Let E and F be covariant functors from GROUPOIDS to SPECTRA. Let $t: E \to F$ be a natural transformation such that for every $G \in \text{ob}($GROUPOIDS$)$ the map $t(G): E(G) \to F(G)$ is a weak equivalence of spectra.

Show that the induced transformation of equivariant homology theories $H^*_n(-; t): H^*_n(-; E) \to H^*_n(-; F)$ is a natural equivalence.

11.5 Equivariant Homology Theories Associated to K- and L-Theory

In this section we explain our main examples for covariant functors from GROUPOIDS or GROUPOIDS$^{\text{inj}}$ to SPECTRA.

Let RINGS be the category of associative rings with unit. Let $\text{RINGS}^{\text{inv}}$ be the category of rings with involution. Let C^*-ALGEBRAS be the category of C^*-algebras. There are classical functors for $j \in -\infty \cup \{j \in \mathbb{Z} \mid j \leq 2\}$

(11.34) $K: \text{RINGS} \to \text{SPECTRA}$;

(11.35) $L^{(j)}: \text{RINGS}^{\text{inv}} \to \text{SPECTRA}$;

(11.36) $K^{\text{top}}: C^*$-ALGEBRAS $\to \text{SPECTRA}$.

The construction of such a non-connective algebraic K-theory functor (11.34) goes back to Gersten [379] and Wagoner [885]. The spectrum for quadratic algebraic L-theory (11.35) is constructed by Ranicki in [756]. In a more geometric formulation it goes back to Quinn [740]. In the topological K-theory case a construction for (11.36) using Bott periodicity for C^*-algebras can easily be derived from the Kuiper-Mingo Theorem, see [819] Section 2.2. The homotopy groups of these spectra give the algebraic K-groups of Quillen (in high dimensions) and of Bass (in negative dimensions), the decorated quadratic L-theory groups, and the topological K-groups of C^*-algebras.

We emphasize that in all three cases we need the non-connective versions of the spectra, i.e., the homotopy groups in negative dimensions are non-trivial in general, in order to ensure later that the formulations of the various Isomorphisms Conjectures do have a chance to be true.
Now let us fix a coefficient ring R (with involution). Then sending a group G to the group ring RG yields functors $R(-): \text{GROUPS} \to \text{RINGS}$, respectively $R(-): \text{GROUPS} \to \text{RINGS}^{\text{inv}}$, where GROUPS denotes the category of groups. Let $\text{GROUPS}^{\text{inj}}$ be the category of groups with injective group homomorphisms as morphisms. Taking the reduced group C^*-algebra defines a functor $C^*_r: \text{GROUPS}^{\text{inj}} \to C^*-\text{ALGEBRAS}$. The composition of these functors with the functors (11.34), (11.35) and (11.36) above yields functors

(11.37) \quad K^R(-): \text{GROUPS} \to \text{SPECTRA};
(11.38) \quad L^{(j)}R(-): \text{GROUPS} \to \text{SPECTRA};
(11.39) \quad K^\text{top}C^*_r(-; F): \text{GROUPS}^{\text{inj}} \to \text{SPECTRA},

where $F = \mathbb{R}$ or \mathbb{C}. They satisfy

$$
\pi_n(K^R(G)) = K_n(RG);
$$
$$
\pi_n(L^{(j)}R(G)) = L^{(j)}_n(RG);
$$
$$
\pi_n(K^\text{top}C^*_r(G; F)) = K_n(C^*_r(G; F)),
$$

for all groups G and $n \in \mathbb{Z}$. The next result essentially says that these functors can be extended to groupoids.

Theorem 11.40 (K- and L-Theory Spectra over Groupoids). Let R be a ring (with involution). There exist covariant functors

(11.41) \quad K^R: \text{GROUPOIDS} \to \text{SPECTRA};
(11.42) \quad L^{(j)}R: \text{GROUPOIDS} \to \text{SPECTRA};
(11.43) \quad K^\text{top}F: \text{GROUPOIDS}^{\text{inj}} \to \text{SPECTRA},

with the following properties:

(i) If $F: \mathcal{G}_0 \to \mathcal{G}_1$ is an equivalence of (small) groupoids, then the induced maps $K^R(F)$, $L^{(j)}R(F)$ and $K^\text{top}F$ are weak equivalences of spectra;
(ii) Let $I: \text{GROUPS} \to \text{GROUPOIDS}$ be the functor sending G to G considered as a groupoid, i.e. to $G(G/G)$. This functor restricts to a functor $\text{GROUPS}^{\text{inj}} \to \text{GROUPOIDS}^{\text{inj}}$.

There are natural transformations from $K^R(-)$ to $K^R \circ I$, from $L^{(j)}R(-)$ to $L^{(j)}_R \circ I$ and from $K^\text{top}F(-)$ to $K^\text{top} \circ I$ such that the evaluation of each of these natural transformations at a given group is an equivalence of spectra;

(iii) For every group G and all $n \in \mathbb{Z}$ we have

$$
\pi_n(K^R \circ I(G)) \cong K_n(RG);
$$
$$
\pi_n(L^{(j)}_R \circ I^{\text{inv}}(G)) \cong L^{(j)}_n(RG);
$$
$$
\pi_n(K^\text{top} \circ I(G)) \cong K_n(C^*_r(G; F)).
$$
314 11 Equivariant Homology Theory

Proof. We only sketch the strategy of the proof. More details can be found in [252, Section 2].

Let \(G\) be a groupoid. Similar to the group ring \(RG\) one can define an \(R\)-linear category \(RG\) by taking the free \(R\)-modules over the morphism sets of \(G\). Composition of morphisms is extended \(R\)-linearly. By formally adding finite direct sums one obtains an additive category \(RG\). Pedersen-Weibel [719], see also [186] and [616], define a non-connective algebraic \(K\)-theory functor which digests additive categories and can hence be applied to \(RG\). For the comparison result one uses that for every ring \(R\) (in particular for \(RG\)) the Pedersen-Weibel functor applied to \(R\) (a small model for the category of finitely generated free \(R\)-modules) yields the non-connective \(K\)-theory of the ring \(R\) and that it sends equivalences of additive categories to equivalences of spectra. In the \(L\)-theory case \(RG\) inherits an involution and one applies the construction of Ranicki [756, Example 13.6 on page 139] to obtain the \(L^{(1)} = L^h\)-version. The versions for \(j \leq 1\) can be obtained by a construction which is analogous to the Pedersen-Weibel construction for \(K\)-theory, compare Carlsson-Pedersen [190, Section 4], or by iterating the Shaneson splitting and then finally passing to a homotopy colimit, compare on the group level with [757, Section 17]. In the \(C^\ast\)-case one obtains from \(G\) a \(C^\ast\)-category \(C^\ast_G(G)\) and assigns to it its topological \(K\)-theory spectrum. There is a construction of the topological \(K\)-theory spectrum of a \(C^\ast\)-category in Davis-Lück [252, Section 2]. However, the construction given there depends on two statements, which appeared in [350, Proposition 1 and Proposition 3], and those statements are incorrect, as already pointed out by Thomason in [861]. The construction in [252, Section 2] can easily be fixed but instead we recommend the reader to look at the more recent construction of Joachim [470].

\[\square\]

Exercise 11.44. Compute \(H^n_{DG}(ED_{\infty}; K_R)\) for \(n \leq 0\) and \(R = \mathbb{Z}, \mathbb{C}\).

11.6 Two Spectral Sequences

In this section we state two spectral sequences which are useful for computations of equivariant homology theories.

11.6.1 The Equivariant Atiyah-Hirzebruch Spectral Sequence

Theorem 11.45 (The equivariant Atiyah-Hirzebruch spectral sequence). Let \(G\) be a group and \(H^G_\ast\) be a \(G\)-homology theory with values in \(\Lambda\)-modules in the sense of Definition 11.1. Let \(X\) be a \(G\)-CW-complex.

Then there is a spectral (homology) sequence of \(\Lambda\)-modules
whose E_2-term is given by the Bredon homology of Example 11.3

$$E^2_{p,q} = H^G_p(X; \mathcal{H}_q^G(-))$$

for the coefficient system given by the covariant functor

$\text{Or}(G) \to \Lambda$-MODULES, $G/H \mapsto \mathcal{H}_q^G(G/H)$.

The E^∞-term is given by

$$E^\infty_{p,q} = \text{colim}_{r \to \infty} E^r_{p,q}.$$

This spectral sequence converges to $\mathcal{H}^G_{p+q}(X)$, i.e., there is an ascending filtration $F_{p,m-p} \mathcal{H}^G_{p+q}(X)$ of $\mathcal{H}^G_{p+q}(X)$ such that

$$F_{p,q} \mathcal{H}^G_{p+q}(X)/F_{p-1,q+1} \mathcal{H}^G_{p+q}(X) \cong E^\infty_{p,q}.$$

The construction of the equivariant Atiyah-Hirzebruch spectral sequence is based on the filtration of X by its skeletons. More details, actually in the more general context of spaces over a category, and a version for cohomology can be found in [252, Theorem 4.7].

Exercise 11.46. Let X be a proper G-CW-complex such that X/G with the induced CW-structure has no odd-dimensional cells. Show that $K^G_n(X) = 0$ for odd $n \in \mathbb{Z}$, where K^G_* denotes the equivariant topological complex K-homology. Show that $K^G_n(X)$ for even $n \in \mathbb{Z}$ is a finitely generated free abelian group, if we additionally assume that X/G is finite.

11.6.2 The p-Chain Spectral Sequence

Let G be a group. Recall that for a subgroup $H \subseteq G$ we denote by $N_G H$ its normalizer and define the Weyl group $W_G H := N_G H/H$. We obtain a bijection

$$W_G H \cong \text{aut}_G(G/H), \quad gH \mapsto (R_{g^{-1}} : G/H \to G/H),$$

where $R_{g^{-1}}$ maps $g'H$ to $g'g^{-1}H$. Hence for any two subgroups $H, K \subseteq G$ the set $\text{map}_G(G/H, G/K)$ inherits the structure of a $W_G K-W_G H$-biset.

A p-chain is a sequence of conjugacy classes of finite subgroups

$$(H_0) < \cdots < (H_p)$$
where \((H_{i-1}) < (H_i)\) means that \(H_{i-1}\) is subconjugated, but not conjugated to \((H_i)\). For \(p \geq 1\) define a \(W_G H_p\)-\(W_G H_0\)-set associated to such a \(p\)-chain by

\[
S((H_0) < \cdots < (H_p)) := \text{map}_G(G/H_{p-1}, G/H_p) \times_{W_G H_{p-1}} \cdots \times_{W_G H_1} \text{map}_G(G/H_0, G/H_1).
\]

For \(p = 0\) put \(S(H_0) = W_G H_0\).

Let \(X\) be a \(G\)-\(CW\)-complex. Then \(X^H = \text{map}_G(G/H, X)\) inherits a right \(W_G H\)-action. In particular we get for a \(p\)-chain \((H_0) < \cdots < (H_p)\) a right \(W_G H_0\)-space \(X(G/H_p) \times_{W_G H_p} S((H_0) < \cdots < (H_p))\).

Theorem 11.47 (The \(p\)-chain spectral sequence). Let \(G\) be a group and \(E\) be a covariant \(\text{Or}(G)\)-spectrum. Let \(X\) be a proper \(G\)-\(CW\)-complex.

Then there is a spectral sequence of \(A\)-modules, called \(p\)-chain spectral sequence, which converges to \(H^G_{p+q}(X; E)\) and whose \(E^1\)-term is

\[
E^1_{p,q} = \bigoplus_{(H_0) < \cdots < (H_p)} \pi_q \left(\left(EW_G H_0 \times (X^{H_p} \times_{W_G H_p} S((H_0) < \cdots < (H_p))) \right)_+ \right. \\
\left. \left. \quad \wedge_{W_G H_0} E(G/H_0) \right) \right),
\]

where \((H_0) < \cdots < (H_p)\) runs through all \(p\)-chains consisting of finite subgroups \(H_i \leq G\) with \(X^{H_p} \neq \emptyset\).

The \(p\)-chain spectral sequence is established in [253] Theorem 2.5 (a) and Example 2.14, actually more generally for spaces over a category. There is also a more complicated version, where one drops the condition that \(X\) is proper. Since then the book-keeping gets more involved and in most applications \(X\) is proper, we only deal with the proper case here.

Note that the complexity of the equivariant Atiyah-Hirzebruch spectral sequence grows with the natural number \(n\) for which one wants to compute \(H^G_n(X)\). The complexity of the \(p\)-chain spectral sequence growth with the maximum over all natural numbers \(p\) for which there is a \(p\)-chain \((H_0) < \cdots < (H_p)\) of finite subgroups such that \(X^{H_p}\) is non-empty.

Example 11.48 (Free \(G\)-\(CW\)-complex). Consider the situation of Theorem [11.47] and assume additionally that \(X\) is a free \(G\)-\(CW\)-complex. Then \(E^1_{p,q} = 0\) for \(p \geq 1\) and hence the \(p\)-chain spectral sequence predicts

\[
H^G_q(X; E) = \pi_q \left((EG \times X)_+ \wedge_G E(G) \right).
\]

But this is obviously true since the right hand side of the last equation is by definition \(H^G_q(EG \times X; E)\) and the projection \(EG \times X \to X\) is a \(G\)-homotopy equivalence and induces an isomorphism \(H^G_q(EG \times X; E) \xrightarrow{\cong} H^G_q(X; E)\).
Example 11.49 (G is finite cyclic of prime order). Let G be a finite cyclic group of prime order. Then G has only two subgroups, namely, G and $\{1\}$. Let E be a covariant $\text{Or}(G)$-spectrum and X be a G-CW-complex. The p-chain spectral sequence of Theorem 11.47 satisfies $E^1_{p,q} = 0$ for $p \geq 2$ and hence reduces to a long exact sequence

$$\ldots \rightarrow E^1_{1,n} \xrightarrow{d^1_{1,n}} E^1_{0,n} \rightarrow H^G_n(X; E) \rightarrow E^1_{1,n-1} \xrightarrow{d^1_{1,n-1}} E^1_{0,n-1} \rightarrow \ldots$$

We get

$$
E^1_{0,n} = \pi_n((EG \times X) + \wedge_G E(G)) \oplus \pi_n(X^G_+ \wedge E(G/G));
$$

$$
E^1_{1,n} = \pi_n((EG \times X^G) + \wedge_G E(G))
$$

and the differential $d^1_{1,n}$ is given by the homomorphism

$$
\pi_n((EG \times X^G) + \wedge_G E(G)) \rightarrow \pi_n((EG \times X) + \wedge_G E(G))
$$

which is induced by the inclusion $X^G \rightarrow X$, and the homomorphism (up to a sign)

$$
\pi_n((EG \times X^G) + \wedge_G E(G)) \rightarrow \pi_n(X^G_+ \wedge E(G/G))
$$

which is induced by the projection $EG \times X^G \rightarrow X^G$.

Now suppose additionally that E is the constant functor $\text{Or}(G) \rightarrow \text{SPECTRA}$ with value the spectrum F. Let \mathcal{H}_* be the (non-equivariant) homology theory associated to F. Then $H^G_n(X; E) = \mathcal{H}_n(X/G)$ and the long exact sequence above reduces to the long exact sequence

(11.50)

$$
\ldots \rightarrow \mathcal{H}_n(EG \times_G X^G) \xrightarrow{d^1_{n,n}} \mathcal{H}_n(EG \times_G X) \oplus \mathcal{H}_n(X^G) \xrightarrow{e_n} \mathcal{H}_n(X/G)
$$

$$
\rightarrow \mathcal{H}_{n-1}(EG \times_G X^G) \xrightarrow{d^1_{n-1,n-1}} \mathcal{H}_{n-1}(EG \times_G X) \oplus \mathcal{H}_{n-1}(X^G) \xrightarrow{e_{n-1}} \ldots
$$

where the maps $d^1_{n,1}$ and e_n are up to sign induced by the obvious map on space level.

Exercise 11.51. Give a direct construction of the long exact sequence [11.50].

11.7 Equivariant Chern Characters

If we rationalize and have a Mackey structure on the coefficient system of an equivariant homology theory, then we can give a more direct and concrete computation via equivariant Chern characters which does avoid all the difficulties concerning spectral sequences.
11.7.1 Mackey Functors

Let Λ be an associative commutative ring with unit. Let FGINJ be the category of finite groups with injective group homomorphisms as morphisms. Let

$M: \text{FGINJ} \to \Lambda - \text{MODULES}$

be a bifunctor, i.e., a pair (M_*, M^*) consisting of a covariant functor M_* and a contravariant functor M^* from FGINJ to $\Lambda - \text{MODULES}$, which agree on objects. We will often denote for an injective group homomorphism $f: H \to G$ the map $M_*(f): M(H) \to M(G)$ by ind_f and the map $M^*(f): M(G) \to M(H)$ by res_f and write $\text{ind}_f^G = \text{ind}_f$ and $\text{res}_f^H = \text{res}_f$ if f is an inclusion of groups. We call such a bifunctor M a Mackey functor with values in Λ-modules if

(i) For an inner automorphism $c(g): G \to G$ we have $M_*(c(g)) = \text{id}: M(G) \to M(G)$;

(ii) For an isomorphism of groups $f: G \cong H$ the composites $\text{res}_f \circ \text{ind}_f$ and $\text{ind}_f \circ \text{res}_f$ are the identity;

(iii) Double coset formula

We have for two subgroups $H, K \subset G$

$$\text{res}_G^K \circ \text{ind}_H^G = \sum_{HgH \in K \backslash G / H} \text{ind}_{c(g): H \cap g^{-1}Kg \to K} \circ \text{res}_H^{g^{-1}Kg},$$

where $c(g)$ is conjugation with g, i.e. $c(g)(h) = ghg^{-1}$.

Important examples of Mackey functors will be $\text{Rep}_F(H), K_q(RH), L_q(RH)$ and $K^\text{top}_q(C^*_r(H, F))$, where R is an associative ring with unit and $F = \mathbb{R}, \mathbb{C}$.

Let \mathcal{H}^G_q be a proper equivariant homology theory with values in Λ-modules. It defines a covariant functor

$\mathcal{H}^G_q(\{\bullet\}): \text{FGINJ} \to \Lambda - \text{MODULES}, \quad H \mapsto \mathcal{H}^G_q(\{\bullet\}).$

It sends an injective homomorphism $i: H \to G$ to the composite $\mathcal{H}^H_n(\{\bullet\}) \xrightarrow{\text{ind}_i} \mathcal{H}^G_n(G \times_H \{\bullet\}) \xrightarrow{\text{pr}} \mathcal{H}^G_n(\{\bullet\})$, where $\text{pr}: G \times_H \{\bullet\} \to \{\bullet\}$ is the projection. We say that the coefficients of \mathcal{H}^G_q extend to a Mackey functor if there exists a Mackey functor (M_*, M^*) such that M_* is the functor $\mathcal{H}^G_q(\{\bullet\})$ above.

Example 11.52. The functors defined in (11.37), (11.38), and (11.39) sending a group to the algebraic K- or L-theory of RG or to the topological K-theory of $C^*_r(G; F)$ define Mackey functors with the obvious definition of induction and restriction.
11.7 Equivariant Chern Characters

11.7.2 The Equivariant Chern Character

We can associate to a proper equivariant homology theory with values in Λ-modules H^*_\ast another Bredon type equivariant homology theory with values in Λ-modules BH^*_\ast as follows. For a group G we define

$$BH^G_n(X) := \bigoplus_{p+q=n} H^G_p(X; \mathcal{H}^G_q(-))$$

where $H^G_p(X; \mathcal{H}_q^G(-))$ is the Bredon homology of X with coefficients in the covariant functor $\text{Or}(G) \to \Lambda$-MODULES sending G/H to $\mathcal{H}_q^G(G/H)$. Next we show that the collection of the G-homology theories $BH^G(X,A)$ inherits the structure of a proper equivariant homology theory. We have to specify the induction structure.

Let $\alpha : H \to G$ be a group homomorphism and (X,A) be a proper H-CW-pair. Induction with α yields a functor denoted in the same way $\alpha : \text{Or}_{FIN}(H) \to \text{Or}_{FIN}(G), H/K \mapsto \text{ind}_\alpha(H/K) = G/\alpha(K)$.

There is a natural isomorphism of $\text{Or}_{FIN}(G)$-chain complexes

$$\text{ind}_\alpha C_*^{\text{Or}_{FIN}(H)}(X,A) \cong C_*^{\text{Or}_{FIN}(G)}(\text{ind}_\alpha(X,A))$$

and a natural adjunction isomorphism, see [583, (2.5)]

$$\left(\text{ind}_\alpha C_*^{\text{Or}_{FIN}(H)}(X,A) \otimes_{\text{Or}_{FIN}(G)} \mathcal{H}_q^G(-) \cong C_*^{\text{Or}_{FIN}(H)}(X,A) \otimes_{\text{Or}_{FIN}(H)} (\text{res}_\alpha \mathcal{H}_q^G(-)) \right).$$

The induction structure on \mathcal{H}_\ast^G yields a morphisms of $R\text{Or}_{FIN}(H)$-modules

$$\mathcal{H}_q^H(H/?) \to (\text{res}_\alpha \mathcal{H}_q^G(-)).$$

These maps or their inverses can be composed to a Λ-chain map

$$C_*^{\text{Or}_{FIN}(H)}(X,A) \otimes_{\text{Or}_{FIN}(H)} \mathcal{H}_q^H(H/?) \cong C_* (\text{ind}_\alpha(X,A)) \otimes_{\text{Or}_{FIN}(G)} \mathcal{H}_q^G(-).$$

Since X is proper and hence the Bredon homology can be defined over $\text{Or}_{FIN}(H)$ instead of $\text{Or}(G)$, it induces a natural map

$$\text{ind}_\alpha : H_p(X,A; \mathcal{H}_q^H(-)) \cong H_p(X,A; \mathcal{H}_q^G(-)).$$

Thus we obtain the required induction structure.

Define for a finite group H
(11.53) $S_H (\mathcal{H}_q^H (\{\bullet\})) := \text{coker} \left(\bigoplus_{K \subset H \atop K \neq H} \text{ind}_K^H : \bigoplus_{K \subset H \atop K \neq H} \mathcal{H}_q^K (\{\bullet\}) \to \mathcal{H}_q^H (\{\bullet\}) \right)$.

Note that $S_H (\mathcal{H}_q^H (\{\bullet\}))$ carries a natural left $\Lambda[\mathcal{N}_G H/H \cdot C_G H]$-module structure, where $\mathcal{N}_G H/H \cdot C_G H$ is the quotient of $\mathcal{N}_G H$ by the normal subgroup $H \cdot C_G H := \{h \cdot g \mid h \in H, g \in C_G H\}$. The obvious left-action of $W_G H = N_G H/H$-action on X^H yields a left $N_G H/H \cdot C_G H$-action on $C_G H \setminus X^H$ and hence a right $N_G H/H \cdot C_G H$-action by $y \cdot k := k^{-1} \cdot y$ for $y \in X^H$ and $k \in N_G H/H \cdot C_G H$.

The proof of the following result can be found in [584, Theorem 0.2 and 0.3].

Theorem 11.54 (The equivariant Chern character). Let Λ be a commutative ring with $\mathbb{Q} \subset \Lambda$. Let \mathcal{H}_q^\ast be a proper equivariant homology theory with values in Λ-modules in the sense of Definition 11.9. Suppose that its coefficients extend to a Mackey functor.

(i) There is an isomorphism of proper equivariant homology theories

$$\text{ch}_\ast : B\mathcal{H}_\ast \cong \mathcal{H}_\ast^\ast,$$

(ii) Let I be the set of conjugacy classes (H) of finite subgroups H of G. Then there is for any group G and any proper G-CW-pair (X, A) a natural isomorphism

$$\bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_p(C_G H \setminus (X^H, A^H); A) \otimes_{\Lambda[N_G H/H \cdot C_G H]} S_H (\mathcal{H}_q^H (\{\bullet\})) \cong B\mathcal{H}_n^G (X, A).$$

Theorem 11.54 reduces the computation of $\mathcal{H}_n^G (X, A)$ to the computation of the singular or cellular homology Λ-modules $H_p(C_G H \setminus (X^H, A^H); A)$ of the CW-pairs $C_G H \setminus (X^H, A^H)$ including the obvious right $W_G H$-operation and of the left $\Lambda[W_G H]$-modules $S_H (\mathcal{H}_q^H (\{\bullet\}))$ which only involve the values $\mathcal{H}_q^G (G/H) = \mathcal{H}_q^H (\{\bullet\})$.

Exercise 11.55. Let Λ be a commutative ring with $\mathbb{Q} \subset \Lambda$. Let \mathcal{H}_\ast^\ast be a proper equivariant homology theory with values in Λ-modules. Suppose that its coefficients extend to a Mackey functor. Consider a group G and a proper G-CW-complex X. Show that all differentials of the equivariant Atiyah-Hirzebruch spectral sequence converging to $\mathcal{H}_n^G (X, A)$ vanish.

Exercise 11.56. Let \mathcal{H}_\ast^\ast be a proper equivariant homology theory with values in \mathbb{Q}-modules in the sense of Definition 11.9. Suppose that its coefficients
extend to a Mackey functor. Let G be a group. Consider two families of subgroups F and G with $F \subseteq G \subseteq \mathcal{F}$. Let $t_{F \subseteq G} : E_F(G) \to E_G(G)$ be the up to G-homotopy unique G-map. Show that for every n the induced map $\mathcal{H}^G_n(t_{F \subseteq G}) : \mathcal{H}^G_n(E_F(G)) \to \mathcal{H}^G_n(E_G(G))$ is injective.

Remark 11.57 (Rationalizing an equivariant homology theory). Let \mathcal{H}^*_G be an equivariant homology theory with values in \mathbb{Z}-modules. Suppose that its coefficients extend to a Mackey functor. Then we obtain an equivariant homology theory $\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{H}^*_G$ with values in \mathbb{Q}-modules whose coefficients extend to a Mackey functor since $\mathbb{Q} \otimes_{\mathbb{Z}} -$ is a flat functor and commutes with direct sums over arbitrary index sets. We can apply Theorem 11.54 to $\mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{H}^*_G$ and thus obtain a rational computation of \mathcal{H}^*_G.

11.8 Some Rational Computations

11.8.1 Green Functors

Let $\phi : A \to A'$ be a homomorphism of associative commutative rings with unit. Let M be a Mackey functor with values in A-modules and let N and P be Mackey functors with values in A'-modules. A *pairing* with respect to ϕ is a family of maps

$$m(G) : M(G) \times N(G) \to P(G), \quad (x, y) \mapsto m(G)(x, y) =: x \cdot y,$$

where G runs through the finite groups and we require the following properties for all injective group homomorphisms $f : H \to G$ of finite groups:

$$
\begin{align*}
(x_1 + x_2) \cdot y &= x_1 \cdot y + x_2 \cdot y \\
x \cdot (y_1 + y_2) &= x \cdot y_1 + x \cdot y_2 \\
(\lambda x) \cdot y &= \phi(\lambda)(x \cdot y) \\
x \cdot \lambda' y &= \lambda' \cdot x \\
\text{res}_f(x \cdot y) &= \text{res}_f(x) \cdot \text{res}_f(y) \\
\text{ind}_f(x) \cdot y &= \text{ind}_f(x \cdot \text{res}_f(y)) \\
x \cdot \text{ind}_f(y) &= \text{ind}_f(x \cdot \text{res}_f(x) \cdot y)
\end{align*}
$$

for $x_1, x_2 \in M(H), y \in N(H)$; for $x \in M(H), y_1, y_2 \in N(H)$; for $\lambda \in A, x \in M(H), y \in N(H)$; for $\lambda' \in A', x \in M(H), y \in N(H)$; for $x \in M(G), y \in N(G)$; for $x \in M(H), y \in N(G)$; for $x \in M(G), y \in N(H)$.

A *Green functor* with values in A-modules is a Mackey functor U with values in A-modules together with a pairing with respect to $\text{id} : A \to A$ and elements $1_G \in U(G)$ for each finite group G such that for each finite group G the pairing $U(G) \times U(G) \to U(G)$ induces the structure of an A-algebra on $U(G)$ with unit 1_G and for any morphism $f : H \to G$ in $\mathcal{F}G\mathcal{N}$ the map $U^*(f) : U(G) \to U(H)$ is a homomorphism of A-algebras with unit. Let U be a Green functor with values in A-modules and M be a Mackey functor with values in A'-modules. A (left) U-module structure on M with respect
to the ring homomorphism $\phi: \Lambda \to \Lambda'$ is a pairing such that any of the maps $U(G) \times M(G) \to M(G)$ induces the structure of a (left) module over the Λ-algebra $U(G)$ on the Λ-module $\phi^* M(G)$ which is obtained from the Λ'-module $M(G)$ by $\lambda x := \phi(\lambda)x$ for $r \in \Lambda$ and $x \in M(G)$.

The importance of the notion of a Green functor is due to the following elementary lemma which allows to deduce induction theorems for all Mackey functors which are modules over a given Green functor from the corresponding statement for the given Green functor.

Lemma 11.58. Let $\phi: \Lambda \to \Lambda'$ be a homomorphism of associative commutative rings with unit. Let U be a Green functor with values in Λ-modules and let M be a Mackey functor with values in Λ'-modules such that M comes with a U-module structure with respect to ϕ. Let S be a set of subgroups of the finite group G. Suppose that the map

$$\bigoplus_{H \in S} \text{ind}_H^G: \bigoplus_{H \in S} U(H) \to U(G)$$

is surjective. Then the map

$$\bigoplus_{H \in S} \text{ind}_H^G: \bigoplus_{H \in S} M(H) \to M(G)$$

is surjective.

Proof. By hypothesis there are elements $u_H \in U(H)$ for $H \in S$ satisfying $1_G = \sum_{H \in S} \text{ind}_H^G u_H$ in $U(G)$. This implies for $x \in M(G)$.

$$x = 1_G \cdot x = \left(\sum_{H \in S} \text{ind}_H^G u_H \right) \cdot x = \sum_{H \in S} \text{ind}_H^G (u_H \cdot \text{res}_H^G x).$$

\[\square\]

Example 11.59 (Burnside ring). The Burnside ring $A(G)$ of a (not necessarily finite) group G is the commutative associative ring with unit $A(G)$ which is obtained by the additive Grothendieck construction applied to the commutative associative semi-ring with unit given by the G-isomorphism classes $[S]$ of G-sets S of finite cardinality, i.e., $|S| < \infty$, under disjoint union and cartesian product and the unit element given by $[G/G]$. For more information about the Burnside ring for not necessarily finite groups we refer to [587].

The Burnside ring defines a Mackey functor $A(\cdot)$ by induction and restriction. The ring structure and the Mackey structure fit together to the structure of a Green functor $A(\cdot)$ with values in \mathbb{Z}-modules.

Exercise 11.60. Let M be a Mackey functor with values in Λ-modules for an associative commutative ring Λ with unit. Let $\phi: \mathbb{Z} \to \Lambda$ be the unique
ring homomorphism. Show that \(M \) inherits the structure of a module over the Green functor given by the Burnside ring with respect to \(\phi \).

Example 11.61 (Swan group). Let \(G \) be a (not necessarily finite) group. Let \(A \) be an associative commutative ring with unit. Denote by \(\text{Sw}^p(G; A) \) be the abelian group whose generators are the isomorphism classes \([M]\) of \(AG \)-modules \(M \), whose underlying \(A \)-module is finitely generated projective. For every short exact sequence \(0 \to M_0 \to M_1 \to M_2 \to 0 \) of such \(AG \)-modules, we require the relation \([M_0] - [M_1] + [M_2]\) in \(\text{Sw}^p(G; A) \). The tensor product over \(A \) with the diagonal \(G \)-action induces the structure of an associative commutative ring with unit \([A]\), where \([A]\) is the class of \(A \) equipped with the trivial \(G \)-action. We call \(\text{Sw}^p(G; A) \) the *Swan ring*.

Let \(R \) be an associative ring with unit. Let \(M \) be a \(ZG \)-module whose underlying \(Z \)-module is finitely generated free. If \(P \) is a finitely generated projective \(RG \)-module, then \(M \otimes_Z P \) is a finitely generated projective \(RG \)-module if \(r \in R \) acts by \(r \cdot (m \otimes p) = m \otimes rp \) and \(g \in G \) acts by \(g \cdot (m \otimes p) := gm \otimes gp \). This yields a pairing

\[
\text{Sw}^p(G) \otimes K_n(RG) \to K_n(RG)
\]

Using induction and restriction \(\text{Sw}^p(?) \) defines a Green functor with values in \(Z \)-modules. There is a natural homomorphism of Green functors with values in \(Z \)-modules

\[
A(G) \to \text{Sw}^p(G; A)
\]

sending the class of a finite \(G \)-set \(S \) to the \(A \)-module with \(S \) as basis equipped with the \(G \)-action coming from the \(G \)-action on \(S \). If \(A = Z \), we abbreviate \(\text{Sw}^p(G) := \text{Sw}^p(G; Z) \). Thanks to the pairing above the Mackey functor given by \(K_n(RH) \) becomes a module over the Green functor given by \(\text{Sw}^p(G) \).

Example 11.62 (Rational representation ring). An important example of a Green functor with values in \(Q \)-modules is the rationalized representation ring of rational representations \(Q \otimes_Z \text{Rep}_Q(?) \). It assigns to a finite group \(G \) the \(Q \)-module \(Q \otimes_Z \text{Rep}_Q(G) \), where \(\text{Rep}_Q(G) \) denotes the rational representation ring of \(G \). Note that \(\text{Rep}_Q(G) \) is the same as the projective class group \(K_0(QG) \) and also the same as \(\text{Sw}^p(G; Q) \). The Mackey structure comes from induction and restriction of representations. The pairing \(Q \otimes_Q \text{Rep}_Q(G) \times Q \otimes_Z \text{Rep}_Q(G) \to Q \otimes_Z \text{Rep}_Q(G) \) comes from the tensor product \(P \otimes_Q Q \) of two \(QG \)-modules \(P \) and \(Q \) equipped with the diagonal \(G \)-action. The unit element is the class of \(Q \) equipped with the trivial \(G \)-action.

Recall that \(\text{class}_Q(G) \) denotes the \(Q \)-vector space of functions \(G \to Q \) which are invariant under \(Q \)-conjugation, i.e., we have \(f(h_1) = f(h_2) \) for two elements \(g_1, g_2 \in G \) if the cyclic subgroups \(\langle g_1 \rangle \) and \(\langle g_2 \rangle \) generated by \(g_1 \) and \(g_2 \) are conjugate in \(G \). Elementwise multiplication defines the structure of a \(Q \)-algebra on \(\text{class}_Q(G) \) with the function which is constant 1 as unit element.
Taking the character of a rational representation yields an isomorphism of \(\mathbb{Q}\)-algebras \([826, \text{Theorem 29 on page 102}]

\[
\chi^G: \mathbb{Q} \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{Q}(G) \xrightarrow{\cong} \text{class}_\mathbb{Q}(G).
\]

We define a Mackey structure on \(\text{class}_\mathbb{Q}(?)\) as follows. Let \(f: H \to G\) be an injective group homomorphism. For a character \(\chi \in \text{class}_\mathbb{Q}(H)\) define its induction with \(f\) to be the character \(\text{ind}_f(\chi) \in \text{class}_\mathbb{Q}(G)\) given by

\[
\text{ind}_f(\chi)(g) = \frac{1}{|H|} \sum_{l \in G, h \in H \text{ s.t. } f(h) = l^{-1} g l} \chi(h).
\]

For a character \(\chi \in \text{class}_\mathbb{Q}(G)\) define its restriction with \(f\) to be the character \(\text{res}_f(\chi) \in \text{class}_\mathbb{Q}(H)\) given by

\[
\text{res}_f(\chi)(h) := \chi(f(h)).
\]

One easily checks that this yields the structure of a Green functor on \(\text{class}_\mathbb{Q}(?)\) and that the family of isomorphisms \(\chi^G\) defined in (11.63) yields an isomorphism of Green functors from \(\mathbb{Q} \otimes_{\mathbb{Z}} \text{Rep}_\mathbb{Q}(?)\) to \(\text{class}_\mathbb{Q}(?)\).

11.8.2 Induction Lemmas

As already explained by Lemma \([11.58]\), Green functors play a prominent role for induction theorems. In order to formulate two versions, we have to introduce the following idempotents.

Let \(G\) be a finite group. There is a ring homomorphism

\[
(11.64) \quad \text{card}: A(G) \to \prod_H \mathbb{Z}, \quad [S] \mapsto (|S^H|)_{(H)},
\]

where the product is indexed over the conjugacy classes of subgroups of \(G\) and \(|S^H|\) is the cardinality of the \(H\)-fixed point set. The ring homomorphism \(\text{card}\) is injective and has a finite cokernel. In particular it induces an isomorphism of \(\mathbb{Q}\)-algebras

\[
\text{card}_\mathbb{Q}: \mathbb{Q} \otimes_{\mathbb{Z}} A(G) \xrightarrow{\cong} \prod_{(H)} \mathbb{Q}.
\]

Now let \(e_G \in \prod_{(H)} \mathbb{Q}\) be the idempotent whose value at \((G)\) is 1 and whose value at \((H)\) for \(H \neq G\) is 0. We then define the idempotent

\[
(11.65) \quad \Theta_G := \text{card}_\mathbb{Q}^{-1}(e_G) \in \mathbb{Q} \otimes_{\mathbb{Z}} A(G).
\]

For a finite cyclic group \(C\), define the idempotent
(11.66) \[\theta_C \in \mathbb{Q} \otimes \mathbb{Z} \text{Rep}_\mathbb{Q}(C) \]

to be the element whose image under the isomorphism of \[11.63\] is the class function which sends an elements of \(C\) to 1 if it is a generator, and to 0 otherwise. The image of \(\Theta_C\) under the map \(\mathbb{Q} \otimes \mathbb{Z} A(G) \to \mathbb{Q} \otimes \mathbb{Z} \text{Rep}_\mathbb{Q}(C)\), which sends a finite \(C\)-set \(S\) to the associated permutation module \(\mathbb{Q}[S]\), is \(\theta_C\).

Lemma 11.67. Let \(\phi: \mathbb{Q} \to A\) be a homomorphism of associative commutative rings with unit. Let \(M\) be a Mackey functor with values in \(A\)-modules which is a module over the Green functor \(\mathbb{Q} \otimes \mathbb{Z} \text{Rep}_\mathbb{Q}(H)\) with respect to \(\phi\). Then

(i) For a finite group \(H\) the map

\[\bigoplus_{C \subset H \atop C \text{ cyclic}} \text{ind}_C^H : \bigoplus_{C \subset H \atop C \text{ cyclic}} M(C) \to M(H) \]

is surjective;

(ii) Let \(C\) be a finite cyclic group. Let

\[\theta_C : M(C) \to M(C) \]

be the map induced by the \(\mathbb{Q} \otimes \mathbb{Z} \text{Rep}_\mathbb{Q}(C)\)-module structure and multiplication with idempotent \(\theta_C\) of \[11.66\]. Then the inclusion of the image of \(\theta_C : M(C) \to M(C)\) into \(M(C)\) composed with the projection onto the cokernel of

\[\bigoplus_{D \subset C \atop D \neq C} \text{ind}_D^C : \bigoplus_{D \subset C \atop D \neq C} M(D) \to M(C) \]

is an isomorphism.

Proof. Let \(C \subset H\) be a cyclic subgroup of the finite group \(H\). Then we get for \(h \in H\)

\[\frac{1}{[H : C]} \cdot \text{ind}_C^H \theta_C(h) = \frac{1}{[H : C]} \cdot \frac{1}{|C|} \cdot \sum_{l \in H \atop l^{-1}hl \in C} \theta_C(l^{-1}hl) = \frac{1}{|H|} \cdot \sum_{l \in H \atop l^{-1}hl \in C} 1. \]

This implies in \(\mathbb{Q} \otimes \mathbb{Z} \text{Rep}_\mathbb{Q}(H) \cong \text{class}_\mathbb{Q}(H)\)

(11.68) \[1_H = \sum_{C \subset H \atop C \text{ cyclic}} \frac{1}{[H : C]} \cdot \text{ind}_C^H \theta_C \]

since for any \(l \in H\) and \(h \in H\) there is precisely one cyclic subgroup \(C \subset H\) with \(C = (l^{-1}hl)\). Now assertion (ii) follows from the following calculation for \(x \in M(H)\)
\[x = 1_H \cdot x = \left(\sum_{C \in \mathcal{H}} \frac{1}{[H : C]} \cdot \text{ind}_C^H \theta_C \right) \cdot x = \sum_{C \in \mathcal{H}} \frac{1}{[H : C]} \cdot \text{ind}_C^H (\theta_C \cdot \text{res}_H^C x). \]

It remains to prove assertion (ii). Obviously \(\theta_C \) is an idempotent for any cyclic group \(C \). We get for \(x \in M(C) \) from (11.68)

\[(1_C - \theta_C) \cdot x = \left(\sum_{\substack{D \subseteq C \subset H, \\
D \neq C}} \frac{1}{[C : D]} \cdot \text{ind}_D^C \theta_D \right) \cdot x = \sum_{\substack{D \subseteq C \subset H, \\
D \neq C}} \frac{1}{[C : D]} \cdot \text{ind}_D^C (\theta_D \cdot \text{res}_C^D x) \]

and for \(D \subset C, D \neq C \) and \(y \in M(D) \)

\[\theta_C \cdot \text{ind}_D^C y = \text{ind}_D^C (\text{res}_C^D \theta_C \cdot y) = \text{ind}_D^C (0 \cdot y) = 0. \]

This finishes the proof of Lemma 11.67. \(\square \)

The proof of the next result is similar to the one of Lemma 11.67. Details can be found in [605, Lemma 7.2 and Lemma 7.4]. Key ingredients are Lemma [11.58], Example 11.61, and the result of Swan [850, Corollary 4.2 on page 560] which implies together with [718, page 890] that for every finite group \(H \) the cokernel of the map

\[\bigoplus_{C \in \mathcal{H}, C \text{ cyclic}} \text{ind}_C^H : \bigoplus_{C \in \mathcal{H}, C \text{ cyclic}} \text{Sw}^p(C) \to \text{Sw}^p(H) \]

is annihilated by \(|H|^2\).

Lemma 11.69. Let \(R \) be an associative ring with unit. Then

(i) For a finite group \(H \) and \(n \in \mathbb{Z} \) the map

\[\bigoplus_{C \subseteq H, C \text{ cyclic}} \text{ind}_C^H : \bigoplus_{C \subseteq H, C \text{ cyclic}} \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RC) \to \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RH) \]

is surjective;

(ii) Let \(C \) be a finite cyclic group. Let

\[\Theta_C : \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RC) \to \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RC) \]

be the map induced by the \(\mathbb{Q} \otimes_{\mathbb{Z}} A(C) \)-module structure and multiplication with the idempotent \(\theta_C \) of (11.65). Then the inclusion of the image of the map \(\Theta_C : \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RC) \to \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RC) \) into \(\mathbb{Q} \otimes_{\mathbb{Z}} K_n(RC) \) with the projection onto the cokernel of
\[\bigoplus_{D \subset C, D \neq C} \text{ind}^C_D : \bigoplus_{D \subset C, D \neq C} M(D) \to M(C) \]

is an isomorphism.

Remark 11.70 (L-theory analogue of Lemma 11.69). The L-theory analogue of Lemma 11.69 is also true, one has to use instead of Swan [850 Corollary 4.2 on page 560] the corresponding L-theory analogue of Dress [286 Theorem 2(a)].

For more information about Mackey and Green functors and induction theorems we refer for instance to [865, Section 6], [286] and [76].

11.8.3 Rational Computation of the source of the assembly maps

We get from Theorem 11.54, Lemma 11.69 and Remark 11.70.

Theorem 11.71 (Rational computation of the source of the assembly maps appearing in the Farrell-Jones and Baum-Connes Conjecture). Let \(R \) be an associative ring with unit and let \(F \) be \(\mathbb{R} \) or \(\mathbb{C} \). Let \(G \) be a group. Denote by \(J \) be the set of conjugacy classes \((C)\) of finite cyclic subgroups \(C \) of \(G \).

Then the rational Chern character of Theorem 11.54 induces isomorphisms

\[
\bigoplus_{p+q=n} \bigoplus_{(C) \in J} H_p(G, \mathbb{C}; \mathbb{Q} \otimes \mathbb{Q}, \mathbb{C} \cdot (\mathbb{Q} \otimes \mathbb{Z} K_q(\mathbb{C})) \cong \mathbb{Q} \otimes \mathbb{Z} H_n^G(EG; K_R)
\]

and

\[
\bigoplus_{p+q=n} \bigoplus_{(C) \in J} H_p(G, \mathbb{C}; \mathbb{Q} \otimes \mathbb{Q}, \mathbb{C} \cdot (\mathbb{Q} \otimes \mathbb{Z} L_q^{(-\infty)}(\mathbb{C})) \cong \mathbb{Q} \otimes \mathbb{Z} H_n^G(EG; L^{(-\infty)}_R).
\]

and

\[
\bigoplus_{p+q=n} \bigoplus_{(C) \in J} H_p(G, \mathbb{C}; \mathbb{Q} \otimes \mathbb{Q}, \mathbb{C} \cdot (\mathbb{Q} \otimes \mathbb{Z} K_q(C_r^*(C,F))) \cong \mathbb{Q} \otimes \mathbb{Z} H_n^G(EG; K^\text{top}_F).
\]

Computations of \(K_q(\mathbb{C}) \) as \(\mathbb{Z}[\text{aut}(\mathbb{C})] \)-module for finite cyclic groups \(C \) and \(R = \mathbb{Z} \) or \(R \) a field of characteristic zero can be found in [712].
The computations simplifies even more if we consider the case $R = \mathbb{C}$, as the following example shows which is taken from [584, Example 8.11].

Example 11.72 (Complex coefficients). Let T be the set of conjugacy classes (g) of elements $g \in G$. If we tensor with \mathbb{C} instead of \mathbb{Q} and take $R = F = \mathbb{C}$, then the isomorphism appearing in Theorem 11.71 reduces to the isomorphisms

$$
\bigoplus_{p+q=n} \bigoplus_{(g) \in T} H_p(C_G(g); \mathbb{C}) \otimes_{\mathbb{Z}} K_q(\mathbb{C}) \cong \mathbb{C} \otimes_{\mathbb{Z}} H^n_G(EG; K_\mathbb{C}) ;
$$

$$
\bigoplus_{p+q=n} \bigoplus_{(g) \in T} H_p(C_G(g); \mathbb{C}) \otimes_{\mathbb{Z}} L_q(\mathbb{C}) \cong \mathbb{C} \otimes_{\mathbb{Z}} H^n_G(EG; L^{(-\infty)}_R) ;
$$

$$
\bigoplus_{p+q=n} \bigoplus_{(g) \in T} H_p(C_G(g); \mathbb{C}) \otimes_{\mathbb{Z}} K^{top}_q(\mathbb{C}) \cong \mathbb{C} \otimes_{\mathbb{Z}} H^n_G(EG; K^{top}_\mathbb{C}) ,
$$

where we use in the definition of $L_q(\mathbb{C})$ and $L_n(CG)$ the involutions coming from complex conjugation. The targets of the maps above are isomorphic to $\mathbb{C} \otimes_{\mathbb{Z}} K_n(CG)$, $\mathbb{C} \otimes_{\mathbb{Z}} L_n^{(-\infty)}(CG)$ and $\mathbb{C} \otimes_{\mathbb{Z}} K_n(C^{*}_r(G; \mathbb{C})$ if the Farrell-Jones Conjecture and the Baum-Connes Conjecture hold for G.

11.9 Some Integral Computations

Integral computations are of course harder than rational computations. We have already provided basic tools such as the equivariant Atiyah-Hirzebruch spectral sequence and the p-chain spectral sequence in Section 11.6. Often we are considering an equivariant homology theory and want to compute $\mathcal{H}_n^G(EG)$ or $\mathcal{H}_n^{top}(EG)$. Sometimes one gets easy and useful computations by having good models for EG and EG. We illustrate this in the following favorite case.

Let G be a discrete group. Let \mathcal{M} be the subset of \mathcal{F} consisting of elements in \mathcal{F} which are maximal with respect to inclusion in \mathcal{F}. Throughout this subsection we suppose that G satisfies the conditions (M) and (NM) introduced in Subsection 10.6.12 where also examples of such groups G are given. Let $\{ M_i \mid i \in I \}$ be a complete set of representatives for the conjugacy classes of maximal finite subgroups of G. Consider an equivariant homology theory \mathcal{H}_*^G. In the sequel we put

$$
BG := G \setminus EG .
$$

Then we obtain from Theorem 10.32 long exact sequences
(11.74) \[\cdots \to \bigoplus_{i \in I} \mathcal{H}_n^{(1)}(BM_i) \to \mathcal{H}_n^{(1)}(BG) \oplus \bigoplus_{i \in I} \mathcal{H}_n^{M_i}(\{\bullet\}) \to \mathcal{H}_n^G(EG) \]

\[\bigoplus_{i \in I} \mathcal{H}_{n-1}^{(1)}(BM_i) \to \mathcal{H}_{n-1}^{(1)}(BG) \oplus \bigoplus_{i \in I} \mathcal{H}_{n-1}^{M_i}(\{\bullet\}) \to \cdots. \]

(11.75) \[\cdots \to \bigoplus_{i \in I} \mathcal{H}_n^{(1)}(BM_i) \to \mathcal{H}_n^{(1)}(BG) \oplus \bigoplus_{i \in I} \mathcal{H}_n^{M_i}(\{\bullet\}) \to \mathcal{H}_n^{(1)}(BG) \]

\[\bigoplus_{i \in I} \mathcal{H}_{n-1}^{(1)}(BM_i) \to \mathcal{H}_{n-1}^{(1)}(BG) \oplus \bigoplus_{i \in I} \mathcal{H}_{n-1}^{M_i}(\{\bullet\}) \to \cdots. \]

We have the maps \(\mathcal{H}_n^{M_i}(\{\bullet\}) \to \mathcal{H}_n^{M_i}(\{\bullet\}) \) induced by the inclusion \(\{1\} \to M_i \) and \(\mathcal{H}_n^{M_i}(\{\bullet\}) \to \mathcal{H}_n^{M_i}(\{\bullet\}) \) induced by the projection \(M_i \to \{1\} \). The composite is the identity. Define

(11.76) \[\tilde{\mathcal{H}}_n^{M_i}(\{\bullet\}) := \ker(\mathcal{H}_n^{M_i}(\{\bullet\}) \to \mathcal{H}_n^{M_i}(\{\bullet\})). \]

Obviously we have an isomorphism

\[\mathcal{H}_n^{M_i}(\{\bullet\}) \cong \mathcal{H}_n^{(1)}(\{\bullet\}) \oplus \tilde{\mathcal{H}}_n^{M_i}(\{\bullet\}). \]

One can splice the two long exact sequences (11.74) and (11.75) together to the long exact sequence

(11.77) \[\cdots \to \mathcal{H}_{n+1}^{(1)}(BG) \to \bigoplus_{i \in I} \tilde{\mathcal{H}}_n^{M_i}(\{\bullet\}) \to \mathcal{H}_n^G(EG) \to \]

\[\to \mathcal{H}_n^{(1)}(BG) \to \bigoplus_{i \in I} \tilde{\mathcal{H}}_n^{M_i}(\{\bullet\}) \to \cdots. \]

Lemma 11.78. Let \(\mathbb{Z} \subseteq \Lambda \subseteq \mathbb{Q} \) be a ring such that the order of any finite subgroup of \(G \) is invertible in \(\Lambda \).

(i) The map \(\mathcal{H}_n^{(1)}(BG) \otimes \Lambda \to \mathcal{H}_n^{(1)}(BG) \otimes \Lambda \) is an isomorphism for all \(n \in \mathbb{Z} \);

(ii) The long exact sequence (11.77) splits after applying \(- \otimes \mathbb{Z} \Lambda \), more precisely, \(\mathcal{H}_n^G(EG) \otimes \mathbb{Z} \Lambda \to \mathcal{H}_n^{(1)}(BG) \otimes \mathbb{Z} \Lambda \) is split surjective.

Proof. (i) By the Atiyah-Hirzebruch spectral sequence it suffices to prove the bijectivity of the \(\Lambda \)-map \(H_p(BG; \mathcal{H}_n^{(1)}(\{\bullet\})) \otimes \Lambda \to H_p(BG; \mathcal{H}_n^{(1)}(\{\bullet\})) \otimes \Lambda \) for \(p, q \in \mathbb{Z} \) with \(p \geq 0 \). The \(G \)-map \(EG \to EG \) induces a homology equivalence of projective \(AG \)-chain complexes \(C_*(EG) \otimes \mathbb{Z} \Lambda \to C_*(EG) \otimes \mathbb{Z} \Lambda \) which is therefore a \(AG \)-chain homotopy equivalence. Hence it induces a \(\Lambda \)-chain homotopy equivalence \(C_*(BG) \otimes \mathbb{Z} \Lambda \to C_*(BG) \otimes \mathbb{Z} \Lambda \).

(ii) Since the following diagram commutes
\[\mathcal{H}_n^G(EG) \xrightarrow{\text{ind}_{G \to (1)}} \mathcal{H}_n^G(EG) \]

and has a bijection as left vertical arrow, the claim follows from assertion (i).

Example 11.79 (Equivariant topological K-theory of EG for $G = \mathbb{Z}^2 \rtimes \mathbb{Z}/4$). Consider the automorphism $\phi : \mathbb{Z}^2 \to \mathbb{Z}^2$, $(x, y) \mapsto (-y, x)$. It has order four. We want to show for the semi-direct product $G = \mathbb{Z}^2 \rtimes_{\alpha} \mathbb{Z}/4$

\[K_n^G(EG) \cong \begin{cases}
\mathbb{Z}\vphantom{m} & \text{if } n \text{ is even;} \\
0 & \text{if } n \text{ is odd}
\end{cases} \]

In this case we have the presentation

\[\mathbb{Z}^2 \rtimes \mathbb{Z}_4 = \langle u, v, t \mid t^4 = 1, uv = vu, tut^{-1} = v, tvt^{-1} = u^{-1} \rangle. \]

The maximal finite subgroups are up to conjugacy given by

\[M_0 = \langle t \rangle; \]
\[M_1 = \langle ut \rangle; \]
\[M_2 = \langle ut^2 \rangle. \]

We have $M_0 \cong M_1 \cong \mathbb{Z}_4$ and $M_2 \cong \mathbb{Z}_2$. We have

\[\tilde{K}_n^{\mathbb{Z}/m}(\bullet) \cong \begin{cases}
\mathbb{Z}^{m-1} & \text{if } n \text{ is even;} \\
0 & \text{if } n \text{ is odd.}
\end{cases} \]

Obviously BG is the same as $\mathbb{Z}/4 \setminus T^2$ for the obvious $\mathbb{Z}/4$-action on the two-dimensional torus $T^2 = \mathbb{Z}^2 \setminus EG = \mathbb{Z}^2 \setminus E\mathbb{Z}^2$. This implies because we are in dimension two, that BG has a model which is a compact 2-dimensional manifold. The rational cohomology $H^*(BG)$ agrees with $H^*(T^2; \mathbb{Q})^{\mathbb{Z}/4}$. Since $\mathbb{Z}/4$ is a subgroup of $\text{SL}(2, \mathbb{Z})$, its action on T^2 is orientation preserving. This implies that $\mathbb{Z}/4$ acts freely on $\mathbb{Z}^2 = H_1(T^2; \mathbb{Z})$ outside $\{0\}$, we conclude $H^1(T^2; \mathbb{Q})^{\mathbb{Z}/4} \cong \text{hom}_{\mathbb{Z}}(H_1(T^2; \mathbb{Z})^{\mathbb{Z}/4}, \mathbb{Q}) \cong \{0\}$. We conclude that $BG = \mathbb{Z}/4 \setminus T^2$ has the rational cohomology of S^2 and hence is homeomorphic to S^2. This implies that $K_0(BG) \cong \mathbb{Z}^2$ and $K_1(BG) = 0$.

The group G satisfies conditions (M) and (NM) by a direct check or because of Subsection \[\text{10.6.12}\] since the $\mathbb{Z}/4$ action on \mathbb{Z}^2 given by α is free outside 0. Now the claim follows from the long exact sequence \[\text{11.77}\] applied in the case $\mathcal{H}_n^G = K_n^G$.
Since G satisfies the Baum-Connes Conjecture, we have $K_n(C_r^*(G)) \cong K^n_G(EG)$.

Exercise 11.80. Determine all finite subgroups $F \subseteq \text{SL}_2(\mathbb{Z})$ and compute for any of these $K^n_G(EG)$ for $n \in \mathbb{Z}$ and $G = \mathbb{Z}^2 \rtimes F$.

The long exact sequence (11.77) will be a key ingredient in computations of $K_n(RG)$, $L_n^{(-\infty)}(RG)$ and $K_n(C_r^*(G))$, provided that G satisfies the Farrell-Jones Conjecture and the Baum-Connes Conjecture, see Theorem 16.12.

Already for group homology the long exact sequence (11.77) contains valuable information as we explain next.

Example 11.81 (Group homology). Suppose that G satisfies (M) and (NM). Let \mathcal{H}_s be given by the Borel homology, i.e., $\mathcal{H}^G(X) := H_n(EG \times X)$ for H_n singular homology with coefficients in \mathbb{Z}, see Example 11.13. Then (11.77) reduces to the long exact sequence, where $H_n(G) := H_n(BG)$ is the group homology and $\tilde{H}_n(G) := \ker(H_n(G) \to H_n(\{1\}))$

$$
\cdots \to H_{n+1}(BG) \to \bigoplus_{i \in I} \tilde{H}_n(M_i) \to H_n(G) \to \cdots.$$

In particular we get for $n \geq \dim(BG) + 2$ an isomorphism

$$
\bigoplus_{i \in I} H_n(M_i) \cong H_n(G).
$$

Example 11.82 (The group homology of certain extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ for finite F). Consider an extension $1 \to \mathbb{Z}^n \to G \to F \to 1$ for finite F such that the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$. Then the conditions (M) and (NM) are satisfied by [615, Lemma 6.3] and there is an n-dimensional model for EG whose underlying space is \mathbb{R}^2.

Even in the case, where F is a finite cyclic group, the computation of the homology of G is not at all easy. It is carried in [254, Theorem 2.1] provided that $|F|$ is a prime. More information in the case, where there are no restriction $|F|$, can be found in [557].

Based on the material of this section, we will compute the group homology of one-relators groups in Lemma 16.21 (iii) and Lemma 16.27.
11.10 Equivariant Homology Theory over a Group and Twisting with Coefficients

Next we present a slight variation of the notion of an equivariant homology theory introduced in Section 11.3. We have to treat this variation since we later want to study coefficients over a fixed group Γ which we will then pullback via group homomorphisms with Γ as target. For instance, we may be interested in the algebraic K-theory of a twisted groups ring $R_\alpha G$ for some homomorphism $\alpha: G \to \text{aut}(R)$. More generally, we will later consider additive G-categories as coefficients.

Fix a group Γ. A group (G, ξ) over Γ is a group G together with a group homomorphism $\xi: G \to \Gamma$. A map $\alpha: (G_1, \xi_1) \to (G_2, \xi_2)$ of groups over Γ is a group homomorphism $\alpha: G_1 \to G_2$ satisfying $\xi_2 \circ \alpha = \xi_1$. Let Λ be an associative commutative ring with unit.

Definition 11.83 (Equivariant homology theory over a group Γ).

An equivariant homology theory \mathcal{H}_*^G with values in Λ-modules over a group Γ assigns to every group (G, ξ) over Γ a G-homology theory $\mathcal{H}_{*}^{G, \xi}$ with values in Λ-modules and comes with the following so called induction structure: given a homomorphism $\alpha: (H, \mu) \to (G, \xi)$ of groups over Γ and an H-CW-pair (X, A), there are for each $n \in \mathbb{Z}$ natural homomorphisms

$$\text{ind}_\alpha: \mathcal{H}^H_{*}(X,A) \to \mathcal{H}^G_{*}(\alpha_*(X,A))$$

satisfying

- Compatibility with the boundary homomorphisms
 $$\partial_n^{G, \xi} \circ \text{ind}_\alpha = \text{ind}_\alpha \circ \partial_n^{H, \mu};$$
- Functoriality
 Let $\beta: (G, \xi) \to (K, \nu)$ be another morphism of groups over Γ. Then we have for $n \in \mathbb{Z}$
 $$\text{ind}_{\beta \circ \alpha} = \mathcal{H}_n^{K, \nu}(f_1) \circ \text{ind}_\beta \circ \text{ind}_\alpha: \mathcal{H}^H_{*}(X,A) \to \mathcal{H}^K_{*}((\beta \circ \alpha)_*(X,A)),$$
 where $f_1: (\beta \circ \alpha)_*(X,A) \xrightarrow{\cong} (\beta \circ \alpha)_*(X,A), (k, g, x) \mapsto (k \beta(g), x)$ is the natural K-homeomorphism;
- Compatibility with conjugation
 Let (G, ξ) be a group over Γ. Fix $g \in G$ such that $\xi \circ c(g) = \xi$. Then the conjugation homomorphisms $c(g): G \to G$ defines a morphism $c(g): (G, \xi) \to (G, \xi)$ of groups over Γ. Let $f_2: (X, A) \to c(g)_*(X, A)$ be the G-homeomorphism which sends x to $(1, g^{-1}x)$ in $G \times c(g)(X, A)$. Then for every $n \in \mathbb{Z}$ and every G-CW-pair (X, A) the homomorphism $\text{ind}_{c(g)}: \mathcal{H}_n^{G, \xi}(X,A) \to \mathcal{H}_n^{G, \xi}(c(g)_*(X,A))$ agrees with $\mathcal{H}_n^{G, \xi}(f_2)$.
- Bijectivity
If $\ker(\alpha)$ acts freely on $X \setminus A$, then $\text{ind}_\alpha : H_n^H(\cdot, A) \to H_n^G(\text{ind}_\alpha(\cdot, A))$ is bijective for all $n \in \mathbb{Z}$.

Definition 11.83 reduces to Definition 11.9 if one puts $\Gamma = \{1\}$.

The analog of Lemma 11.12 in this setting is obvious and easily checked.

The proof of Theorem 11.27 to this setting as explained in [71, Lemma 7.1].

Theorem 11.85 (Constructing equivariant homology over a group theories using spectra). Let Γ be a group. Denote by $\text{GROUPOIDS} \downarrow \Gamma$ the category of small connected groupoids over Γ considered as a groupoid with one object. Consider a covariant functor

$$E : \text{GROUPOIDS} \downarrow \Gamma \to \text{SPECTRA}$$

which sends equivalences of groupoids to weak equivalences of spectra.

Then we can associate to it an equivariant homology theory $H^\xi_n(\cdot, E)$ with values in \mathbb{Z}-modules over Γ such that for every group (G, μ) over Γ and subgroup $H \subseteq G$ we have a natural identification

$$H_n^{H,\xi}(\{\bullet\}; E) = H_n^{G,\xi}(G/H, E) = \pi_n(\{E(H, \xi)|_H\}).$$

There are twisted analogues of the functors mentioned in Section 11.5, see (12.10) and (12.15).

More information about equivariant homology theories over a group can be found in [71].

11.11 Notes

Equivariant stable cohomotopy has been introduced in [557] for arbitrary groups G and proper finite G-CW-complexes and extended to proper G-CW-complexes in [267, Example 3.2.9]. A version of the Segal Conjecture in this setting is proved in [599]. A systematic study of the equivariant homotopy category for proper G-CW-complexes can be found in [267]. There it is explained in [267, Remark 3.2.10] that the classical notion of an $RO(G)$-grading is taken over by a kind of $K^*_G(EG)$-grading.

If one is dealing with equivariant topological K-theory, then there exists a Chern character, where one does not have to fully rationalize, it suffices to invert the orders of all the isotropy groups of the proper G-CW-complex under consideration, see [558].

There are also equivariant cohomology theories and a cohomological version of the equivariant Chern character, see [588]. It can be used to extend the Atiyah-Segal Completion Theorem for finite groups to infinite groups and proper G-CW-complexes, see [602, 603]. It leads to rational computations of $K^*(BG)$ also for not necessarily finite groups, see [571, 591].
An equivariant Chern character for equivariant topological K-theory after complexification has been introduced in [95].
Chapter 12
The Farrell-Jones Conjecture

12.1 Introduction

In this chapter we discuss the Farrell-Jones Conjecture for K- and L-theory for arbitrary groups and rings. It predicts that certain assembly maps

$$H^G_n(pr): H^G_n(E_{VCY}(G); K_R) \to K_n(RG);$$
$$H^G_n(pr): H^G_n(E_{VCY}(G); L^{(-\infty)}_R) \to L^{(-\infty)}_n(RG),$$

are bijective for all $n \in \mathbb{Z}$. The target is the algebraic K- or L-group of the group ring RG which one wants to understand. The source is an expression which depends only on the values of these K- and L-groups on virtually cyclic subgroups of G and is therefore much more accessible. The version above is often the one which is relevant in concrete applications, but nevertheless we will consider generalizations, for instance to twisted group rings and twisted involutions. The both most general and most important version will be the Full Farrell-Jones Conjecture 12.23. It implies all other variants of the Farrell-Jones Conjecture, which appear in this book, see Section 12.10. It has very nice inheritance properties, see Section 12.6, which are in general not shared by the other variants.

A status report of the Full Farrell-Jones Conjecture 12.23 will be given in Theorem 15.1. It is known for a large class of groups.

The main point about the Full Farrell-Jones Conjecture 12.23 is that it implies a great variety of other prominent conjectures such as the ones due to Bass, Borel, Kaplanski, and Novikov, and leads to very deep and interesting results about manifolds and groups, as we will record and explain in Section 12.11. Often these applications are much more appealing and easier to comprehend than the rather technical Full Farrell-Jones Conjecture 12.23. The author’s favorite is the Borel Conjecture, which predicts that two aspherical closed topological manifolds are homeomorphic if and only if their fundamental groups are isomorphic, and in this case any homotopy equivalence is homotopic to a homeomorphism.

Section 12.9 deals with the question whether one can reduce the family of virtually cyclic subgroups to a smaller family of subgroups, for instance to all finite subgroups or just to the family consisting of the trivial subgroup. Section 12.12 presents of a short discussion of G-theory.

We have tried to keep this chapter as much as possible independent of the other chapters, so that one may start reading directly here.
12.2 The Farrell-Jones Conjecture with Coefficients in Rings

Let G be a (discrete) group. Recall that a G-homology theory H^*_G with values in A-modules for some commutative associative unital ring A assigns to every G-CW-pair (X,A) and integer $n \in \mathbb{Z}$ a A-module $H^*_G(X,A)$ such that the obvious generalization to G-CW-pairs of the axioms of a (non-equivariant generalized) homology theory for CW-complexes holds, i.e., G-homotopy invariance, the long exact sequence of a G-CW-pair, excision, and the disjoint union axiom are satisfied. The precise definition of a G-homology theory can be found in Definition 11.1 and of a G-CW-complex in Definition 10.2, see also Remark 10.3.

Recall that we have defined the notion of a family of subgroups of a group G in Definition 2.52, namely, to be a set of subgroups of G which is closed under conjugation with elements of G and passing to subgroups. Denote by $E_F(G)$ a model for the classifying space for the family F of subgroups of G, i.e., a G-CW-complex $E_F(G)$ whose isotropy groups belong to F and for which for each $H \in F$ the H-fixed point set $E_F(G)^H$ is weakly contractible. Such a model always exists and is unique up to G-homotopy, see Definition 10.18 and Theorem 10.19. Recall that EG and eG are abbreviations for $E_{FIN}(G)$ and $E_{VCY}(G)$.

12.2.1 The K-Theoretic Farrell-Jones Conjecture with Coefficients in Rings

Given a ring R, there is a specific G-homology theory $H^*_G(-;K_R)$ with values in \mathbb{Z}-modules, which has the property that $H^*_G(G/H;K_R) \cong K_n(RH)$ holds for all $n \in \mathbb{Z}$ and subgroups $H \subseteq G$, where $K_n(RH)$ is the nth algebraic K-group of the group ring RH. Its construction can be used in the sequel as a black box. We have already given some details, namely, it is given by the equivariant homology theory $H^*_G(-;K_R)$ evaluated at G, which is associated to the covariant functor $K_R: \text{GROUPOIDS} \to \text{SPECTRA}$ of (11.41) in Theorem 11.27. Let VCY be the family of virtually cyclic subgroups, i.e., subgroups which are either finite or contain \mathbb{Z} as subgroup of finite index.

Conjecture 12.1 (K-theoretic Farrell-Jones Conjecture with coefficients in the ring R). Given a group G and a ring R, we say that G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients in the ring R if the assembly map induced by the projection $pr: E_{VCY}(G) \to G/G$

$$H^*_G(pr): H^*_G(E_{VCY}(G);K_R) \to H^*_G(G/G;K_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.
In many of the proofs the coefficients rings do not play a role and therefore it is reasonable to consider the following stronger variant which is now a statement about the group G itself.

Conjecture 12.2 (K-theoretic Farrell-Jones Conjecture with coefficients in rings). We say that the group G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients in rings if the K-theoretic Farrell-Jones Conjecture [12.1] with coefficients in R holds for every ring R.

Exercise 12.3. Show that Conjecture 12.2 does not hold for $G = \mathbb{Z}$ if one replaces \mathcal{VCY} by \mathcal{FLN} in Conjecture 12.1.

12.2.2 The L-Theoretic Farrell-Jones Conjecture with Coefficients in Rings

The situation for L-theory is similar. Namely, given a ring with involution R, there is a specific G-homology theory $H^G_n(\cdot; L^{(-\infty)}_R)$ with values in \mathbb{Z}-modules, which has the property that $H^G_n(G/H; L^{(-\infty)}_R) \cong L^{(-\infty)}_n(RH)$ holds for all $n \in \mathbb{Z}$ and subgroups $H \subseteq G$, where $L^{(-\infty)}_n(RH)$ is the nth algebraic L-groups of the group ring with involution RH with decoration $(-\infty)$. Its construction can be used in the sequel as a black box. We have already given some details, namely, it is given by the equivariant homology theory $H^*_G(\cdot; L^{(-\infty)}_R)$ evaluated at G, which is associated to the covariant functor $L^{(-\infty)}_R: \text{GROUPOIDS} \to \text{SPECTRA}$ of (11.42) in Theorem 11.27.

Conjecture 12.4 (L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R). Given a group G and ring with involution R, we say that G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R if the assembly map given by the projection $E_{\mathcal{VCY}}(G) \to G/G$$H^G_n(\text{pr}): H^G_n(E_{\mathcal{VCY}}(G); L^{(-\infty)}_R) \to H^G_n(G/G; L^{(-\infty)}_R) = L^{(-\infty)}_n(RG)$
is bijective for all $n \in \mathbb{Z}$.

Exercise 12.5. Show that Conjecture 12.4 holds for $G = \mathbb{Z}$ if one replaces \mathcal{VCY} by \mathcal{FLN}.

If we invert 2, it is expected that one can replace \mathcal{VCY} by \mathcal{FLN} in general.

Conjecture 12.6 (L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R after inverting 2). Given a group G and ring with involution R, we say that G satisfies the L-theoretic...
Farrell-Jones Conjecture with coefficients in the ring with involution R after inverting 2 if the assembly map given by the projection $E_{\mathcal{F}LN}(G) \rightarrow G/G$

$$H_n^G(\text{pr}): H_n^G(E_{\mathcal{F}LN}(G); L_{\mathbb{R}}(-\infty)) \rightarrow H_n^G(G/G; L_{\mathbb{R}}(-\infty)) = L_n(-\infty)(RG)$$

is bijective for all $n \in \mathbb{Z}$ after inverting 2.

Conjecture 12.7 (L-theoretic Farrell-Jones Conjecture with coefficients in rings with involution). A group G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in rings with involution if the L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in the ring with involution R holds for every ring with involution R.

Conjecture 12.8 (L-theoretic Farrell-Jones Conjecture with coefficients in rings with involution after inverting 2). We say that a group G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in rings with involution after inverting 2 if the L-theoretic Farrell-Jones Conjecture 12.6 with coefficients in R holds for every ring with involution R.

Remark 12.9 (The decoration $(-\infty)$ is necessary). One can define for any decoration $j \in \{ n \in \mathbb{Z} \mid n \leq 1 \} \sqcup \{-\infty\}$ an assembly map

$$H_n^G(\text{pr}): H_n^G(E_{\mathcal{F}CY}(G); L_{\mathbb{R}}(j)) \rightarrow H_n^G(G/G; L_{\mathbb{R}}(j)) = L_n(j)(RG).$$

But in general one can only hope that it is bijective if one chooses $j = -\infty$. Counterexamples for $G = \mathbb{Z}^2 \times F$ for a finite group F, $R = \mathbb{Z}$ and $j = -1, 0, 1$, which is also sometimes denoted by $j = p, h, s$, are constructed in [337].

If we invert 2, the decorations do not play a role because of the Rothenberg sequences, see Subsection 8.10.4.

12.3 The Farrell-Jones Conjecture with Coefficients in Additive Categories

There are situations, where one wants to consider twisted groups rings $R_\alpha G$ for some group homomorphism $\alpha: G \rightarrow \text{aut}(R)$ into the group of ring automorphisms of R. Elements in $R_\alpha G$ are given by formal finite sums $\sum_{g \in G} r_g \cdot g$, and addition and multiplication is given by

$$\left(\sum_{g \in G} r_g \cdot g \right) + \left(\sum_{g \in G} s_g \cdot g \right) := \sum_{g \in G} (r_g + s_g) \cdot g;$$

$$\left(\sum_{g \in G} r_g \cdot g \right) \cdot \left(\sum_{g \in G} s_g \cdot g \right) := \sum_{g \in G} \left(\sum_{h, k \in G, g = hk} r_h \cdot \alpha(h)(s_k) \right) \cdot g.$$
So the decisive relation for the multiplication is \((r \cdot h) \cdot (s \cdot k) = (r \cdot \alpha(h)(s)) \cdot hk\).

Or even, more generally, one may want to consider crossed product rings, see for instance [77, Section 4].

When considering \(L\)-theory, one considers a ring with involution \(R\) and wants to allow to twist the involution on \(RG\) by an orientation homomorphism \(w: G \to \text{center}(R)\) satisfying \(w(g) = w(g)\), namely the \(w\)-twisted involution on \(RG\) is given by

\[
\sum_{g \in G} r_g \cdot g := \sum_{g \in G} w(g) \cdot r_g \cdot g^{-1}.
\]

The situation becomes even more involved if one wants to consider crossed product rings with involution. Details are explained in [77, Section 4].

It turns out that one can nicely treat these generalization of group rings and involutions by looking at additive \(G\)-categories (with involution).

There is another crucial reason why it is useful to look at coefficients in additive \(G\)-categories (with involution). These versions of the Farrell-Jones Conjecture with coefficients in additive \(G\)-categories (with involution) have much better inheritance properties than the one with coefficients in rings (with involution) as we will explain below in Section 12.6, for instance they pass to subgroups.

The details are given for additive \(G\)-categories and \(K\)-theory in [84], the case of additive \(G\)-categories with involution is treated for the \(K\)-theory taking the involution into account and for \(L\)-theory in [77]. Since we can use this general approach essentially as a black box, we give only a brief summary here, following the notation of [77].

12.3.1 The \(K\)-theoretic Farrell-Jones Conjecture with Coefficients in Additive \(G\)-Categories

Let \(\mathcal{A}\) be an additive \(G\)-category in the sense of [77, Definition 2.1], i.e., an additive categories with right \(G\)-action by functors of additive categories. Let \(\text{GROUPOIDS} \downarrow G\) be the category of connected groupoids over \(G\). Recall that for a group \(G\) we denote by \(I(G)\) the groupoid with one object and \(G\) as its automorphism group. We obtain from [77, Section 5] a contravariant functor to the category ADD-CAT of small additive categories

\[
\text{GROUPOIDS} \downarrow G \to \text{ADD-CAT}, \quad \text{pr}: \mathcal{G} \to I(G) \mapsto \int_{\mathcal{G}} \mathcal{A} \circ \text{pr}.
\]

Composing it with the functor sending an additive category to its non-connector \(K\)-theory spectrum, see for instance [186, 616, 719], yields a functor.
By Theorem 11.85 we obtain an equivariant homology theory over G in the sense of Definition 11.83. In particular its evaluation at G yields a G-homology theory $H^G_G(-; K_A)$.

Conjecture 12.11 (K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories). We say that G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories if for any additive G-category A and any $n \in \mathbb{Z}$ the assembly map given by the projection

$$H_n(pr): H^G_n(E_{VCY}(G); K_A) \rightarrow H^G_n(G/G; K_A) = \pi_n(K_A(I(G)))$$

is bijective.

Remark 12.12 (The setting of additive G-categories encompasses the setting with rings as coefficients). Let $\alpha: G \rightarrow \text{aut}(R)$ be a group homomorphism. Then we have already introduced the twisted group ring $R_\alpha(G)$ above. For a suitable choice of an additive G-category A the assembly map appearing in Conjecture 12.11 reduces to the assembly map

$$H_n(pr): H^G_n(E_{VCY}(G); K_A) \rightarrow H^G_n(G/G; K_R,\alpha) = K_n(R_\alpha G)$$

where for any subgroup $H \subseteq G$ and integer $n \in \mathbb{Z}$ we have $\pi_n(K_R,\alpha(I(H))) = K_n(R_\alpha|_H H)$. If α is trivial, this is precisely the assembly map appearing in Conjecture 12.1. More details, even for crossed product rings, can be found in [77, Section 4 and 6].

In particular we get that the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings holds for G if the K-theoretic Farrell-Jones Conjecture 12.11 with coefficients in additive G-categories holds for G.

Exercise 12.13. Let R be a ring. Define a category $A(R)$ as follows. For each integer $m \in \mathbb{Z}$ with $m \geq 0$ we have one object $[m]$. For $m, n \geq 1$ the set of morphisms from $[m]$ to $[n]$ is the set $M_{m,n}(R)$ of (m,n)-matrices with entries in R. The set of morphisms from $[0]$ to $[m]$ and from $[m]$ to $[0]$ consist of precisely one element. Composition is given by matrix multiplication.

Show that $A(R)$ can be equipped with the structure of a small additive category and that it is equivalent as an additive category to the category of finitely generated free R-modules.

Remark 12.14 (Involutions and K-theory). If A is an additive G-category with involution in the sense of [77, Definition 4.22], then the involu-
tion induces involutions on the source and target of the K-theoretic assembly map
\[H_n(pr): H_n^G(E_{\mathcal{VCY}}(G); K_A) \to H_n^G(G/G; K_A) = \pi_n(K_A(I(G))) \]
of Conjecture 12.11 and the assembly map is compatible with them.

12.3.2 The L-theoretic Farrell-Jones Conjecture with Coefficients in Additive G-Categories with Involution

Let \mathcal{A} be an additive G-category with involution in the sense of [77, Definition 4.22]. We obtain from [77, Section 7] a contravariant functor to the category ADD-CAT\textsubscript{\text{inv}} of small additive categories with involution
\[\text{GROUPOIDS} \downarrow G \to \text{ADD-CAT}_{\text{inv}}, \quad pr: \mathcal{G} \to I(G) \mapsto \int_{\mathcal{G}} \mathcal{A} \circ pr. \]
Composing it with the functor sending an additive category with involution \mathcal{A} to its L-theory spectrum $L_{\langle -\infty \rangle}(\mathcal{A})$, yields a functor
\[L_{\langle -\infty \rangle}^{(-\infty)}: \text{GROUPOIDS} \downarrow G \to \text{SPECTRA}, \tag{12.15} \]
where for the construction of the spectrum L-theory $L_{\langle -\infty \rangle}(\mathcal{A})$ associated to an additive category with involution \mathcal{A} we refer to Ranicki [756, Chapter 13]. By Theorem 11.85 we obtain an equivariant homology theory over G in the sense of Definition 11.83. In particular its evaluation at G yields a G-homology theory $H_n^G(-; L_{\langle -\infty \rangle}^{(-\infty)})$.

Conjecture 12.16 (L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution). We say that G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution if for any additive G-category with involution \mathcal{A} the assembly map
given by the projection
\[H_n(pr): H_n^G(E_{\mathcal{VCY}}(G); L_{\mathcal{A}}^{(-\infty)}) \to H_n^G(G/G; L_{\mathcal{A}}^{(-\infty)}) = \pi_n(L_{\mathcal{A}}^{(-\infty)}(I(G))) \]
is bijective.

Remark 12.17 (The setting of additive G-categories with involution encompasses the setting with rings with involution as coefficients). Let R be a ring with involution. Consider a group homomorphism $\alpha: G \to \text{aut}(R)$ satisfying $\alpha(g)(r) = \alpha(g)(\tau)$, and a group homomorphism $w: G \to \text{center}(R)$ satisfying $w(g) = w(\tau)$. Then we have already introduced the twisted group ring $R_\alpha(G)$ above. It inherits an involution by
\[
\sum_{g \in G} r_g \cdot g := \sum_{g \in G} w(g) \cdot \alpha(g^{-1})(\overline{r}_g) \cdot g^{-1}
\]

and we denote this ring with involution by \(R_{\alpha,w}G \). For a suitable choice of an additive \(G \)-category with involution \(\mathcal{A} \) the assembly map

\[
H_n(\text{pr}): H_n^G(E_{\text{VCY}}(G); L(\mathcal{A})) \rightarrow H_n^G(G/G; L(\mathcal{A}(I(G))))
\]

appearing in Conjecture 12.16 reduces to the assembly map

\[
H_n(\text{pr}): H_n^G(E_{\text{VCY}}(G); L_{R,\alpha,w}^{(-\infty)}) \rightarrow H_n^G(G/G; L_{R,\alpha,w}^{(-\infty)}) = L_n^{(-\infty)}(R_{\alpha,w}G),
\]

where for any subgroup \(H \subseteq G \) and integer \(n \in \mathbb{Z} \) we have \(L_n^{(-\infty)}(I(H)) = L_n^{(-\infty)}(R_{\alpha|H}, w|_H) \). If \(\alpha \) and \(w \) are trivial, this is precisely the assembly map appearing in Conjecture 12.3. More details, even for crossed product rings, can be found in [77, Theorem 0.4, Section 4 and 8].

In particular we get that the \(L \)-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution holds for \(G \) if the \(L \)-theoretic Farrell-Jones Conjecture 12.16 with coefficients in additive \(G \)-categories with involution holds for \(G \).

Exercise 12.18. Let \(F: \mathcal{A} \rightarrow \mathcal{B} \) be a functor of additive categories. Show that it is an equivalence of additive categories if and only if for every two objects \(A \) and \(B \) in \(\mathcal{A} \) the induced map \(\text{mor}_\mathcal{A}(A_0, A_1) \rightarrow \text{mor}_\mathcal{B}(F(A_0), F(A_1)) \) sending \(f \) to \(F(f) \) is bijective and for each object \(B \) in \(\mathcal{B} \) there exists an object \(A \) in \(\mathcal{A} \) such that \(F(A) \) and \(B \) are isomorphic in \(\mathcal{B} \).

Remark 12.19 (Eilenberg swindle for \(L \)-theory). There is an obvious version of Theorem 6.36 for the algebraic \(L \)-theory \(L^{(-\infty)}(\mathcal{A}) \) of an additive category \(\mathcal{A} \) with involution.

12.4 Finite Wreath Products

The versions of the Farrell-Jones Conjecture discussed above do not carry over to overgroups of finite index. To handle this difficulty, we consider finite wreath products.

Let \(G \) and \(F \) be groups. Their **wreath product** \(G \wr F \) is defined as the semi-direct product \((\prod_F G) \rtimes F \), where \(F \) acts on \(\prod_F G \) by permuting the factors. For our purpose the following elementary lemma is crucial.

Lemma 12.20.

(i) There is an embedding \((H \wr F_1) \wr F_2 \rightarrow H \wr (F_1 \wr F_2) \);

(ii) If \(F_1 \) and \(F_2 \) are finite, then \(F_1 \wr F_2 \) is finite;
(iii) Let G be an overgroup of H of finite index. Then there is subgroup $N \subseteq H$ of H, which satisfies $[G : H] < \infty$ and is normal in G, and a finite group F such that G embeds into $N \wr F$.

Proof. (i) See [537, Lemma 1.21].

(ii) This is obvious.

(iii) Let S denote a system of representatives of the cosets G/H. Since G/H is by assumption finite, $N := \bigcap_{s \in S} sHs^{-1}$ is a finite index normal subgroup of G and is contained in H. Now G can be embedded in $N \wr G/N$, see [282, Section 2.6].

Conjecture 12.21 (K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with finite wreath products). We say that G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with finite wreath products if for any finite group F the group $G \wr F$ satisfies the K-theoretic Farrell-Jones Conjecture 12.11 with coefficients in additive $G \wr F$-categories.

Conjecture 12.22 (L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution with finite wreath products). We say that G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution with finite wreath products if for any finite group F the group $G \wr F$ satisfies the L-theoretic Farrell-Jones Conjecture 12.16 with coefficients in additive $G \wr F$-categories with involution.

12.5 The Full Farrell-Jones Conjecture

Next we can formulate the version of the Farrell-Jones Conjecture which is the most general one, implies all other ones and has the best inheritance properties.

Conjecture 12.23 (Full Farrell-Jones Conjecture). We say that a group satisfies the Full Farrell-Jones Conjecture if G satisfies both the K-theoretic Farrell-Jones Conjecture 12.21 with coefficients in additive G-categories with finite wreath products and the L-theoretic Farrell-Jones Conjecture 12.22 with coefficients in additive G-categories with involution with finite wreath products.
12.6 Inheritance Properties of the Farrell-Jones Conjecture

In this section we discuss the inheritance properties of the various versions of the Farrell-Jones Conjectures above. Both the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution do not have good inheritance properties. The reason why we have introduced the other variants is that they do have some remarkable inheritance properties.

Comment 11: Shall we introduce the notion of a Farrell-Jones group and the class FJ here or elsewhere?

Theorem 12.24 (Inheritance properties of the Farrell-Jones Conjecture).

(i) Passing to subgroups
Let $H \subseteq G$ be an inclusion of groups. If G satisfies the Full Farrell-Jones Conjecture 12.23 then H satisfies the Full Farrell-Jones Conjecture 12.23.

(ii) Passing to finite direct products
If the groups G_0 and G_1 satisfy the Full Farrell-Jones Conjecture 12.23 then $G_0 \times G_1$ satisfies the Full Farrell-Jones Conjecture 12.23.

(iii) Group extensions
Let $1 \to K \to G \to Q \to 1$ be an extension of groups. Suppose that for any virtually cyclic subgroup $V \subseteq Q$ the group $p^{-1}(V)$ satisfies the Full Farrell-Jones Conjecture 12.23 and that the group Q satisfies the Full Farrell-Jones Conjecture 12.23. Then G satisfies the Full Farrell-Jones Conjecture 12.23.

(iv) Directed colimits
Let $\{G_i \mid i \in I\}$ be a direct system of groups indexed by the directed set I (with arbitrary structure maps). Suppose that for each $i \in I$ the group G_i satisfies the Full Farrell-Jones Conjecture 12.23. Then the colimit $\text{colim}_{i \in I} G_i$ satisfies the Full Farrell-Jones Conjecture 12.23.

(v) Passing to free products
Consider a collection of groups $\{G_i \mid i \in I\}$ such that G_i satisfies the Full Farrell-Jones Conjecture 12.23 for each $i \in I$. Then then $*_{i \in I} G_i$ satisfies the Full Farrell-Jones Conjecture 12.23.

(vi) Other versions
The obvious versions of assertions (i), (ii), (iii), (iv), and (v) are also true for the versions 12.11, 12.16, 12.21, and 12.22 of the Farrell-Jones Conjecture.

(vii) Passing to overgroups of finite index
Let G be an overgroup of H with finite index $[G : H]$. If H satisfies the Full Farrell-Jones Conjecture 12.23 then G satisfies the Full Farrell-Jones Conjecture 12.23.
12.6 Inheritance Properties of the Farrell-Jones Conjecture

(viii) Passing to finite wreath products

If G satisfies the Full Farrell-Jones Conjecture $[12.23]$ then $G \wr F$ satisfies
the Full Farrell-Jones Conjecture $[12.23]$ for any finite group F.

Proof. (i) This is proved in $[84, \text{Theorem 4.5}]$ for Conjecture $[12.11]$ and in $[77, \text{Theorem 0.10}]$ for Conjecture $[12.16]$. Now the claim follows for the Full Farrell-Jones Conjecture $[12.23]$ since $H \wr F$ is a subgroup of $G \wr F$ for every subgroup $H \subseteq G$.

(ii) and (iii) The obvious version of assertion (iii) is proved in $[77, \text{Theorem 0.9}]$ for Conjecture $[12.16]$ the proof for Conjecture $[12.11]$ is analogous.

The versions of the Farrell-Jones Conjecture $[12.11]$ and $[12.16]$ are true for virtually finitely generated abelian groups by $[72, \text{Theorem 3.1}]$. Hence they hold in particular for the product of two virtually cyclic subgroups. By inspecting the proof of $[537, \text{Lemma 3.21}]$, we see that the obvious versions of assertion (ii) holds for versions of the Farrell-Jones Conjecture $[12.11]$ and $[12.16]$.

Thus we have shown that the obvious versions of both assertion (ii) and assertion (iii) hold for the versions of the Farrell-Jones Conjecture $[12.11]$ and $[12.16]$.

Next we prove assertion (ii) for the Full Farrell-Jones Conjecture $[12.23]$. Suppose the Full Farrell-Jones Conjecture $[12.23]$ holds for G_1 and G_2. Let F be any finite subgroup. We have to show that versions of the Farrell-Jones Conjecture $[12.11]$ and $[12.16]$ holds for $(G_1 \times G_2) \wr F$. By assumption they both hold for $G_1 \wr F$ and $G_2 \wr F$. Since $(G_1 \times G_2) \wr F$ is a subgroup of $(G_1 \wr F) \times (G_2 \wr F)$ by $[537, \text{Lemma 1.197}]$ and Conjecture $[12.11]$ and $[12.16]$ pass to subgroups by the argument given in assertion (i), assertion (ii) holds for the Full Farrell-Jones Conjecture $[12.23]$.

Finally we conclude from $[537, \text{Lemma 3.16}]$ that the Full Farrell-Jones Conjecture $[12.23]$ satisfies assertion (iii).

(iv) This is proved in $[77, \text{Theorem 0.8}]$ for Conjecture $[12.16]$ the proof for Conjecture $[12.11]$ is completely analogous. Now the claim follows for the Full Farrell-Jones Conjecture $[12.23]$ since there is an obvious isomorphism for a finite group F, see $[537, \text{Lemma 1.20}]$.

$$\colim_{i \to \infty} (G_i \wr F) \xrightarrow{\cong} \left(\colim_{i \to \infty} G_i \right) \wr F.$$

(v) Because of assertion (iv) it suffices to consider the case, where I is finite. An obvious induction argument over the cardinality of the finite set I reduces the claim to the case $I = \{1, 2\}$.

Let G_1 and G_2 be groups. Let $\text{pr}: G_1 \ast G_2 \to G_1 \times G_2$ be the canonical projection. Let $V \subseteq G_1 \times G_2$ be a virtually cyclic subgroup. Then there exists a free group F and a finite group H such that $\text{pr}^{-1}(V)$ is a subgroup of $F \wr H$, see $[537, \text{Lemma 3.21}]$. (In the statement of $[537, \text{Lemma 3.21}]$ the assumption countable appears but the proof goes through in the general case without modifications.) A finitely generated free group satisfies the Full Farrell-Jones Conjecture $[12.23]$ by $[82, \text{Remark 6.4}]$, since it is a hyperbolic group. Hence F satisfies the Full Farrell-Jones Conjecture $[12.23]$ by
We conclude from assertion (viii) that \(F \wr H \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\) for every virtually cyclic subgroup \(V \subseteq G_1 \times G_2 \) by assertion (ii). The product \(G_1 \times G_2 \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\) by assertion (ii). Now assertion (iii) implies that \(G_1 * G_2 \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\).

The proofs given above do cover these cases as well.

This follows from Lemma \(^{12.20}\) (iii) and assertion (i).

This follows from Lemma \(^{12.20}\) (i) and (ii) and assertion (i). \(\Box \)

Exercise 12.25. Consider an epimorphism of groups \(G \to Q \) whose kernel is finite. Suppose that \(Q \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\). Show that \(G \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\).

Exercise 12.26. Suppose that the Full Farrell-Jones Conjecture \(^{12.23}\) holds for all groups which occur as fundamental groups of a connected orientable closed 4-manifold. Show that then the Full Farrell-Jones Conjecture \(^{12.23}\) holds for all groups.

Exercise 12.27. Let \(1 \to K \to G \to Q \to 1 \) be an extension of groups. Suppose that for any infinite cyclic subgroup \(C \subseteq Q \) the group \(p^{-1}(C) \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\) and that the groups \(K \) and \(Q \) satisfy the Full Farrell-Jones Conjecture \(^{12.23}\). Show that then \(G \) satisfies the Full Farrell-Jones Conjecture \(^{12.23}\).

12.7 Splitting the Assembly Map from \(\mathcal{FIN} \) to \(\mathcal{VCY} \)

In the sequel we denote for two families \(\mathcal{F} \subseteq \mathcal{G} \) by

\[
\iota_{\mathcal{F} \subseteq \mathcal{G}} : E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)
\]

the up to \(G \)-homotopy unique \(G \)-map. Note that \(\iota_{\mathcal{F} \subseteq \mathcal{A}\mathcal{C}} : E_{\mathcal{F}}(G) \to E_{\mathcal{A}\mathcal{C}}(G) = G/G \) is the projection.

Theorem 12.29 (Splitting the \(K \)-theoretic assembly map from \(\mathcal{FIN} \) to \(\mathcal{VCY} \)). Let \(G \) be a group and let \(\mathcal{A} \) be an additive \(G \)-category. Let \(n \) be any integer.

Then

\[
H_n^G(\iota_{\mathcal{FIN} \subseteq \mathcal{VCY}}; K_\mathcal{A}) : H_n^G(E_{\mathcal{FIN}}(G); K_\mathcal{A}) \to H_n^G(E_{\mathcal{VCY}}(G); K_\mathcal{A})
\]

is split injective. In particular we obtain a natural splitting
12.8 Splitting Rationally the Assembly Map from $\mathcal{T}R$ to \mathcal{FIN}

\[H_n^G(E_{\mathcal{VCY}}(G); K_A) \cong H_n^G(E_{\mathcal{FIN}}(G); K_A) \oplus H_n^G(\iota_{\mathcal{FIN}} \subseteq \mathcal{VCY}; K_A). \]

Moreover, there exists specific $\text{Or}(G)$-spectrum NK_A and a natural isomorphism

\[H_n^G(\iota_{\mathcal{FIN}} \subseteq \mathcal{VCY}; K_A) \cong H_n^G(\iota_{\mathcal{FIN}} \subseteq \mathcal{VCY}; K_A) \]

where \mathcal{VCY}_I is the family of virtually cyclic subgroups of type I.

Proof. See [617, Theorem 0.1]. \(\Box\)

Whereas in [86, Theorem 1.3] just a splitting is established, in [617, Theorem 0.1], an explicit $\text{Or}(G)$-spectra NK_A^G is constructed and the relative terms including the involution on the K-groups are further analyzed, in particular they are identified with K-groups of Nil-categories. For rings see also Lafont-Ortiz [548].

For L-theory one has at least the following version, which is mentioned after Theorem 1.3 in [86] for rings. The argument carries over to additive G-categories with involution.

Theorem 12.30 (Splitting the L-theoretic assembly map from \mathcal{FIN} to \mathcal{VCY}). Let A be an additive G-category with involution such that there exists an integer N with the property that $\pi_n(K_A(I(V))) = 0$ for all virtually cyclic subgroups V of G and all $n \leq N$.

Then

\[H_n^G(\iota_{\mathcal{FIN}} \subseteq \mathcal{VCY}; L_A^{(-\infty)}) : H_n^G(E_{\mathcal{FIN}}(G); L_A^{(-\infty)}) \to H_n^G(E_{\mathcal{VCY}}(G); L_A^{(-\infty)}) \]

is split injective.

It is not clear whether the condition about $\pi_n(K_A(I(V)))$ appearing in Theorem 12.30, which is needed for the proposed proof, is necessary. If we consider group rings RG, this condition is automatically satisfied if R is regular and the order of every finite subgroup of G is invertible in R, e.g., R is a field of characteristic zero, or if R is the ring of integers in an algebraic number field, e.g., $R = \mathbb{Z}$.

12.8 Splitting Rationally the Assembly Map from $\mathcal{T}R$ to \mathcal{FIN}

Lemma 12.31. Let G be a group and let R be a ring (with involution).

Then the relative assembly maps
are split injective after applying $-\otimes \mathbb{Z} \mathbb{Q}$ for $n \in \mathbb{Z}$.

Proof. This follows from Theorem 11.54, see Exercise 11.56. \qed

Example 12.32 (The L-theory assembly map for the trivial family is not injective in general). Consider the group $\mathbb{Z}/3$. Then

$$H_1(B\mathbb{Z}/3; L(\mathbb{Z})) \to L_1(\mathbb{Z}[\mathbb{Z}/3])$$

is not injective. Namely, the target is known to be trivial, but the source is non-trivial. This can be seen by inspecting the Atiyah-Hirzebruch spectral sequence converging to $H_{p+q}(B\mathbb{Z}/3; L(\mathbb{Z}))$ with E^2-term

$$H_p(B\mathbb{Z}/3, L_q(\mathbb{Z})) = \begin{cases} \mathbb{Z}/3 & p \geq 1, p \text{ odd, } q \equiv 0 \mod 4; \\ L_q(\mathbb{Z}) & p = 0; \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\text{Wh}(\mathbb{Z}/3)$, $\tilde{K}_0(\mathbb{Z}[\mathbb{Z}/3])$ and $K_n(\mathbb{Z}[\mathbb{Z}/3])$ for $n \leq -1$ vanish by Theorem 3.112, Theorem 3.113 (iv), and Theorem 4.21 (i) and (v), Example 2.91 so that the decorations for the L-groups do not play a role by Theorem 8.104.

Example 12.33 (The K-theory assembly map for the trivial family is not injective in general). An easy calculation using the Atiyah-Hirzebruch spectral sequence shows that the K-theoretic assembly map $H_n(\nu_{TR} \subseteq \mathbb{FI}_N; K_R): H_n(E_{TR}(G); K_R) \to H_n(E_{\mathbb{FI}_N}(G); K_R)$ is not injective if $n = 2$, $G = \mathbb{Z}/2 \times \mathbb{Z}/2$ and $R = \mathbb{F}_p$ for an odd prime p, see [873]. No such example is known for $R = \mathbb{Z}$.

12.9 Reducing the Family of Subgroups for the Farrell-Jones Conjecture

Next we explain that one sometimes can reduce the family of virtually cyclic subgroups \mathcal{VCY} to a smaller family.

A virtually cyclic group V is called *of type I* if it admits an epimorphism to the infinite cyclic group, and *of type II* if it admits an epimorphism onto the infinite dihedral group. The elementary proof of the following result can be found in [617, Lemma 1.1].
Lemma 12.34. Let V be an infinite virtually cyclic group.

(i) V is either of type I or of type II;
(ii) The following assertions are equivalent:
 (a) V is of type I;
 (b) $H_1(V)$ is infinite;
 (c) $H_1(V)/\text{tors}(V)$ is infinite cyclic;
 (d) The center of V is infinite;
(iii) There exists a unique maximal normal finite subgroup $K_V \subseteq V$, i.e., K_V is a finite normal subgroup and every normal finite subgroup of V is contained in K_V;
(iv) Let $Q_V := V/K_V$. Then we obtain a canonical exact sequence
 $1 \rightarrow K_V \overset{i_V}{\rightarrow} V \overset{p_V}{\rightarrow} Q_V \rightarrow 1$.
 Moreover, Q_V is infinite cyclic if and only if V is of type I and Q_V is isomorphic to the infinite dihedral group if and only if V is of type II;
(v) Let $f : V \rightarrow Q$ be any epimorphism onto the infinite cyclic group or onto the infinite dihedral group. Then the kernel of f agrees with K_V;

Exercise 12.35. Let $\phi : V \rightarrow W$ be a homomorphism of infinite virtually cyclic groups with infinite image. Then ϕ maps K_V to K_W and we obtain the following canonical commutative diagram with exact rows

$$
\begin{array}{ccccccccc}
1 & \rightarrow & K_V & \overset{i_V}{\rightarrow} & V & \overset{p_V}{\rightarrow} & Q_V & \rightarrow & 1 \\
\downarrow{\phi_K} & & \downarrow{\phi} & & \downarrow{\phi_Q} \\
1 & \rightarrow & K_W & \overset{i_W}{\rightarrow} & W & \overset{p_W}{\rightarrow} & Q_W & \rightarrow & 1
\end{array}
$$

with injective ϕ_Q.

Exercise 12.36. Show that a group G is infinite virtually cyclic if and only if it admits a proper cocompact isometric action on \mathbb{R}.

In the sequel we denote by VCY_I the family of subgroups which are either finite or infinite virtually cyclic of type I.

Definition 12.37 (Hyper-elementary group). Let p be a prime. A (possibly infinite) group G is called p-hyper-elementary if it can be written as an extension $1 \rightarrow C \rightarrow G \rightarrow P \rightarrow 1$ for a cyclic group C and a finite group P whose order is a power of p.

We call G hyper-elementary if G is p-hyper-elementary for some prime p.

If G is finite, this reduces to the usual definition. Note that for a finite p-hyper-elementary group G one can arrange that the order of the finite cyclic
group C appearing in the extension $1 \to C \to G \to P \to 1$ for a finite p-group P is prime to p. Subgroups and quotient groups of p-hyperelementary groups are p-hyperelementary again. For a group G and a prime p let \mathcal{HE}_p and \mathcal{HE} respectively be the class of (possibly infinite) subgroups which are p-hyperelementary or hyperelementary respectively.

The following result is taken from [72, Theorem 8.2].

Theorem 12.38 (Hyperelementary induction). Let G be a group and let \mathcal{A} be an additive G-category (with involution). Then both relative assembly maps

$$H_n(\iota_{\mathcal{HE}, \mathcal{VCY}}; K_\mathcal{A}) : H_n^G(E_{\mathcal{HE}}(G); K_\mathcal{A}) \to H_n^G(E_{\mathcal{VCY}}(G); K_\mathcal{A})$$

and

$$H_n(\iota_{\mathcal{HE}, \mathcal{VCY}}; L_\mathcal{A}^{(-\infty)}) : H_n^G(E_{\mathcal{HE}}(G); L_\mathcal{A}^{(-\infty)}) \to H_n^G(E_{\mathcal{VCY}}(G); L_\mathcal{A}^{(-\infty)})$$

induced by the up to G-homotopy unique G-map $\iota_{\mathcal{HE}, \mathcal{VCY}}; E_{\mathcal{HE}}(G) \to E_{\mathcal{VCY}}(G)$ are bijective for all $n \in \mathbb{Z}$.

12.9.1 Reducing the Family of Subgroups for the Farrell-Jones Conjecture for K-Theory

The following result taken from [257, Remark 1.6].

Theorem 12.39 (Passage from \mathcal{VCY}_I to \mathcal{VCY} for K-theory). Let G be a group and \mathcal{A} be an additive G-category. Then the relative assembly map

$$H_n^G(\iota_{\mathcal{VCY}_I \subseteq \mathcal{VCY}}; K_\mathcal{A}) : H_n^G(E_{\mathcal{VCY}_I}(G); K_\mathcal{A}) \cong H_n(E_{\mathcal{VCY}}(G); K_\mathcal{A})$$

is bijective for all $n \in \mathbb{Z}$.

We can combine Theorem [12.38] and Theorem [12.39] to get

Theorem 12.40 (Passage from \mathcal{HE}_I to \mathcal{VCY} for K-theory). Let G be a group and \mathcal{A} be an additive G-category. Let \mathcal{HE}_I be the family of subgroups of G given by the intersection $\mathcal{VCY}_I \cap \mathcal{HE}$.

Then the relative assembly map

$$H_n^G(\iota_{\mathcal{HE}_I \subseteq \mathcal{VCY}}; K_\mathcal{A}) : H_n^G(E_{\mathcal{HE}_I}(G); K_\mathcal{A}) \cong H_n(E_{\mathcal{VCY}}(G); K_\mathcal{A})$$

is bijective for all $n \in \mathbb{Z}$.

Proof. This follows from Theorem [12.38], Theorem [12.39], Theorem [14.9], and Lemma [14.13] \qed
Theorem 12.40 implies that we get equivalent conjectures if we replace in Conjectures 12.1, 12.2, 12.11 and 12.21 the family \mathcal{VCY} by the smaller family \mathcal{HE}_I.

Exercise 12.41. Fix a prime p. Show that an infinite subgroup $H \subset G$ belongs to $\mathcal{HE}_p \cap \mathcal{VCY}$ if and only if H is isomorphic to $P \rtimes \phi \mathbb{Z}$ for some finite p-group P and an automorphism $\phi: P \to P$ whose order is a power of p.

Exercise 12.42. Let p be a prime. Let G be an infinite virtually cyclic group of type I which is p-hyperelementary. Let R be a regular ring.

Show that the map induced by the projection $pr: E_{FIN}(G) \to G/G^H G_n (E_{FIN}(G); K_R) \to H_n (E_{VCY}(G); K_R)$ is bijective for all $n \in \mathbb{Z}$ after applying $- \otimes \mathbb{Z} [1/p]$.

One can reduce the families by extending the classical induction theorems for finite groups due to Dress to our setting. This is carried out in detail in [76]. There only rings as coefficients are treated but the proofs carry over to the setting of additive G-categories. For instance for K-theory one has to extend the relevant pairing of the Swan group for group rings to additive categories. We leave the details to the reader and just record some results.

Recall that \mathcal{FCY} is the family of finite cyclic subgroups.

Theorem 12.43 (Reductions to families contained in FIN for algebraic K-theory). Let G be a group and R be a ring.

(i) Suppose that R is regular and $\mathbb{Q} \subseteq R$. Then the relative assembly map

$$H_n^G (\iota_{\mathcal{HE}_I \cap FIN} \subseteq \mathcal{VCY}; K_R): H_n^G (E_{\mathcal{HE}_I \cap FIN}(G); K_R) \xrightarrow{\cong} H_n (E_{\mathcal{VCY}}(G); K_R)$$

is bijective for all $n \in \mathbb{Z}$;

(ii) Suppose that R is regular and $\mathbb{Q} \subseteq R$. Let p be a prime. Then the relative assembly map

$$H_n^G (\iota_{\mathcal{HE}_p \cap FIN} \subseteq \mathcal{VCY}; K_R): H_n^G (E_{\mathcal{HE}_p \cap FIN}(G); K_R) \xrightarrow{\cong} H_n (E_{\mathcal{VCY}}(G); K_R)$$

is bijective for all $n \in \mathbb{Z}$ after applying $\mathbb{Z}(p) \otimes \mathbb{Z} -$;

(iii) Suppose that R is regular and $\mathbb{Q} \subseteq R$. Then the relative assembly map

$$H_n^G (\iota_{\mathcal{FCY} \subseteq \mathcal{VCY}}; K_R): H_n^G (E_{\mathcal{FCY}}(G); K_R) \xrightarrow{\cong} H_n (E_{\mathcal{VCY}}(G); K_R)$$

is bijective for all $n \in \mathbb{Z}$ after applying $\mathbb{Q} \otimes \mathbb{Z} -$;

(iv) Suppose that R is regular and $\mathbb{Q} \subseteq R$. Then the relative assembly map

$$H_n^G (\iota_{FIN \subseteq \mathcal{VCY}}; K_R): H_n^G (E_{FIN}(G); K_R) \xrightarrow{\cong} H_n (E_{\mathcal{VCY}}(G); K_R)$$
is bijective for all \(n \in \mathbb{Z} \);

(v) Let \(G \) be a group and let \(R \) be a regular ring. Then

\[
H_n^G(\iota_{\mathcal{FIN} \subseteq \mathcal{VCY}}; K_R) \rightarrow H_n^G(\mathcal{FIN}(G); K_R) \rightarrow H_n^G(\mathcal{VCY}(G); K_R)
\]

is bijective for all \(n \in \mathbb{Z} \) after applying \(\mathbb{Q} \otimes \mathbb{Z} \).

Proof. The proof of assertions (i), (ii), and (iii) is a modification of the proof of [76, Theorem 0.1], where for assertion (iii) one has to take into account [76, Lemma 4.1 (e)].

Assertion (iv) is proved in [604, Proposition 70 on page 744] or can be deduced from assertion (i) using the Transitivity Principle, see Theorem 14.13.

Assertion (v) is proved in [617, Theorem 0.3]. \(\Box \)

Exercise 12.44. Let \(G \) be a group satisfying the \(K \)-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the field \(F \) of characteristic zero. Show that the various inclusions induce an isomorphism

\[
\operatorname{colim}_{H \in \operatorname{Sub}(\mathcal{FIN}(G))} H_0^G(FH) \rightarrow K_0(FG).
\]

Next we state and prove the following results which will be needed for the proof of Theorem 12.56 (v).

Lemma 12.45. Consider a ring \(R \), a group \(G \), and \(m \in \mathbb{Z} \). Suppose that, for every finite group \(H \) and every group automorphism \(\phi: H \rightarrow H \) with the property that the semidirect product \(H \rtimes \phi \mathbb{Z} \) is isomorphic to a subgroup of \(G \), and every \(n \in \mathbb{Z}, n \geq 0 \), the assembly map

\[
H_m^{H \rtimes \phi \mathbb{Z}}(EZ; K_{R[\mathbb{Z}^n]}) \rightarrow H_m^{H \rtimes \phi \mathbb{Z}}(\{\bullet\}; K_{R[\mathbb{Z}^n]}) = K_m((R[\mathbb{Z}^n])[H \rtimes \phi \mathbb{Z}])
\]

is an isomorphism, where we consider the \(\mathbb{Z} \)-CW-complex \(EZ \) as a \(H \rtimes \phi \mathbb{Z} \)-CW-complex by restriction with the projection \(H \rtimes \phi \mathbb{Z} \rightarrow \mathbb{Z} \).

Then the canonical map

\[
H_i^G(\mathcal{FIN}(G), K_R) \rightarrow H_i^G(\mathcal{VCY}(G), K_R)
\]

is bijective for \(i \leq m \).

Proof. Theorem 12.39 implies that for \(i \in \mathbb{Z} \) the map

\[
H_i^G(\mathcal{VCY}(H \rtimes \phi \mathbb{Z}), K_R) \rightarrow H_i^G(\mathcal{VCY}(H \rtimes \phi \mathbb{Z}), K_R)
\]

is bijective. Hence it suffices to show that, for \(i \in \mathbb{Z} \) with \(i \leq m \), the canonical map

\[
H_i^G(\mathcal{FIN}(G), K_R) \rightarrow H_i^G(\mathcal{VCY}(G), K_R)
\]
12.9 Reducing the Family of Subgroups for the Farrell-Jones Conjecture

is bijective. Thanks to the Transitivity Principle appearing in Theorem 14.12, this has only to be done in the special case, where G is a virtually cyclic group of type L.

Consider any finite group H and any group automorphism $\phi: H \xrightarrow{\cong} H$. Since EZ with the $H \rtimes \mathbb{Z}$ action coming from restriction with the projection $H \times \mathbb{Z} \to \mathbb{Z}$ is a model for $E_{FX}(H \times \mathbb{Z})$ and $\{\bullet\}$ is a model for $E_{VCY_{H}}(H \times \mathbb{Z})$, it remains to show that the assembly map

$$H_{i}^{H \rtimes \mathbb{Z}_{\phi}}(EZ; K_{R}) \to H_{i}^{H \rtimes \mathbb{Z}_{\phi}}(\{\bullet\}; K_{R}) = K_{i}(R[H \rtimes \mathbb{Z}])$$

is bijective for $i \leq m$. This will be achieved by proving inductively for $n = 0, 1, 2, \ldots$ that this map is bijective for $m - n \leq i \leq m$ provided that $H_{m}^{H \rtimes \mathbb{Z}_{\phi}}(EZ; K_{R}[\mathbb{Z}^{n}]) \to H_{m}^{H \rtimes \mathbb{Z}_{\phi}}(\{\bullet\}; K_{R}[\mathbb{Z}^{n}])$ is bijective.

The induction beginning $n = 0$ is trivial. The induction step from $(n - 1)$ to n is done as follows. The Bass-Heller-Swan decomposition for the ring $R[\mathbb{Z}^{n-1}]$ can be implemented on the spectrum level, see for instance [616, Theorem 4.2], and yields because of the identity $(R[\mathbb{Z}^{n-1}])[\mathbb{Z}] = R[\mathbb{Z}^{n}]$ for every $H \rtimes \mathbb{Z}$-CW-complex X and $i \in \mathbb{Z}$ an isomorphism, natural in X,

$$H_{m}^{H \rtimes \mathbb{Z}_{\phi}}(X; K_{R}[\mathbb{Z}^{n-1}]) \oplus H_{m-1}^{H \rtimes \mathbb{Z}_{\phi}}(X; K_{R}[\mathbb{Z}^{n-1}]) \oplus H_{m}^{H \rtimes \mathbb{Z}_{\phi}}(X; NK_{R}[\mathbb{Z}^{n-1}])$$

$$\oplus H_{m}^{H \rtimes \mathbb{Z}_{\phi}}(X; NK_{R}[\mathbb{Z}^{n-1}]) \cong H_{m}^{H \rtimes \mathbb{Z}_{\phi}}(X; K_{R}[\mathbb{Z}^{n}]).$$

Since a direct sum of an isomorphism is again an isomorphism and we can apply the latter isomorphism to $X = EZ$ and $X = \{\bullet\}$, the map

$$H_{k}^{H \rtimes \mathbb{Z}_{\phi}}(EZ; K_{R}[\mathbb{Z}^{n-1}]) \to H_{k}^{H \rtimes \mathbb{Z}_{\phi}}(E\{\bullet\}; K_{R}[\mathbb{Z}^{n-1}])$$

is bijective for $k = m - 1, m$. Now the induction hypothesis implies that

$$H_{i}^{H \rtimes \mathbb{Z}_{\phi}}(EZ; K_{R}) \to H_{i}^{H \rtimes \mathbb{Z}_{\phi}}(\{\bullet\}; K_{R})$$

is bijective for $m - n \leq i \leq m$. This finishes the proof of Lemma 4.13. □

Consider a ring R together with a ring automorphism $\Psi: R \xrightarrow{\cong} R$. We can think of Ψ as a group homomorphism $\Psi: \mathbb{Z} \to \text{aut}(R)$. For a subgroup $L \subseteq \mathbb{Z}$, let $K(R_{\Psi|_{L}}[L])$ be the non-connective algebraic K-theory spectrum of the $\Psi|_{L}$-twisted group ring of L with coefficient in R for the group homomorphism $\Psi|_{L}: L \to \text{aut}(R)$. We obtain a covariant $\text{Or}(\mathbb{Z})$-spectrum $K_{R, \Psi}$ by sending \mathbb{Z}/L to $K(R_{\Psi|_{L}}[L])$. Note that for two subgroups $L, L' \subseteq \mathbb{Z}$ the set $\text{mor}_{\text{Or}(\mathbb{Z})}(\mathbb{Z}/L, \mathbb{Z}/L')$ is empty if $L \nsubseteq L'$, and consists of precisely one element, the canonical projection $\mathbb{Z}/L \to \mathbb{Z}/L'$, if $L \subseteq L'$. In the case $L \subseteq L'$ the functor $K_{R, \Psi}$ sends this morphism to the map of spectra induced by the inclusion of rings $R_{\Psi|_{L}}[L] \to R_{\Psi|_{L'}}[L']$.

Lemma 12.46. Let R be a regular ring and $\Psi: R \to R$ be a ring automorphism. Then the map
Lemma 12.48. implies using [252, Theorem 3.11] \(X \) isomorphism, natural in \(H(12.47) \) an isomorphism, natural in \(X \).

\[
H^Z_m(EZ; K_{R,\psi}) \to H^Z_m(\{\bullet\}; K_{R,\psi}) = K_m(R\psi[Z])
\]

is an isomorphism for all \(m \in \mathbb{Z} \).

Proof. There is a twisted Bass-Heller-Swan decomposition for non-negative \(K \)-theory, see [618] Theorem 0.1, which reduces to the desired isomorphism if the twisted Nil terms \(NK_m(R,\Psi) \) vanish for \(m \in \mathbb{Z} \). By inspecting the definition of the non-connective \(K \)-theory spectrum of [616] one sees that it suffices to show the bijectivity

\[
H^Z_m(EZ; K_{R[z^n]},\psi[z^n]) \to H^Z_m(\{\bullet\}; K_{R[z^n]},\psi[z^n]) = K_m((R[z^n])\psi[z^n][Z])
\]

for all \(n, m \in \mathbb{Z} \) with \(m \geq 1 \) and \(n \geq 0 \). Since \(R \) is regular, Theorem 3.77 (ii) shows that \(R[z^n] \) is regular for every \(n \geq 0 \). Hence it suffices to prove Lemma 12.46 only for \(m \geq 1 \). This has already been done by Waldhausen [886, Theorem 4 on page 138 and the Remark on page 216]. One may also refer to [899, Remark on page 362].

One may also directly refer to [73] Theorem 6.8 and Theorem 9.1, where more generally additive categories are treated. **Comment 12:** Shall we only cite this preprint? \(\square \)

Consider a group \(H \) together with an automorphism \(\phi: H \to H \). Let \(p: H \times Z \to Z \) be the projection. Then we get from the adjunction between \(p_* \) and \(p^* \), see [232, Lemma 1.9], for any \(Z \)-CW-complex and \(m, n \in \mathbb{Z}, n \geq 0 \) an isomorphism, natural in \(X \)

\[
(12.47) \quad H^H_{m \times \phi Z}(p^* X; K_{R[z^n]}) \xrightarrow{\cong} H^Z_m(X; p_* K_{R[z^n]}).
\]

From the definitions we get

\[
p_* K_{R[z^n]}(Z/L) = K_{R[z^n]}((H \times \phi Z)/p^{-1}(L)) = K((R[z^n])[H \times \phi|_{L} L])
\]

for any object \(Z/L \) in \(\text{Or}(Z) \). Let \(\Phi: RH \to RH \) be the ring automorphism induced by \(\phi \). It yields a ring automorphism \(\Phi[z^n]: RH[z^n] \to RH[z^n] \). We have defined a covariant \(\text{Or}(Z) \)-spectrum \(K_{RH[z^n],\Phi[z^n]} \) before Lemma 12.46 just take \(\Psi = \Phi[z^n] \). There is a weak equivalence of covariant \(\text{Or}(Z) \)-spectra

\[
K_{RH[z^n],\Phi[z^n]} \xrightarrow{\cong} p_* K_{R[z^n]}
\]

coming from the identification \(R[H]|[z^n]|_{\phi|_{L}}[L] = R[z^n][H \times \phi|_{L} L] \). This implies using [252, Theorem 3.11]

Lemma 12.48. We get for every \(Z \)-CW-complex \(X \) and \(m, n \in \mathbb{Z}, n \geq 0 \) an isomorphism, natural in \(X \)

\[
H^Z_n(X; K_{RH[z^n],\Phi[z^n]}) \xrightarrow{\cong} H^H_{n \times \phi Z}(p^* X; K_{R[z^n]}).
\]
Lemma 12.49. Let H be a finite group and let $\phi : H \xrightarrow{\cong} H$ be an automorphism. Let R be a Artinian ring. Then the map

$$H_0^H(\mathbb{Z}; K_{R[\mathbb{Z}^n]}) \rightarrow H_0^H(\mathbb{Z}; K_{R[\mathbb{Z}^n]}) = K_0((R[\mathbb{Z}^n])[H \times \phi \mathbb{Z}])$$

is an isomorphism for all $n \in \mathbb{Z}, n \geq 0$.

Proof. We conclude from Lemma 12.48 that it remains to show that the map

$$H_0^H(\mathbb{Z}; K_{R[\mathbb{Z}^n], \phi[\mathbb{Z}^n]}) \rightarrow H_0^H(\mathbb{Z}; K_{R[\mathbb{Z}^n], \phi[\mathbb{Z}^n]}) = K_0((RH[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}])$$

is bijective for all $n \geq 1$.

Denote by $J \subseteq RH$ the Jacobson radical of RH. Since RH is Artinian, there exists a natural number m with $JJ^m = J^m$. By Nakayama’s Lemma, see [830 Proposition 8 in Chapter 2 on page 20], $J^m = \{0\}$, in other words, J is nilpotent. The ring RH/J is a semisimple Artinian ring, see [551 Definition 20.3 on page 311 and (20.3) on page 312], and in particular regular.

The ring automorphism $\Phi : RH \rightarrow RH$ induced by ϕ obviously satisfies $\Phi(J) = J$ and hence induces a ring automorphism $\Phi : RH/J \rightarrow RH/J$. Hence we get a commutative diagram induced by the projection $RH \rightarrow RH/J$.

$$\begin{array}{ccc}
H_0^Z(\mathbb{Z}; \mathbb{Z}[RH[\mathbb{Z}^n], \phi[\mathbb{Z}^n]]) & \longrightarrow & K_0((RH[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}]) \\
\downarrow & & \downarrow \\
H_0^Z(\mathbb{Z}; \mathbb{Z}[RH/J[\mathbb{Z}^n], \phi[\mathbb{Z}^n]]) & \longrightarrow & K_0((RH/J)[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}]).
\end{array}$$

We have the short exact sequence of abelian groups $0 \rightarrow J \rightarrow RH \rightarrow RH/J \rightarrow 0$. It induces a short exact sequence of abelian groups

$$0 \rightarrow J[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z]} \rightarrow RH[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}] \rightarrow (RH/J)[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}] \rightarrow 0.$$

Hence we can identify the ring $(RH/J)[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}]$ with the quotient of the ring $RH[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}]$ by the ideal $J[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}]$. Recall that an ideal I in a ring is nilpotent if and only if there is a natural number l such that for any collection of l elements i_1, i_2, \ldots, i_l in I the product $i_1 i_2 \cdots i_l$ vanishes. Since J is nilpotent, we conclude that the ideal $J[\mathbb{Z}^n], \phi[\mathbb{Z}^n] [\mathbb{Z}]$ is nilpotent. Hence the right vertical arrow in the diagram (12.50) is bijective by Lemma 2.108.

Next we show that the left vertical arrow in the diagram (12.50) is bijective. Since EZ is a free \mathbb{Z}-CW-complex, we conclude from the equivariant Atiyah-Hirzebruch spectral sequence described in Theorem 11.45 that it suffices to show for every i that the map $K_i((RH[\mathbb{Z}^n]) \rightarrow K_i((RH/J)[\mathbb{Z}^n]))$ is bijective for all $i \leq 0$.

Since J is a nilpotent two-sided ideal of RH, $J[\mathbb{Z}^n]$ is a nilpotent two-sided ideal of $RH[\mathbb{Z}^n]$. We can identify $(RH/J)[\mathbb{Z}^n]$ with $(RH[\mathbb{Z}^n])/(J[\mathbb{Z}^n])$. Hence $K_0((RH[\mathbb{Z}^n]) \rightarrow K_0((RH/J)[\mathbb{Z}^n])$ is bijective by Lemma 2.108. We
conclude $K_i(RH[\mathbb{Z}^n]) = 0$ for $i \leq -1$ from Theorem 4.15 (ii). Since RH/J is regular and hence $RH/J[\mathbb{Z}^n]$ is regular by Theorem 3.77 (ii), we conclude from Theorem 4.6 that $K_i((RH/J)[\mathbb{Z}^n]) = 0$ for $i \leq -1$. Hence the left vertical arrow in the diagram (12.50) is bijective. The lower vertical arrow in the diagram (12.50) is bijective because of Lemma 12.46 applied to the automorphism $\Phi[\mathbb{Z}^n]$. We conclude that the upper vertical arrow in the diagram (12.50) is bijective. This finishes the proof of Lemma 12.49 ⊓ ⊔

12.9.2 Reducing the Family of Subgroups for the Farrell-Jones Conjecture for L-Theory

Theorem 12.51 (Passage from FIN to VCY_I for L-theory). Let G be a group and let \mathcal{A} be an additive G-category with involution. Let n be any integer. Then

$$H_n^G(\iota_{FIN} \subseteq VCY_I; L^\langle-\infty\rangle_\mathcal{A}) : H_n^G(E_{FIN}(G); L^\langle-\infty\rangle_\mathcal{A}) \to H_n^G(E_{VCY_I}(G); L^\langle-\infty\rangle_\mathcal{A})$$

is bijective.

Proof. The argument given in [589, Lemma 4.2] goes through since it is based on the Wang sequence for a semi-direct product $G \rtimes \mathbb{Z}$ which can be generalized for additive G-categories with involutions as coefficients. ⊓ ⊔

The last result is very useful when G does not contain virtually cyclic subgroups of type II since then one can replace in Conjectures 12.4, 12.7 and 12.16 the family VCY by the family FIN. (This is not true for Conjecture 12.22, since $G \rtimes F$ for a finite group F may contain a virtually cyclic subgroup of type II even in the case that G does not contain a virtually cyclic subgroups of type II.)

Exercise 12.52. Consider the group extension $1 \to F \to G \to \mathbb{Z}^d \to 1$ for a finite group F. Show that there exists a spectral sequence converging to $L^\langle-\infty\rangle_p(ZG)$ whose E^2-term is given by $H_p(C_*(EZ^d) \otimes_{\mathbb{Z}[Z^d]} L^\langle-\infty\rangle_q(ZF))$, where the \mathbb{Z}^d-action on $L^\langle-\infty\rangle_q(ZF)$ is induced by the conjugation action of G on F.

If we invert 2, we can refine ourselves in L-theory to the family FIN. The next result is taken from [604, Proposition 74 on page 747] and [78, Theorem 0.3]. It is conceivable that it holds for additive G-categories with involution. Recall that after inverting 2 the decoration does not anymore play a role.

Let p be a prime. A finite group G is called p-elementary if it is isomorphic to $C \times P$ for a cyclic group C and a p-group P such that the order $|C|$ is prime to p. Let \mathcal{E}_p be the class of of finite subgroups which are p-elementary.
12.10 The Full Farrell-Jones Conjecture Implies All Its Variants

Theorem 12.53 (Bijectivity of the L-theoretic assembly map from \mathcal{FIN} to \mathcal{VCY} after inverting 2). Let G be a group and let R be a ring with involution.

(i) The relative assembly map

\[H_n^G(\iota_{\mathcal{FIN} \subseteq \mathcal{VCY}}; L_{R}^{(-\infty)}) : H_n^G(E_{\mathcal{FIN}}(G); L_{R}^{(-\infty)}) \to H_n^G(E_{\mathcal{VCY}}(G); L_{R}^{(-\infty)}) \]

is bijective for all $n \in \mathbb{Z}$ after applying $\mathbb{Z}[1/2] \otimes \mathbb{Z}$.

(ii) Put \(\mathcal{F} = \bigcup_{p \text{ prime, } p \neq 2} \mathcal{E}_p \).

Then the relative assembly map

\[H_n^G(\iota_{\mathcal{F} \subseteq \mathcal{VCY}}; L_{R}^{(-\infty)}) : H_n^G(E_{\mathcal{F}}(G); L_{R}^{(-\infty)}) \xrightarrow{\cong} H_n^G(E_{\mathcal{VCY}}(G); L_{R}^{(-\infty)}) \]

is bijective for all $n \in \mathbb{Z}$ after applying $\mathbb{Z}[1/2] \otimes \mathbb{Z}$.

Theorem 12.53 shows that Conjecture 12.4 implies Conjecture 12.6 and hence Conjecture 12.7 implies Conjecture 12.8.

12.10 The Full Farrell-Jones Conjecture Implies All Its Variants

Recall that the Full Farrell-Jones Conjecture 12.23 implies the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution, see Remarks 12.12 and 12.17. In this section we give the proofs that Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involutions imply all the variants we have stated before at various places. So the Full Farrell-Jones Conjecture is the “master” conjecture which implies all variants stated in this book.

For the reader’s convenience we recall all these variants below before we show how they follow from Full Farrell-Jones Conjecture 12.23.

12.10.1 List of Variants of the Farrell-Jones Conjecture

We begin with the K-theoretic variants.

Conjecture 2.50 (Farrell-Jones Conjecture for $K_0(R)$ for torsionfree G and regular R). Let G be a torsionfree group and let R be a regular ring. Then the map induced by the inclusion of the trivial group into G
The Farrell-Jones Conjecture

\[K_0(R) \xrightarrow{\cong} K_0(RG) \]

is bijective.

In particular we get for any principal ideal domain \(R \) and torsionfree \(G \)

\[\tilde{K}_0(RG) = 0. \]

Conjecture 2.57 (Farrell-Jones Conjecture for \(K_0(RG) \) for regular \(R \) with \(\mathbb{Q} \subseteq R \)). Let \(R \) be a regular ring and \(G \) be a group such that for every finite subgroup \(H \subseteq G \) the element \(|H| \cdot 1_R \) of \(R \) is invertible in \(R \).

Then the homomorphism

\[I_{FIN}(G,F): \colim_{H \in \text{Sub}_{FIN}(G)} K_0(RH) \to K_0(RG) \]

coming from the various inclusions of finite subgroups of \(G \) into \(G \) is a bijection.

Conjecture 2.61 (Farrell-Jones Conjecture for \(K_0(RG) \) for an Artinian ring \(R \)). Let \(G \) be a group and \(R \) be an Artinian ring. Then the canonical map

\[I(G,R): \colim_{H \in \text{Sub}_{FIN}(G)} K_0(RH) \to K_0(RG) \]

is an isomorphism.

Conjecture 3.106 (Farrell-Jones Conjecture for \(K_0(RG) \) and \(K_1(RG) \) for regular \(R \) and torsionfree \(G \)). Let \(G \) be a torsionfree group and let \(R \) be a regular ring. Then the maps defined in (3.25) and (3.26)

\[A_0: K_0(R) \xrightarrow{\cong} K_0(RG); \]
\[A_1: G/[G,G] \otimes_{\mathbb{Z}} K_0(R) \oplus K_1(R) \xrightarrow{\cong} K_1(RG), \]

are both isomorphisms. In particular the groups \(\text{Wh}^0(RG) \) and \(\text{Wh}^1(RG) \), see Definition 3.27 vanish.

Conjecture 3.107 (Farrell-Jones Conjecture for \(\tilde{K}_0(ZG) \) and \(\text{Wh}(G) \) for torsionfree \(G \)). Let \(G \) be a torsionfree group. Then \(\tilde{K}_0(ZG) \) and \(\text{Wh}(G) \) vanish.

Conjecture 4.17 (The Farrell-Jones Conjecture for negative \(K \)-theory and regular coefficient rings). Let \(R \) be a regular ring and \(G \) be a group such that for every finite subgroup \(H \subseteq G \) the element \(|H| \cdot 1_R \) of \(R \) is invertible in \(R \). Then

\[K_n(RG) = 0 \quad \text{for} \quad n \leq -1. \]
Conjecture 4.19 (The Farrell-Jones Conjecture for negative K-theory of the ring of integers in an algebraic number field). Let R be of integers in an algebraic number field. Then, for every group G, we have
\[K_{-n}(RG) = 0 \quad \text{for } n \geq 2, \]
and the map
\[\operatorname{colim}_{H \in \operatorname{Sub}_{\mathrm{FIN}}(G)} K_{-1}(RH) \xrightarrow{\cong} K_{-1}(RG) \]
is an isomorphism.

Conjecture 4.20 (The Farrell-Jones Conjecture for negative K-theory and Artinian rings as coefficient rings) Let G be a group and let R be a Artinian ring. Then
\[K_n(RG) = 0 \quad \text{for } n \leq -1. \]

Conjecture 5.21 (Farrell-Jones Conjecture for Wh$_2(G)$ for torsion-free G). Let G be a torsion-free group. Then Wh$_2(G)$ vanishes.

Conjecture 6.44 (Farrell-Jones Conjecture for torsion-free groups and regular rings for K-theory). Let G be a torsion-free group. Let R be a regular ring. Then the assembly map
\[H_n(BG; K(R)) \to K_n(RG) \]
is an isomorphism for $n \in \mathbb{Z}$.

Conjecture 6.50 (Nil-groups for regular rings and torsion-free groups). Let G be a torsion-free group and let R be a regular ring. Then
\[NK_n(RG) = 0 \quad \text{for all } n \in \mathbb{Z}. \]

Conjecture 6.65 (Farrell-Jones Conjecture for torsion-free groups for homotopy K-theory). Let G be a torsion-free group. Then the assembly map
\[H_n(BG; KH(R)) \to KH_n(RG) \]
is an isomorphism for every $n \in \mathbb{Z}$ and every ring R.

Conjecture 6.67 (Comparison of algebraic K-theory and homotopy K-theory for torsion-free groups). Let R be a regular ring and let G be a torsion-free group. Then the canonical map
\[K_n(RG) \to KH_n(RG) \]
is bijective for all $n \in \mathbb{Z}$.
Conjecture 12.1 (K-theoretic Farrell-Jones Conjecture with coefficients in the ring R) Given a group G and a ring R, we say that G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients in the ring R if the assembly map induced by the projection $pr: E_{VCY}(G) \to G/G$

$$H_n^G(pr): H_n^G(E_{VCY}(G); K_R) \to H_n^G(G/G; K_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Next we list the L-theoretic variants.

Conjecture 8.111 (Farrell-Jones Conjecture for torsionfree groups for L-theory) Let G be a torsionfree group. Let R be any ring with involution.

Then the assembly map

$$H_n(BG; L^{(-\infty)}(R)) \to L_n^{(-\infty)}(RG)$$

is an isomorphism for $n \in \mathbb{Z}$.

Conjecture 12.6 (L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R after inverting 2) Given a group G and ring with involution R, we say that G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R after inverting 2 if the assembly map given by the projection $E_{FIN}(G) \to G/G$

$$H_n^G(pr): H_n^G(E_{FIN}(G); L_R^{(-\infty)}) \to H_n^G(G/G; L_R^{(-\infty)}) = L_n^{(-\infty)}(RG)$$

is bijective for all $n \in \mathbb{Z}$ after inverting 2.

Conjecture 12.4 (L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R) Given a group G and ring with involution R, we say that G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R if the assembly map given by the projection $E_{VCY}(G) \to G/G$

$$H_n^G(pr): H_n^G(E_{VCY}(G); L_R^{(-\infty)}) \to H_n^G(G/G; L_R^{(-\infty)}) = L_n^{(-\infty)}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Finally we mention the following Novikov type conjectures.

Conjecture 12.54 (K-theoretic Novikov Conjecture). A group G satisfies the K-theoretic Novikov Conjecture if the assembly map

$$H_n(BG; K(\mathbb{Z})) = H_n^G(EG; K(\mathbb{Z})) \to H_n^G(G/G; K(\mathbb{Z})) = K_n(\mathbb{Z}G)$$

is rationally injective for all $n \in \mathbb{Z}$.
Conjecture 12.55 (L-theoretic Novikov Conjecture). A group G satisfies the L-theoretic Novikov Conjecture if the assembly map
\[H_n(BG; L^{(-\infty)}(\mathbb{Z})) = H_n^G(EG; L^{(-\infty)}(\mathbb{Z})) \]
\[\rightarrow H_n^G(G/G; L^{(-\infty)}(\mathbb{Z})) = L_n^{(-\infty)}(\mathbb{Z}G) \]
is rationally injective for all $n \in \mathbb{Z}$.

12.10.2 Proof of the Variants of the Farrell-Jones Conjecture

Theorem 12.56 (The Full Farrell-Jones Conjecture implies all other variants).

(i) The Full Farrell-Jones Conjecture 12.23 implies the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution;
(ii) The K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings implies Conjecture 12.4 and Conjecture 6.44, whereas the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involutions implies Conjecture 12.4, Conjecture 12.6 and Conjecture 8.111;
(iii) Conjecture 6.44 implies Conjectures 2.50, 3.106, and 3.107;
(iv) The K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings implies Conjectures 2.57 and 4.17;
(v) The K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings implies Conjectures 2.61 and 4.20;
(vi) The K-theoretic Farrell-Jones Conjecture 12.2 implies Conjecture 4.19;
(vii) Conjecture 6.44 implies Conjecture 5.27;
(viii) Conjecture 6.44 implies Conjecture 6.50;
(ix) The K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings implies Conjectures 6.63 and 6.67;
(x) The K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in the ring Z implies the K-theoretic Novikov Conjecture 12.54;
(xii) The Full Farrell-Jones Conjecture 12.23 implies all other variants of the Farrell-Jones Conjecture.

Proof. (i) See see Remarks 12.12 and 12.17.
(ii) Conjecture 12.2 with coefficients in rings implies Conjecture 12.1 and Conjecture 12.7 with coefficients in rings implies Conjecture 12.4 by definition. Conjecture 12.4 implies Conjecture 12.6 by Theorem 12.53.
Next we show why Conjecture 12.2 implies Conjecture 6.44 and why Conjecture 12.7 implies Conjecture 8.111. Every torsionfree virtually cyclic group
is isomorphic to \(\mathbb{Z}\) by Lemma 12.34. By the Transitivity Principle 14.13 applied to \(\mathcal{T} \subseteq \mathcal{CVY}\) it suffices to show that the assembly maps

\[
\begin{align*}
H^2_n(\mathbb{Z}; K_R) &\to K_n(R) \\
H^2_n(\mathbb{Z}; \mathbb{L}_R^{-\infty}) &\to L_n^{-\infty}(RZ),
\end{align*}
\]

are bijective for \(n \in \mathbb{Z}\). This follows for \(K\)-theory from the Bass-Heller-Swan decomposition, see Theorem 6.16, and for \(L\)-theory from the Shaneson splitting, see [8.107].

Since \(R\) is regular, the negative \(K\)-groups of \(R\) vanish by Theorem 4.6. Hence the Atiyah-Hirzebruch spectral sequence, which has \(E^2\)-term \(E^2_{p,q} = H_p(BG; K_q(R))\) and converges to \(H_{p+q}(BG; K(R))\), is a first quadrant spectral sequence. The edge homomorphism \(H_0(BG; K_0(R)) \xrightarrow{\cong} H_0(BG; K(R))\) at \((0,0)\) is bijective. There is an obvious identification \(H_0(BG; K_0(R)) \cong K_0(R)\). Under this identification the edge homomorphism composed with the assembly map appearing in Conjecture 6.44 turns out to be the change of rings map \(K_0(R) \to K_0(RG)\). Hence we conclude from Conjecture 6.44 that \(K_0(R) \to K_0(RG)\) is bijective as predicted by Conjecture 2.50. Inspecting the Atiyah-Hirzebruch spectral yields an exact sequence \(0 \to H_0(BG; K_1(R)) \to H_1(BG; K(R)) \to H_1(BG; K_0(R)) \to 0\). Under the obvious identification \(H_0(BG; K_1(R)) = K_1(R)\) the composite of \(H_0(BG; K_1(R)) \to H_1(BG; K(R))\) with the assembly map appearing in Conjecture 6.44 turns out to be the change of rings map \(K_1(R) \to K_1(RG)\). Since \(H_1(BG; K_0(R)) = G/[G,G] \otimes K_0(R)\), we obtain an exact sequence

\[
0 \to K_1(R) \to K_1(RG) \to G/[G,G] \otimes K_0(R) \to 0.
\]

Next one checks that the composite of the map \(K_1(RG) \to G/[G,G] \otimes K_0(R)\) appearing in the sequence above with the map \(A_1\) appearing in Conjecture 3.106 is the obvious projection. This implies Conjecture 3.106 and hence also Conjecture 3.107.

We conclude from Lemma 12.45 and Lemma 12.49 that the assembly map \(H^n(Q_\mathcal{F}(G), K_R) \to K_n(RG)\) is an isomorphism for \(n \leq -1\). We have \(K_i(RH) = 0\) for every finite group \(H\) and every \(i \leq -1\) by Theorem 4.15. We conclude from the equivariant Atiyah-Hirzebruch spectral sequence described in Theorem 11.45 that \(H^n(Q_\mathcal{F}(G), K_R) = 0\) holds for \(n \leq -1\), and that \(H^0_{\mathbb{Z}(\times \phi \mathbb{Z})} (\mathbb{E}_\mathcal{F}(H \times \phi \mathbb{Z}), K_R)\) is the 0-th Bredon homology of \(\mathbb{E}_\mathcal{F}(H \times \phi \mathbb{Z})\) with coefficients in the covariant functor \(\text{Or}(G) \to \mathbb{Z}\)-MODULES sending \(G/K\) to \(K_n(RK)\). This 0-th Bredon homology can be identified with \(\text{colim}_{G/H \in \text{Or}_\mathcal{F}(G)} K_0(RH)\). Under this identification the bijective assembly map \(H^n(Q_\mathcal{F}(G), K_R) \to K_n(RG)\) becomes the canonical map \(\text{colim}_{G/H \in \text{Or}_\mathcal{F}(G)} K_0(RH) \to K_0(RG)\).
See [604, page 749]. The proof goes through if we replace \mathbb{Z} by the ring R of integers in an algebraic number field, since the results appearing in [334] for \mathbb{Z} have been extended to R by Juan-Pineda [475].

We conclude from [572] that the second Whitehead group can be identified with the cokernel of the assembly map

$$H_2(\text{pr}; K_R) : H_2^G(EG; K_R) = H_2(BG; K(\mathbb{Z})) \to H_2^G(EG; K_R) = K_2(\mathbb{Z}G).$$

We conclude from Theorem 3.75 that $R[t]$ is regular. We have the obvious commutative diagram

$$\begin{array}{ccc}
H_n(BG; K(\mathbb{Z}G)) & \xrightarrow{\cong} & K_n(\mathbb{Z}G) \\
\downarrow & & \downarrow \\
H_n(BG; K(R)) & \xrightarrow{\cong} & K_n(RG)
\end{array}$$

whose horizontal arrows are bijective by the assumption that Conjecture 12.2 holds and whose left vertical arrow is bijective since $K_n(\mathbb{Z}G) \to K_n(\mathbb{Z})$ is bijective for all $n \in \mathbb{Z}$ by Theorem 6.16 (ii). Hence the right vertical arrow is bijective which implies by definition $NK_n(RG) = 0$.

This follows from [75, Theorem 8.4 and Remark 8.6].

This follows from Theorem 12.29 and Lemma 12.31.

The L-theoretic Novikov Conjecture 12.55 follows from the L-theoretic Farrell-Jones Conjecture 12.4 because of Theorem 12.29 and Lemma 12.31.

For the proof that the L-theoretic Novikov Conjecture 12.55 for G implies the Novikov Conjecture 8.134 for G, we refer to [339, Lemma 23.2 on page 192] and [758, Proposition 6 on page 300]. Or just take a look at Remark 8.140 and use the fact that under the Chern character the assembly map

$$\text{asmb}_n^G : \bigoplus_{k \in \mathbb{Z}} H_{n+4k}(BG; \mathbb{Q}) \to L_n^G(\mathbb{Z}G) \otimes_\mathbb{Z} \mathbb{Q},$$

appearing in Remark 8.140 can be identified with the assembly map appearing in L-theoretic Novikov Conjecture 12.55 for G.

The Full Farrell-Jones Conjecture 12.23 implies Conjectures 12.2 and 12.7, see Remarks 12.12 and 12.17. Now the claim follows from all the other assertions which we have already proved. \qed
12.11 Summary of the Applications of the Farrell-Jones Conjecture

We have discussed at various places applications and consequences of the various versions of the Farrell-Jones Conjecture. In Theorem 12.56 we have explained that the Full Farrell-Jones Conjecture 12.23 implies all of these variants of the Farrell-Jones Conjecture and hence all these applications and consequences. For the reader’s convenience we list now all these applications and where they are treated in this book or in the literature.

- **Wall’s Finiteness Obstruction**
 Wall’s finiteness obstruction of a connected finitely dominated CW-complex X takes values in $\tilde{K}_0(\mathbb{Z}[\pi_1(X)])$ and vanishes if and only if X is homotopy equivalent to a finite CW-complex, see Section 2.5. For torsionfree $\pi_1(X)$ Conjecture 2.50 predicts that $\tilde{K}_0(\mathbb{Z}[\pi_1(X)])$ vanishes and hence X is always homotopy equivalent to a finite CW-complex, see Remark 2.51.

- **The Kaplansky Conjecture**
 The Kaplansky Conjecture 2.62 predicts for an integral domain R and a torsionfree group G that all idempotents of RG are trivial. See Section 2.9.

- **The Bass Conjectures**
 The Bass Conjecture 2.78 for fields of characteristic zero as coefficients says for a field F of characteristic zero and a group G that the Hattori-Stallings homomorphism of (2.74) induces an isomorphism
 $$\text{HS}_{FG}: K_0(FG) \otimes_{\mathbb{Z}} F \to \text{class}_F(G).$$
 This essentially generalizes character theory for finite dimensional representations over finite groups to finitely generated projective modules over infinite groups.
 The Bass Conjecture 2.85 for integral domains as coefficients predicts for a commutative integral domain R, a group G and $g \in G$ such that either the order $|g|$ is infinite or that the order $|g|$ is finite and not invertible in R that for every finitely generated projective RG-module the value of its Hattori-Stallings rank $\text{HS}_{RG}(P)$ at (g) is trivial.
 For more information about the Bass Conjectures we refer to Section 2.10.

- **Whitehead torsion**
 One can assign to a homotopy equivalence $f: X \to Y$ of connected finite CW-complexes its Whitehead torsion $\tau(f)$ which takes values in the Whitehead group $\text{Wh}(\pi_1(Y))$, see Sections 3.3. It vanishes if and only f is a simple homotopy equivalence, see Section 3.4.
 An h-cobordism of dimension ≥ 6 is trivial if and only if its Whitehead torsion vanishes, see Theorem 3.44.
 If the group G is torsionfree, then Conjecture 3.107 predicts that $\text{Wh}(G)$ vanishes. Hence Conjecture 3.107 implies that a homotopy equivalence of connected finite CW-complexes is simple, if $\pi_1(Y)$ is torsionfree, and that
every connected h-cobordism W of dimension ≥ 6 with torsionfree $\pi_1(W)$ is trivial, see Remark 3.109.

- **Bounded h-cobordisms**
 There are so-called bounded h-cobordisms, controlled over \mathbb{R}^k, for $k \geq 1$. They are trivial (for dimension ≥ 6) if and only if certain elements in negative K-groups $\tilde{K}_{1-k}(\mathbb{Z}G)$ vanish, see Section 1.3. Conjecture 4.17 predicts for a torsionfree group G the vanishing of $K_n(\mathbb{Z}G)$ for $n \leq 0$.

- **Pseudoisotopy and the second Whitehead group**
 There is a certain obstruction for pseudoisotopies to be trivial which take values in $Wh_2(G)$, see Section 5.6. Conjecture 5.21 predicts for a torsionfree group G the vanishing of $Wh_2(G)$.

- **Whitehead spaces and pseudoisotopy spaces**
 One can assign to a compact manifold M its pseudoisotopy spaces $P(M)$ and $P^\text{Diff}(M)$, Whitehead spaces $Wh^{\text{PL}}(X)$ and $Wh^{\text{Diff}}(X)$, and its A-theory $A(X)$ in the sense of Waldhausen, see Section 7.2 and 7.3. There also exist non-connective versions. There are various relations between these spaces. The homotopy groups of $A(M)$ are related to the K-groups $K_n(\mathbb{Z}[\pi_1(M)])$. Conjecture 6.44 predicts for a torsionfree group G and a regular ring R that the assembly map

$$H_n(BG; K(R)) \to K_n(RG)$$

is an isomorphism for $n \in \mathbb{Z}$. It implies for an aspherical closed manifold M, see Lemma 7.22 and Lemma 7.26 for all $n \geq 0$

$$\pi_n(Wh^{\text{PL}}(M)) \otimes \mathbb{Q} \cong 0;$$

$$\pi_n(P(M)) \otimes \mathbb{Q} \cong 0;$$

$$\pi_n(Wh^{\text{Diff}}(M)) \otimes \mathbb{Q} \cong \bigoplus_{k=1}^{\infty} H_{n-4k-1}(M; \mathbb{Q});$$

$$\pi_n(P^{\text{Diff}}(M)) \otimes \mathbb{Q} \cong \bigoplus_{k=1}^{\infty} H_{n-4k+1}(M; \mathbb{Q}).$$

- **Automorphisms of manifolds**
 If K-theoretic Farrell-Jones Conjecture 6.44 and the L-theoretic Farrell-Jones Conjecture 8.111 hold for the torsionfree group G and the ring $R = \mathbb{Z}$, then some rational computations of the homotopy groups of the automorphism group of an aspherical closed manifold M with $G = \pi_1(M)$ can be found in Theorems 8.186 and 8.187.

- **Novikov Conjecture**
 The Novikov Conjecture 8.134 for a group G predicts the homotopy invariants of the higher signatures
of a closed oriented manifold M coming with a reference map $f : M \to BG$ for an element $x \in \prod_{k \geq 0} H^k(BG; \mathbb{Q})$, see Subsection 8.14.1.

We conclude from Theorem 12.56 (xi) that the L-theoretic Farrell Jones Conjecture 12.4 for the group G and the ring \mathbb{Z} implies the Novikov Conjecture 8.134 for G.

Borel Conjecture

The Borel Conjecture 8.155 predicts that any aspherical closed topological manifold M is topologically rigid, i.e., if N is another aspherical closed topological manifold with $\pi_1(M) \cong \pi_1(N)$, then M and N are homeomorphic and any homotopy equivalence $M \to N$ is homotopic to a homeomorphism.

Let G be a finitely presented group. Suppose that it satisfies the versions of the K-theoretic Farrell-Jones Conjecture stated in 3.107 and 4.19 and the version of the L-theoretic Farrell-Jones Conjecture stated in 8.111 for the ring $R = \mathbb{Z}$.

Then Theorem 8.163 shows that every aspherical closed topological manifold of dimension ≥ 5 with G as fundamental group is topologically rigid.

Poincaré duality groups

Conjecture 8.175 predicts that a finitely presented group is an n-dimensional Poincaré duality group if and only if it is the fundamental group of an aspherical closed n-dimensional topological manifold.

Suppose that the torsionfree group G is a finitely presented Poincaré duality group of dimension $n \geq 6$ and satisfies the versions of the K-theoretic Farrell-Jones Conjecture stated in 3.107 and 4.19 and the version of the L-theoretic Farrell-Jones Conjecture stated in 8.111 for the ring $R = \mathbb{Z}$.

Let X be a Poincaré complex of dimension ≥ 6 with $\pi_1(X) \cong G$.

Then X is homotopy equivalent to a compact homology ANR-manifold satisfying the disjoint disk property, see Theorem 8.176.

Boundaries of hyperbolic groups

As a consequence of the Farrell-Jones Conjecture we get Theorem 8.179 which says for a torsion-free hyperbolic group G and let $n \geq 6$ that the following statements are equivalent:

- The boundary ∂G is homeomorphic to S^{n-1};
- There is an aspherical closed topological manifold M such that $G \cong \pi_1(M)$, its universal covering \tilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n;

Moreover the aspherical closed topological manifold M appearing above is unique up to homeomorphism.

Stable Cannon Conjecture

A stable version of the Cannon Conjecture is known to be true, see Theorem 8.183.
12.11 Summary of the Applications of the Farrell-Jones Conjecture

- **Product decompositions of aspherical closed manifolds**
 Theorem 8.185 deals with the question when for an aspherical closed topological manifold M a given algebraic decomposition $\pi_1(M) = G_1 \times G_2$ comes from the topological decomposition $M = M_1 \times M_2$. Theorem 8.185 is a consequence of the K-theoretic Farrell-Jones Conjecture stated in 3.107 and 4.19 and the version of the L-theoretic Farrell-Jones Conjecture stated in 8.111 for the ring $R = \mathbb{Z}$.

- **Classification of manifolds homotopy equivalent to certain torus bundles over lens spaces.**
 The K-theoretic Farrell-Jones Conjecture 12.1 and the L-theoretic Farrell-Jones Conjecture 12.4 play a key role in the paper [255], where a classification of manifolds homotopy equivalent to certain torus bundles over lens spaces is presented.

- **Fibering manifolds**
 The K-theoretic Farrell-Jones Conjecture 12.1 and the L-theoretic Farrell-Jones Conjecture 12.4 play a key role in the paper [340], where the question is treated when for an aspherical closed manifold B and a map $p: M \to B$ from some closed connected manifold M the map p is homotopic to Manifold Approximate Fibration.

- **The Atiyah Conjecture**
 Conjecture 2.57 is related to the Atiyah Conjecture which makes predictions about the possibly values of the L^2-Betti numbers of coverings of closed Riemannian manifolds, see Remark 2.60.

- **Homotopy invariance of $\tau^{(2)}(M)$ and of the L^2-Rho-invariant $\rho^{(2)}(M)$**
 Suppose that the L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in the ring R with involution is rationally true for $R = \mathbb{Z}$, i.e., the rationalized assembly map
 \[
 H_n(BG; L^{(-\infty)}(\mathbb{Z})) \otimes_{\mathbb{Z}} \mathbb{Q} \to L_n^{(-\infty)}(\mathbb{Z}G) \otimes_{\mathbb{Z}} \mathbb{Q}
 \]
 is an isomorphism for $n \in \mathbb{Z}$.
 Then the invariant Hirzebruch type invariant $\tau^{(2)}(M)$ is a homotopy invariant, see Remark 13.60.

- **Homotopy invariance of the (twisted) L^2-torsion**
 The K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring $R = \mathbb{Z}$ implies the homotopy invariance of L^2-torsion and of the L^2-torsion function, see [597] Theorem 7.5 (4)]. The twisted L^2-torsion function is related to the Thurston norm for appropriate 3-manifolds in [366].

- **Vanishing of κ-classes for aspherical closed manifolds**
 The vanishing of κ-classes for aspherical closed manifolds is analyzed in [424] using as one input the Full Farrell-Jones Conjecture 12.23.

- **Classification of 4-manifolds**
 Sometimes the Farrell-Jones Conjecture is needed as input in the (stable) classification of certain 4-manifolds, see for instance [405, 406, 512].
Applications of the Farrell-Jones Conjecture to manifolds with group actions are given for instance in [175, 222, 223, 228].

12.12 G-Theory

Instead of considering finitely generated projective modules, one may apply the standard K-theory machinery to the category of finitely generated modules. This leads to the definition of the groups $G_n(R)$ for $n \geq 0$. One can define them also for negative n using [815]. We have described $G_0(R)$ and $G_1(R)$ already in Definitions 2.1 and 3.1. One may ask whether versions of the Farrell-Jones Conjectures for G-theory instead of K-theory might be true. The answer is negative as the following discussion explains.

For a finite group H the ring $\mathbb{C}H$ is semisimple. Hence any finitely generated $\mathbb{C}H$-module is automatically projective and $K_0(\mathbb{C}H) = G_0(\mathbb{C}H)$. Recall that a group G is called virtually poly-cyclic if there exists a subgroup of finite index $H \subseteq G$ together with a filtration $\{1\} = H_0 \subseteq H_1 \subseteq H_2 \subseteq \ldots \subseteq H_r = H$ such that $H_i - 1$ is normal in H_i and the quotient H_i/H_{i-1} is cyclic. More generally for all $n \in \mathbb{Z}$ the forgetful map $f: K_n(\mathbb{C}G) \rightarrow G_n(\mathbb{C}G)$ is an isomorphism if G is virtually poly-cyclic, since then $\mathbb{C}G$ is regular [795, Theorem 8.2.2 and Theorem 8.2.20] and the forgetful map f is an isomorphism for regular rings, compare [775, Corollary 53.26 on page 293]. In particular this applies to virtually cyclic groups and so the left hand side of the Farrell-Jones assembly map does not see the difference between K- and G-theory if we work with complex coefficients. We obtain a commutative diagram

$$
\begin{array}{ccc}
\text{colim}_{H \in \text{Sub}_\text{FIN}(G)} K_0(\mathbb{C}H) & \rightarrow & K_0(\mathbb{C}G) \\
\downarrow{\cong} & & \downarrow{f} \\
\text{colim}_{H \in \text{Sub}_\text{FIN}(G)} G_0(\mathbb{C}H) & \rightarrow & G_0(\mathbb{C}G)
\end{array}
$$

where, as indicated, the left hand vertical map is an isomorphism. Conjecture 2.57 which follows from the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \mathbb{C} predicts that the upper horizontal arrow is an isomorphism. A G-theoretic analogue of Conjecture 2.57 would say that the lower horizontal map is an isomorphism. There are however cases where the upper horizontal arrow is known to be an isomorphism, but the forgetful map f on the right is not injective or not surjective, and hence the lower vertical arrow cannot be injective or surjective.
If G contains a non-abelian free subgroup, then the class $[CG] \in G_0(CG)$ vanishes \cite[Theorem 9.66 on page 364]{[585]} and hence the map $f: K_0(CG) \to G_0(CG)$ has an infinite kernel since $[CG]$ generates an infinite cyclic subgroup in $K_0(CG)$. Note that Conjecture 12.1 is known for non-abelian free groups.

Conjecture 12.1 is also known for $A = \bigoplus_{n \in \mathbb{Z}} \mathbb{Z}/2$ and hence $K_0(CA)$ is countable, whereas $G_0(CA)$ is not countable \cite[Example 10.13 on page 375]{[585]}. Hence the map f cannot be surjective.

At the time of writing we do not know the answer to the following questions:

Question 12.58. If G is an amenable group, for which there is an upper bound on the orders of its finite subgroups, is then the forgetful map $f: K_0(CG) \to G_0(CG)$ an isomorphism?

Question 12.59. If the group G is not amenable, is then $G_0(CG) = \{0\}$?

To our knowledge the answer to Question 12.59 is not even known in the special case $G = \mathbb{Z} \ast \mathbb{Z}$.

For more information about $G_0(CG)$ we refer for instance to \cite[Subsection 9.5.3]{[585]}.

Exercise 12.60. Let $H \subseteq G$ be a subgroup of G possessing an epimorphism $f: H \to \mathbb{Z}$. Show that the class of $C[G/H]$ in $G_0(CG)$ is trivial.

12.13 The Farrell-Jones Conjecture with Coefficients in Right-Exact ∞-Categories

The language of homotopical algebra (and ∞-categories in particular) provides a framework in which the algebraic K-theory of group rings (or additive categories) and Waldhausen’s A-theory can be treated on equal footing. The plus-construction described in Section 6.2 can be generalized to apply to E_1-ring spectra \cite[Section VI.7]{[504]}. The resulting K-theory functor reduces to the functor of of Definition 6.9 by precomposing with the functor which sends an ordinary ring to its associated Eilenberg-MacLane spectrum. It is a folk theorem that the A-theory of a path-connected space X is equivalent to the algebraic K-theory of the spherical group ring $S[\Omega X]$, see for example \cite[569]{[569]}. In particular, there is an equivalence $A(BG) \simeq K(S[G])$ for every group G. We ignore the question of a non-connective algebraic K-theory functor for the moment since we are going to switch to a slightly different perspective in a moment.

Just as in the case of ordinary rings, one can only formulate a Farrell-Jones Conjecture for group rings over an E_1-ring spectrum R after promoting the assignment $G/H \mapsto K(\mathbb{R}[H])$ to a functor on the orbit category of G.
In analogy to Section 12.3 however, it is worthwhile to pass directly to an
even more general setting in which the Farrell-Jones Conjecture enjoys the
same inheritance properties as the Full Farrell-Jones Conjecture formulated
in Section 12.6.

We find such a setting by considering algebraic K-theory as a functor
defined on stable ∞-categories. See [621, Chapter 1] for fundamentals on
stable ∞-categories and [127, Section 9] for a description of non-connective
algebraic K-theory as a functor $K: \text{Cat}_{\text{st}}^\infty \to \text{SPECTRA}$ from the ∞-category
of stable ∞-categories to the ∞-category of spectra. In the sequel, we assume
some familiarity with the basics of higher category theory.

In slightly greater generality, one can also allow right-exact ∞-categories,
i.e. pointed and finitely cocomplete ∞-categories, as input for the algebraic
K-theory functor K. The inclusion functor from $\text{Cat}_{\text{st}}^\infty$ to the ∞-
category $\text{Cat}_{\text{rex}}^\infty$, of right-exact ∞-categories admits a left adjoint Stab.
When applied to the ∞-category of finite spaces, this construction specialises to the (∞-category associated to) the classical Spanier-Whitehead
category of finite spectra. The unit of this adjunction induces an equivalence
$K(C) \xrightarrow{\sim} K(\text{Stab}(C))$ for every right-exact ∞-category, so the right-hand
term might as well be considered a definition of K as a functor on $\text{Cat}_{\text{rex}}^\infty$.

To formulate the Farrell-Jones Conjecture with coefficients in right-exact
∞-categories, we proceed as follows. Denote by BG the ∞-category given
by the one-object groupoid with automorphism group G. Consider a right-
exact ∞-category C with a (right) G-action, i.e. a functor $C: BG^{\text{op}} \to \text{Cat}_{\text{rex}}^\infty$.
There is a canonical functor $j: BG^{\text{op}} \to \text{Or}(G)$ which sends the unique object
of BG to the transitive G-set G and each element $g \in G$ to the G-
equivariant map $r_g: G \to G$ given by right multiplication with g. Since $\text{Cat}_{\text{rex}}^\infty$ is cocomplete, we can take the left Kan extension $j^! C: \text{Or}(G) \to \text{Cat}_{\text{rex}}^\infty$ of C along j
and compose this functor with K to obtain the $\text{Or}(G)$-spectrum

$$K_C: \text{Or}(G) \xrightarrow{j^! C} \text{Cat}_{\text{rex}}^\infty \xrightarrow{K} \text{SPECTRA}. $$

The universal property of $\mathcal{P}(\text{Or}(G))$ implies that the $\text{Or}(G)$-spectrum K_C
is the same as a colimit-preserving functor

$$H^G(_; K_C): \mathcal{P}(\text{Or}(G)) \to \text{SPECTRA}. $$

By Elmendorf’s theorem, the ∞-category $\mathcal{P}(\text{Or}(G)) := \text{Fun}(\text{Or}(G)^{\text{op}}, \text{Spc})$
of presheaves on $\text{Or}(G)$ is a model for the ∞-category of G-spaces. Under
this identification, $H^G(_; K_C)$ is precisely the G-homology theory associated
to the $\text{Or}(G)$-spectrum K_C. Moreover, we use this identification to consider
the classifying space $E_{\mathcal{F}}(G)$ of G for a family \mathcal{F} of subgroups as an object in
$\mathcal{P}(\text{Or}(G))$.

Consequently, we may say that a group G satisfies the K-theoretic Farrell-
Jones Conjecture with coefficients in right-exact ∞-categories if the es-
tially unique map $E_{V_{CY}}(G) \to \ast$ to the final object \ast of $\mathcal{P}(\text{Or}(G))$ induces
for every right-exact ∞-category \mathcal{C} with G-action an equivalence

$$H^G(E_{VCY}(G); K_{\mathcal{C}}) \to H^G(\ast; K_{\mathcal{C}})$$

in SPECTRA. Similarly, there is a Full K-theoretic Farrell-Jones Conjecture with right-exact coefficients which asks that every wreath product $G \wr F$ with a finite group F satisfies the Farrell-Jones Conjecture with coefficients in right-exact ∞-categories.

As promised, this formulation of the K-theoretic Farrell-Jones conjecture encompasses both the K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories and the Farrell-Jones Conjecture for A-theory:

(i) For an additive G-category A, we obtain a stable ∞-category

$$\mathcal{A} := \text{Ch}^b(A)[h^{-1}]$$

by localizing the category $\text{Ch}^b(A)$ of bounded chain complexes in A at the collection of chain homotopy equivalences h. This construction is functorial, so \mathcal{A} is a stable ∞-category with G-action.

If we apply the above construction to \mathcal{C}, the resulting G-homology theory $H^G(\ast; K_{\mathcal{C}})$ is equivalent to the G-homology theory $H^G(\ast; K_{\mathcal{A}})$ considered in Conjecture 12.11, see [156, Example 1.6].

(ii) Let Z be a free G-CW-complex, where we assume for convenience that G acts on the right. Then we may regard Z as an object in the functor category $\text{Fun}(BG^{op}, \text{Spc})$. Since $\text{Cat}^{\text{ex}}_{\infty,*}$ is cocomplete, it is tensored over spaces. Denoting the right-exact ∞-category of pointed and compact (i.e. finitely dominated) spaces by Spc_ω^*, we obtain a right-exact ∞-category $Z \otimes \text{Spc}_\omega^*$ with G-action. The G-homology theory $H^G(\ast; K_{Z \otimes \text{Spc}_\omega^*})$ is equivalent to the G-homology theory $H^G(\ast; A_G^Z)$ considered in Conjecture, see [156, Example 1.9 & Corollary 7.71].

Theorem 12.61 (The Farrell-Jones Conjecture for coefficients in right-exact ∞-categories). Theorem 15.1 holds verbatim for the Full K-theoretic Farrell-Jones Conjecture with right-exact coefficients.

Proof. See [162, Theorem 1.6 and Section 8].

In addition, the evident analogs of Theorem 12.29 and of the split injectivity results from Section 15.6 hold for the assembly map associated to right-exact ∞-categories with G-action [156, Theorem 6.52 & Theorem 1.1].

The (at the time of writing) recent work of Calmès, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin, Nikolaus and Steimle [171, 172, 173] promises to provide a framework in which these results can be further generalized to treat the K-theoretic and L-theoretic Farrell-Jones Conjectures in a unified way.

Comment 13: Add at the right place: The author is grateful to Christoph Winges to explain his work with Bunke, Cisinski, and Kasprowski.
12.14 Notes

The original formulation of the Farrell-Jones Conjecture appears in [332, 1.6 on page 257]. Our formulation differs from the original one, but is equivalent, see Remark 14.42.

Proofs of some of the inheritance properties above are also given in [414, 793].

The inheritance properties of the Farrell-Jones Conjecture under actions of trees is discussed in [75], see also Section 6.9 and Section 14.7. The situation is much more complicated than for the Baum-Connes Conjecture 13.11 with coefficients, where the optimal result holds, see Theorem 13.31 (v) and Remark 13.35.

In the sequel we consider classes \(C \) of groups which are closed under taking subgroups and passing to isomorphic groups. Examples are the classes of virtually cyclic or of finite groups. Given a group \(G \), let \(\mathcal{C}(G) \) be the family of subgroups of \(G \) which belong to \(C \). The relevant family of subgroups appearing in Conjectures 12.1, 12.2, 12.4, 12.7, 12.11, 12.16, 12.21, 12.22, and 12.23 is always given by \(\mathcal{C}(G) \), where \(\mathcal{C} \) is the class of virtually cyclic subgroups. We have proved various theorems, where \(\mathcal{C} \) could be chosen to be smaller, for instance to be the class of virtually cyclic groups of type I or of hyperelementary groups, see Theorems 12.38, 12.39, and 12.40. One may ask whether there is always a class \(\mathcal{C}_{min} \) for which such a conjecture holds for all groups \(G \) and which is minimal. Of course for the class of all groups such a conjecture will hold for trivial reasons. In the worst case \(\mathcal{C}_{min} \) may be just the class of all groups. A candidate for \(\mathcal{C}_{min} \) may be the intersection of all the classes \(\mathcal{C} \) of groups for which the conjecture is true for all groups, but we do not know whether this intersection does satisfy the conjecture for all groups, see also Section 14.15. At least we know that the intersection of two classes of groups \(C_0 \) and \(C_1 \) for which one of the Conjectures 12.11, 12.16, 12.21, 12.22 and 12.23 holds for all groups, satisfies this conjecture for all groups as well. We also know for two classes of subgroups \(\mathcal{C} \subseteq \mathcal{D} \) such that \(\mathcal{D} \) satisfies one of the Conjectures 12.11, 12.16, 12.21, 12.22 and 12.23 for all groups, if \(\mathcal{C} \) does. These claims follow from Theorem 14.9 (ii) and (iv), Theorem 14.13 (ii) and Lemma 14.14.

Further variants of the Farrell-Jones Conjecture for other theories such as \(A \)-theory, topological cyclic homology and Hochschild homology, homotopy \(K \)-theory, and the \(K \)-theory of Hecke algebras of totally disconnected groups will be discussed in Sections 14.10, 14.11, 14.12, and 14.13.
Chapter 13
The Baum-Connes Conjecture

13.1 Introduction

In this chapter we discuss the Baum-Connes Conjecture \[13.9\] for the topological \(K\)-theory of the reduced group \(C^*\)-algebra \(C^*_r(G; F)\) for \(F = \mathbb{R}, \mathbb{C}\). It predicts that certain assembly maps

\[
\begin{align*}
K_n^G(E_{FIN}(G)) & \to K_n(C^*_r(G; \mathbb{C})), \\
KO_n^G(E_{FIN}(G)) & \to KO_n(C^*_r(G; \mathbb{R})),
\end{align*}
\]

are bijective for all \(n \in \mathbb{Z}\). The target is the topological \(K\)-theory of \(C^*_r(G; F)\) which one wants to understand. The source is an expression which depends only on the values of these topological \(K\)-groups on finite subgroups of \(G\) and is therefore much more accessible. The version above is often the one which is relevant in concrete applications, but there is also a more general version, the Baum-Connes Conjecture \[13.11\] with coefficients, where one allows coefficients in a \(G\)-\(C^*\)-algebra. Note that in contrast to the Full Farrell-Jones Conjecture \[12.23\] it suffices to consider finite subgroups instead of virtually cyclic subgroups.

A status report of the Baum-Connes Conjecture \[13.9\] and its version \[13.11\] with coefficients will be given in Section \[15.4\].

The main point about the Baum-Connes Conjecture \[13.9\] is that it implies a great variety of other prominent conjectures such as the ones due to Kadison and Novikov, and leads to very deep and interesting results about manifolds and \(C^*\)-algebras, as we will record and explain in Section \[13.8\].

Variants of the Baum-Connes Conjecture \[13.9\] and its versions \[13.11\] with coefficient are presented in Section \[13.5\].

We will discuss the inheritance properties of the Baum-Connes Conjecture \[13.11\] with coefficients in Section \[13.6\].

We have tried to keep this chapter as much as possible independent of the other chapters, so that one may start reading directly here.
13.2 The Analytic Version of the Baum-Connes Assembly Map

Let A be a G-C^*-algebra over $F = \mathbb{R}, \mathbb{C}$. Denote by $A \rtimes_r G$ the C^*-algebra over F given by the reduced crossed product, see [720] 7.7.4 on page 262. If A is \mathbb{R} or \mathbb{C} with the trivial G-action, this is the reduced real or complex reduced group C^*-algebra $C^*_r(G; \mathbb{R})$ or $C^*_r(G; \mathbb{C})$, see Subsection 9.3.1. Denote by $K_n(A \rtimes_r G)$ and $KO(A \rtimes_r G)$ their topological K-theory, as introduced in Subsection 9.3.2.

Let X be a proper G-CW-complex. Denote by $K^G_n(X; A)$ and $KO^G_n(X; A)$ the complex and real topological K-theory of X with coefficients in A, see Section 9.6. Note that $K^G_n(\quad; A)$ and $KO^G_n(\quad; A)$ are G-homotopy theories in the sense of Definition 11.1 such that $K^G_n(G/H; A) = K_n(A \rtimes H)$ and $KO^G_n(G/H; A) = KO_n(A \rtimes_r H)$ hold for any finite subgroup $H \subseteq G$ and $n \in \mathbb{Z}$, provided that we consider proper G-CW-complexes only.

We want to explain the analytic Baum-Connes assembly map

\begin{align}
(13.1) & \quad \text{asmb}^G_{A, \mathbb{C}}(X)_n : K^G_n(X; A) \to K_n(A \rtimes_r G); \\
(13.2) & \quad \text{asmb}^G_{A, \mathbb{R}}(X)_n : KO^G_n(X; A) \to KO_n(A \rtimes_r G).
\end{align}

We will only treat the case $F = \mathbb{C}$, the case $F = \mathbb{R}$ is analogous.

We first consider the special case, where X is proper and cocompact and then explain how the map extends by a colimit argument to arbitrary proper G-CW-complexes. Notice that for a proper and cocompact G-CW-complex X we can identify $K^G_n(X; A)$ with the equivariant KK-groups $KK^G_n(C_0(X), A)$, see Section 9.6.

One description is in terms of indices with values in C^*-algebras. Namely, one assigns to a Kasparov cycle representing an element in $KK^G_n(C_0(X), A)$ its C^*-valued index in $K_n(A \rtimes G)$ in the sense of Mishchenko-Fomenko [662], thus defining a map $KK^G_n(C_0(X), A) \to K_n(A \rtimes G)$, provided that X is proper and cocompact. This is the approach appearing in [97].

The other equivalent approach is based on the Kasparov product. Given a proper cocompact G-CW-complex X, one can assign to it an element $[p_X] \in KK^G_n(\mathbb{C}, C_0(X) \rtimes_r G)$. Now define the map (13.1) by the composite of a descent map and a map coming from the Kasparov product

$$KK^G_n(C_0(X), A) \xrightarrow{j \otimes} KK_n(C_0(X) \rtimes_r G, A \rtimes_r G) \xrightarrow{\mu_{X, \mathbb{C}}} KK_n(\mathbb{C}, A \rtimes_r G) = K_n(A \rtimes G).$$

For some information about these two approaches and their identification, we refer to [553] in the torsionfree case and to [161] in the general case.

This extends to arbitrary proper G-CW-complexes X by the following argument. If $f : X \to Y$ is a G-map of proper cocompact G-CW-complexes,
then f is a proper map (after forgetting the group action). Hence composition with f defines a homomorphism of G-C^*-algebras $C_0(f) : C_0(Y) \to C_0(X)$.

Denote by $KK_n^G(C_0(f), \text{id}_A) : KK_n^G(C_0(X), A) \to KK_n^G(C_0(Y), A)$ the induced map on equivariant KK-groups. One easily checks $\text{asmb}^{G,C}(Y)_n \circ KK_n^G(C_0(f), \text{id}_A) = \text{asmb}^{G,C}(X)_n$. Recall from the definition (9.67) that for any proper G-CW-complex X the canonical map

$$\text{colim}_{C \subseteq X} K_n^G(C) \xrightarrow{\cong} K_n^G(X)$$

is an isomorphism, where C runs through the finite G-CW-subcomplexes of X directed by inclusion. Hence by a colimit argument over the directed systems of proper cocompact G-CW-subcomplexes the definition above for proper compact G-CW-complexes extends to the desired assembly maps (13.1) for any proper G-CW-complex X. Moreover, for any G-map of proper G-CW-complexes $f : X \to Y$, we obtain again by passing to the colimit a homomorphism $K_n^G(f) : K_n^G(X; A) \to K_n^G(Y; A)$ satisfying

\begin{align*}
(13.3) & \quad \text{asmb}^{G,C}(Y)_n \circ K_n^G(f; A) = \text{asmb}^{G,C}(X)_n; \\
(13.4) & \quad \text{asmb}^{G,R}(Y)_n \circ KO_n^G(f; A) = \text{asmb}^{G,R}(X)_n.
\end{align*}

13.3 The Version of the Baum-Connes Assembly Map in Terms of Spectra

There is also a version of the Baum-Connes assembly map which is very close to the construction of the one for the Farrell-Jones Conjecture. Namely, if we apply Theorem 11.27, taking Remark 11.28 into account, to the functor

$$K_F^{\text{top}} : \text{GROUPOIDS}^{\text{ini}} \to \text{SPECTRA},$$

of (11.43) for $F = \mathbb{R}, \mathbb{C}$, then we obtain an equivariant homology theory $H_n^G(\cdot ; K_F^{\text{top}})$ in the sense of Definition 11.9 such that we get for every inclusion $H \subseteq G$ of groups natural identifications

$$H_n^G(G/H; K_F^{\text{top}}(H)) \cong H_n^G(H/H; K_F^{\text{top}}(H)) \cong \pi_n(K_F^{\text{top}} \circ I(H)) = K_n(C^*_r(H; F)).$$

Note that $H_n^G(X; K_F^{\text{top}})$ is defined for any G-CW-complex X, whereas the definition of $K_n^G(X)$ and $KO_n(X)$ in terms of KK-theory only makes sense for proper G-CW-complexes.

We get assembly maps induced by the projection

\begin{align*}
(13.5) & \quad H_n^G(\text{pr}; K_F^{\text{top}}) : H_n^G(X; K_F^{\text{top}}) \to H_n^G(G/G; K_F^{\text{top}}) = K_n(C^*_r(G; \mathbb{C})); \\
(13.6) & \quad H_n^G(\text{pr}; K_F^{\text{top}}) : H_n^G(X; K_F^{\text{top}}) \to H_n^G(X; K_F^{\text{top}}) = K_n(R^*_F(G; \mathbb{R})).
\end{align*}
The assembly maps \([13.1]\) and \([13.5]\) are identified in \([252, \text{Section 6}]\). Unfortunately, the proof is based on an unpublished preprint by Carlsson-Pedersen-Roe. Another proof of the identification is given in \([411, \text{Corollary 8.4}]\) and \([669]\).

The identification above in the general case, where one allows coefficients in a \(G\)-\(C^*\)-algebra \(A\), is carried out in \([528]\), see also \([161]\).

Consider a proper \(G\)-\(CW\)-complex \(X\). One sometimes finds in the literature the notation

\[
RK^n_G(X) := \operatorname{colim}_{C \subseteq X} KK_n(C_0(X), \mathbb{C}),
\]

where \(C\) runs through the finite \(G\)-\(CW\)-subcomplexes of \(X\) directed by inclusion. By definition and by the discussion above we get for every proper \(G\)-\(CW\)-complex \(X\) identifications, natural in \(X\),

\[
(13.8) \quad RK^n_G(X) = K^n_G(X) = H^n_G(X; K^\text{top})
\]

and analogous in the real case.

13.4 The Baum-Connes Conjecture

Recall that a model for the classifying space for proper \(G\)-actions is a \(G\)-\(CW\)-complex \(EG = E_{FIN}(G)\) such that \(EG^H\) is non-empty and contractible for each finite subgroup \(H \subseteq G\) and empty for each infinite subgroup \(H \subseteq G\). Two such models are \(G\)-homotopy equivalent. See Definition \([10.18]\) and Theorem \([10.19]\).

Conjecture 13.9 (Baum-Connes Conjecture). A group \(G\) satisfies the Baum-Connes Conjecture if the assembly maps

\[
\operatorname{asmb}^{G,C}(EG)_n : K_G^n(EG) \to K_n(C^*_r(G; \mathbb{C}));
\]

\[
\operatorname{asmb}^{G,R}(EG)_n : KO_G^n(EG) \to KO_n(C^*_r(G; \mathbb{R})),
\]

defined in \([13.1]\) and \([13.2]\) are bijective for all \(n \in \mathbb{Z}\) in the special case that \(A\) is \(\mathbb{C}\) or \(\mathbb{R}\) respectively with the trivial \(G\)-action.

Exercise 13.10. Show \(K^n_G(EG) \cong \mathbb{Z}^k\) for \(k, n \in \mathbb{Z}, k \geq 1\) and \(G = \mathbb{Z} \times \mathbb{Z}/k\).

Conjecture 13.11 (Baum-Connes Conjecture with coefficients). A group \(G\) satisfies the Baum-Connes Conjecture with coefficients if the assembly maps

\[
\operatorname{asmb}^{G,C,A}(EG)_n : K_G^n(EG; A) \to K_n(A \rtimes_r G);
\]

\[
\operatorname{asmb}^{G,R,A}(EG)_n : KO_G^n(EG; A) \to KO_n(A \rtimes_r G),
\]
defined in (13.1) and (13.2) are bijective for all \(n \in \mathbb{Z} \) and all \(G \)-\(C^* \)-algebras \(A \) over \(F = \mathbb{R}, \mathbb{C} \).

Remark 13.12 (Counterexample to the Baum-Connes Conjecture with coefficients and a modified version). We will discuss the status and further applications of the Baum-Connes Conjecture with coefficients in Section 13.8 and 15.4, but immediately want to point out that there exists counterexamples to the version with coefficients, see [434], but no counterexample to the Baum-Connes Conjecture is known.

In [99] a new formulation of the Baum-Connes Conjecture with coefficients is given by considering a different crossed product for which the counterexamples mentioned above are not counterexamples anymore, see also [170], and no counterexample is known to the author’s knowledge. The new version takes care of the problem that there exists groups \(G \) together with short exact sequences of \(G \)-\(C^* \)-algebras \(0 \to I \to A \to B \to 0 \) for which the induced sequence \(0 \to I \rtimes G \to A \rtimes G \to B \rtimes G \to 0 \) is not exact anymore and it is hence not clear that there exists a long exact sequence

\[
\ldots \to K_n(I \rtimes G) \to K_n(A \rtimes G) \to K_n(B \rtimes G) \\
\quad \to K_{n-1}(I \rtimes G) \to K_{n-1}(A \rtimes G) \to K_{n-1}(B \rtimes G) \to \ldots
\]

whose existence is a consequence of the Baum-Connes Conjecture with coefficients. The new version still has the flaw that the left hand side of the assembly map is functorial under arbitrary group homomorphism, whereas this is unknown for the right hand side, compare Remark.

The original source of the Baum-Connes Conjecture (with coefficients) is [97, Conjecture 3.15 on page 254].

Remark 13.13 (The complex case implies the real case). The complex version of the Baum-Connes Conjecture implies automatically the real version, see [104, 811].

Remark 13.14 (Reduction to the torsionfree case). There are canonical isomorphisms \(K_G^*(EG) \cong K_*(BG) \) and \(KO_G^*(EG) \cong KO_*(BG) \). Suppose that \(G \) is torsionfree. Then \(EG \) is a model for \(E \Gamma \) and under the identification above the assembly map appearing in the Baum-Connes Conjecture agrees with the one appearing in the Baum-Connes Conjecture for torsionfree groups [9.44]. Hence the Baum-Connes Conjecture for torsionfree groups [9.44] is a special case of the Baum-Connes Conjecture.

Exercise 13.15. Let \(f : H \to G \) be a group homomorphism of torsionfree groups. Suppose that \(H \) and \(G \) satisfy the Baum-Connes Conjecture and the induced map on group homology \(H_n(f) : H_n(H) \to H_n(G) \) is bijective for \(n \in \mathbb{Z} \). Show that then \(K_n(C^*_r(G; \mathbb{C})) \cong K_n(C^*_r(H; \mathbb{C})) \) and \(KO_n(C^*_r(G; \mathbb{R})) \cong KO_n(C^*_r(H; \mathbb{R})) \) holds for all \(n \in \mathbb{Z} \).
13.5 Variants of the Baum-Connes Conjecture

In this section we discuss some variants of the Baum-Connes Conjecture.

13.5.1 The Baum-Connes Conjecture for Maximal Group C^*-Algebras

There are also versions of the Baum-Connes assembly map using the maximal crossed product $A \rtimes_m G$, see [720, 7.6.5 on page 257] for a G-C^*-algebra A over F or the maximal group C^*-algebra $C^*_m(G; F)$ for $F = \mathbb{R}, \mathbb{C}$. Namely, there are assembly maps

$$(13.16) \quad \text{asmb}^{G, C, m}_A(X)_*: K^*_G(X; A) \rightarrow K^*_s(A \rtimes_m G);$$

$$(13.17) \quad \text{asmb}^{G, R, m}_A(X)_*: KO^*_G(X; A) \rightarrow KO^*_s(A \rtimes_m G),$$

which reduce for $A = \mathbb{R}, \mathbb{C}$ equipped with the trivial G-action to assembly maps

$$(13.18) \quad \text{asmb}^{G, C, m}_A(EG)_n: K^*_n(EG) \rightarrow K^*_n(C^*_m(G; \mathbb{C}));$$

$$(13.19) \quad \text{asmb}^{G, R, m}_A(EG)_n: KO^*_n(EG) \rightarrow KO^*_n(C^*_m(G; \mathbb{R})).$$

In the sequel we only consider the complex case, the corresponding statements are true over \mathbb{R} as well.

There is always a C^*-homomorphism $p: A \rtimes_m G \rightarrow A \rtimes_r G$, and we obtain the following factorization of the Baum-Connes assembly map of (13.11)

$$\text{asmb}^{G, C, m}_A(X)_*: K^*_n(X; A) \rightarrow K^*_s(A \rtimes_m G) \rightarrow K^*_s(A \rtimes_r G).$$

The Baum-Connes Conjecture (13.11) implies that the map $\text{asmb}^{G, C, m}_A(EG)_*$ is always injective, and that it is surjective if and only if the map $K^*_s(p)$ is bijective.

Remark 13.20 (Functoriality of the Baum-Connes assembly map). Notice that the source of the assembly maps $\text{asmb}^{G, C, m}_A(EG)_n: K^*_n(EG) \rightarrow K^*_n(C^*_m(G; \mathbb{C}))$ and $\text{asmb}^{G, R, m}_A(EG)_n: KO^*_n(EG) \rightarrow KO^*_n(C^*_m(G; \mathbb{R}))$ are functorial in G. The target $K^*_n(C^*_m(G))$ is also functorial in G since $C^*_m(G)$ is functorial in G, and the assembly map $\text{asmb}^{G, C, m}_A(EG)_n: K^*_n(EG) \rightarrow K^*_n(C^*_m(G))$ is natural in G.

However, it is not known whether the target $K^*_n(C^*_r(G))$ is functorial in G and we have already explained in Subsection 9.3.1 that not every group homomorphism $\alpha: G \rightarrow H$ induces a homomorphism of C^*-algebras $C^*_r(G) \rightarrow C^*_r(H)$. This is irritating since the Baum-Connes Conjecture (13.9) implies that $K^*_n(C^*_r(G))$ is also functorial in G.
The same problem is still present in the new formulation of the Baum-Connes Conjecture with coefficients in \[99\].

Remark 13.21 (The Baum-Connes Conjecture does not hold in general for the maximal group \(C^*\)-algebra). It is known that the assembly map \(\text{asmb}_{A}^{G,C,m}(EG)_{\ast}\) of (13.16) is in general not surjective. Namely, \(K_{0}(p)\) is not injective if \(G\) is any infinite group which has property (T), compare for instance the discussion in \[430\]. There are infinite groups with property (T) for which the Baum-Connes Conjecture is known, see \[540\] and also \[831\]. Hence there are counterexamples to the conjecture that \(\text{asmb}_{A}^{G,C,m}(EG)_{n}\) is surjective.

Remark 13.22 (The Baum-Connes Conjecture for the maximal group \(C^*\)-algebra holds for A-T-menable groups). A countable group \(G\) is called \(K\)-amenable if the map \(p: C^*_{\text{max}}(G) \to C^*_{\ast}(G)\) induces a \(KK\)-equivalence, see \[239\]. This implies in particular that the map \(K_{n}(p)\) above is an isomorphism for all \(n \in \mathbb{Z}\). A-T-menable groups are \(K\)-amenable, see \[433\] and they satisfy the Baum-Connes Conjecture 13.9, see Theorem 15.7 (ia). Hence for A-T-menable groups the assembly map \(\text{asmb}_{A}^{G,C,m}(EG)_{\ast}\) of (13.16) is bijective for all \(n \in \mathbb{Z}\). This is also true for the real version of the assembly map (13.19).

13.5.2 The Bost Conjecture

Some of the strongest results about the Baum-Connes Conjecture are proven using the so called Bost Conjecture, see [542, page 798]. The Bost Conjecture is the version of the Baum-Connes Conjecture, where one replaces the reduced group \(C^*\)-algebra \(C^*_{\ast}(G;F)\) by the Banach algebra \(L^1(G;F)\). One still can define the topological \(K\)-theory of \(L^1(G;F)\) and the assembly map in this context.

Conjecture 13.23 (Bost Conjecture). The assembly maps

\[
\begin{align*}
\text{asmb}_{A}^{G,C,L^1}(EG)_{n} : K^G_n(EG) & \to K_n(L^1(G;\mathbb{C})); \\
\text{asmb}_{A}^{G,R,L^1}(EG)_{n} : KO^G_n(EG) & \to KO_n(L^1(G;\mathbb{R}));
\end{align*}
\]

are isomorphism for all \(n \in \mathbb{Z}\).

In the sequel we only consider the complex case, the corresponding statements are true over \(\mathbb{R}\) as well.

Again the left hand side coincides with the left hand side of the Baum-Connes assembly map. There is a canonical map of Banach \(*\)-algebras \(q: L^1(G) \to C^*_{\ast}(G)\). We obtain a factorization of the Baum-Connes assembly map appearing in the Baum-Connes Conjecture [13.9].
Every group homomorphism $G \to H$ induces a homomorphism of Banach algebras $L^1(G) \to L^1(H)$ and the assembly map appearing in Conjecture 13.23 is natural in G.

The disadvantage of $L^1(G)$ is however that indices of operators tend to take values in the topological K-theory of the group C^*-algebras, not in $K_n(L^1(G))$. Moreover the representation theory of G is closely related to the group C^*-algebra, whereas the relation to $L^1(G)$ is not well understood.

There is also a version of the Bost Conjecture with coefficients in a C^*-algebra:

\[\text{asmb}_{A}^{G, C}(EG) \cdot : K_n^G(EG) \to K_n^*(L^1(G)) \]

For more information about the Bost Conjecture 13.23 we refer for instance to [71, 542, 544, 708, 709, 831].

13.5.3 The Strong and the Integral Novikov Conjecture

We mention the following conjectures which actually follow from the Baum-Connes Conjecture 13.9.

Conjecture 13.26 (Strong Novikov Conjecture). A group G satisfies the **Strong Novikov Conjecture** if the assembly maps appearing in (9.42) or (9.43)

\[\text{asmb}_{A}^{G, C}(BG) \cdot : K_n(BG) \to K_n(C^*_r(G; C)) ; \]

\[\text{asmb}_{A}^{G, R}(BG) \cdot : KO_n(BG) \to KO_n(C^*_r(G; R)) , \]

are rationally injective for all $n \in \mathbb{Z}$.

Conjecture 13.27 (Integral Novikov Conjecture).

A torsionfree group G satisfies the **Integral Novikov Conjecture** if the assembly map appearing in (9.42) or (9.43) are injective for all $n \in \mathbb{Z}$.

The assembly maps appearing in the Integral Novikov Conjecture 13.26 agree with the assembly maps appearing in the Baum-Connes Conjecture for torsionfree groups.

The Integral Novikov Conjecture makes only sense for torsionfree groups.

Exercise 13.28. Find a finite group G for which there cannot be an injective map from $K_1(BG)$ to $K_1(C^*_r(G))$.

Proof. The implication that the Baum-Connes Conjecture 13.9 implies the Strong Novikov Conjecture 13.26 follows from Lemma 12.31. For proofs that the Strong Novikov Conjecture 13.26 implies the Novikov Conjecture 8.134 we refer to Kasparov [507, §9], [499] or Kaminker-Miller [486]. □

13.5.4 The Coarse Baum Connes Conjecture

We briefly explain the Coarse Baum-Connes Conjecture, a variant of the Baum-Connes Conjecture, which applies to metric spaces and not only to groups. Its importance lies in the fact that isomorphism results about the Coarse Baum-Connes Conjecture can be used to prove injectivity results about the classical assembly map for topological K-theory, see Theorem 15.15.

Let X be a metric space which is proper, i.e., closed balls are compact. Let H_X a separable Hilbert space with a faithful nondegenerate $*$-representation of $C_0(X)$. Let $T: H_X \to H_X$ be a bounded linear operator. Its support $\text{supp} T \subset X \times X$ is defined as the complement of the set of all pairs (x, x'), for which there exist functions ϕ and $\phi' \in C_0(X)$ such that $\phi(x) \neq 0$, $\phi'(x') \neq 0$ and $\phi'T\phi = 0$. The operator T is said to be a finite propagation operator, if there exists a constant α such that $d(x, x') \leq \alpha$ for all pairs in the support of T. The operator is said to be locally compact if ϕT and $T\phi$ are compact for every $\phi \in C_0(X)$. An operator is called pseudolocal if $\phi T \psi$ is a compact operator for all pairs of continuous functions ϕ and ψ with compact and disjoint supports.

The Roe-algebra $C^*(X)$ is the operator-norm closure of the $*$-algebra of all locally compact finite propagation operators on H_X. The algebra $D^*(X)$ is the operator-norm closure of the pseudolocal finite propagation operators. One can show that the topological K-theory of the quotient $K_*(D^*(X)/C^*(X))$ agrees with K-homology $K_{*-1}(X)$. A metric space is called uniformly contractible if for every $R > 0$ there exists $S > R$ such that for every $x \in X$ the inclusion of balls $B_R(x) \to B_S(x)$ is nullhomotopic. For a uniformly contractible proper metric space the coarse assembly map $K_n(X) \to K_n(C^*(X))$ is the boundary map in the long exact sequence associated to the short exact sequence of C^*-algebras

$$0 \to C^*(X) \to D^*(X) \to D^*(X)/C^*(X) \to 0.$$

For general metric spaces one first approximates the metric space by spaces with nice local behavior, compare [709].
For simplicity we only explain the case, where X is a discrete metric space. Let $P_d(X)$ be the Rips complex for a fixed distance d, i.e., the simplicial complex with vertex set X, where a simplex is spanned by every collection of points in which every two points are a distance less than d apart. Equip $P_d(X)$ with the spherical metric, compare [834].

A discrete metric space has bounded geometry if for each $r > 0$ there exists a natural number $N(r)$ such that for all x in X the ball of radius r centered at $x \in X$ contains at most $N(r)$ elements.

Conjecture 13.30 (Coarse Baum-Connes Conjecture). Let X be a discrete metric space of bounded geometry. Then for $n \in \mathbb{Z}$ the coarse assembly map

$$\text{colim}_{d \to \infty} K_n(P_d(X)) \to \text{colim}_{d \to \infty} K_n(C^*(P_d(X))) \cong K_n(C^*(X))$$

is an isomorphism.

A counterexample to the surjectivity part is constructed in [834, Section 6]. The injectivity part of this conjecture is false if one drops the bounded geometry hypothesis, see [284, 935].

The Coarse Baum-Connes Conjecture for a finitely generated discrete group G (considered as a metric space) can be interpreted as a case of the Baum-Connes Conjecture 13.11 with coefficients for the group G with a certain specific choice of coefficients, see [939].

Further information about the coarse Baum-Connes Conjecture can be found for instance in [214, 352, 370, 371, 435, 436, 438, 690, 769, 923, 924, 934, 935, 936, 933].

13.6 Inheritance Properties of the Baum-Connes Conjecture

Similar to the Farrell-Jones Conjecture, the Baum-Connes Conjecture 13.11 with coefficients has much better inheritance properties than the Baum-Connes Conjecture 13.9. Namely, we have

Theorem 13.31 (Inheritance properties of the Baum-Connes Conjecture with coefficients).

(i) Passing to subgroups

Let $H \subseteq G$ be an inclusion of groups. If G satisfies the Baum-Connes Conjecture 13.11 with coefficients, then H satisfies the Baum-Connes Conjecture 13.11 with coefficients;

(ii) Group extensions

Let $1 \to K \to G \xrightarrow{p} Q \to 1$ be an extension of groups. Suppose that for any finite subgroup $H \subseteq Q$ the group $p^{-1}(H)$ satisfies the Baum-Connes
Conjecture 13.11 with coefficients and that the group Q satisfies the Baum-Connes Conjecture 13.11 with coefficients.

Then G satisfies the Baum-Connes Conjecture 13.11 with coefficients;

(iii) Passing to finite direct products

If the groups G_0 and G_1 satisfy the Baum-Connes Conjecture 13.11 with coefficients, then $G_0 \times G_1$ satisfies the Baum-Connes Conjecture 13.11 with coefficients;

(iv) Directed unions

Let G be a union of the directed system of subgroups $\{G_i \mid i \in I\}$.

If each group G_i satisfies the Baum-Connes Conjecture 13.11 with coefficients, then G satisfies the Baum-Connes Conjecture 13.11 with coefficients;

(v) Actions on trees

Suppose that G acts on a tree without inversion. Assume that the Baum-Connes Conjecture 13.11 with coefficients holds for the stabilizers of any of the vertices.

Then the Baum-Connes Conjecture 13.11 with coefficients holds for G;

(vi) Amalgamated free products

Let G_0 be a subgroup of G_1 and G_2 and G be the amalgamated free product $G = G_1 \star_{G_0} G_2$. Suppose G_i satisfies the Baum-Connes Conjecture 13.11 with coefficients for $i = 0, 1, 2$.

Then G satisfies Baum-Connes Conjecture 13.11 with coefficients;

(vii) HNN extension

Let G be an HN extension of the group H. Suppose that G satisfies the Baum-Connes Conjecture 13.11 with coefficients.

Then G satisfies the Baum-Connes Conjecture 13.11 with coefficients;

Proof. (i) This has been stated in [97], a proof can be found for instance in [198, Theorem 2.5].

(ii) See [705, Theorem 3.1].

(iii) This follows from assertion (ii).

(iv) See [71, Theorem 1.8 (ii)].

(v) This is proved by Oyono-Oyono [706, Theorem 1.1].

(vi) and (vii) These are special case of assertion (vi).

Exercise 13.32. Show that the Baum-Connes Conjecture 13.11 with coefficients holds for any abelian group and any free group.

Exercise 13.33. Let G be the fundamental group of the orientable closed surface of genus $g \geq 1$. Show

$$K_n(C^*_r(G; \mathbb{C})) = \begin{cases} \mathbb{Z}^2 & n \text{ is even;} \\ \mathbb{Z}^g & n \text{ is odd.} \end{cases}$$
Remark 13.34 (The Baum-Connes Conjecture with coefficients is not compatible with colimits in general). The Baum-Connes Conjecture with coefficients is not compatible with colimits in general. This is in contrast to the Full Farrell-Jones Conjecture [12.23] see Theorem [12.24] (iv) and to the Bost Conjecture [13.25] with coefficients, see [11] Theorem 1.8 (i)]. The Baum-Connes Conjecture [13.11] with coefficients is known for hyperbolic groups, see [54, 831]. Now let G be a colimit of a directed system of hyperbolic groups $\{G_i | i \in I\}$. Suppose that the Baum-Connes Conjecture [13.11] with coefficients passes to colimits of directed systems of groups. Then the Baum-Connes Conjecture [13.11] with coefficients holds for G as well. However, there exists a group G which is a colimit of hyperbolic groups and contains appropriate expanders so that that [434] applies and hence the Baum-Connes Conjecture [13.11] with coefficients does not hold for G. The construction of such a group is described in [41, 703].

Remark 13.35 (The Farrell-Jones Conjecture and actions on trees). The inheritance properties of the Baum-Connes Conjecture [13.11] with coefficients for actions on trees, see Theorem [13.31] (v), is very useful. It does not hold for the Full Farrell-Jones Conjecture [12.23]. The main reason is that in the Baum-Connes setting the family \mathcal{FLN} suffices, whereas in the Farrell-Jones setting we have to use the family \mathcal{VCY}, since in the Farrell-Jones setting Nil-phenomenons occur which are not present in the Baum-Connes setting. Nevertheless, some partial results about this question in the Farrell-Jones setting can be found in [75]. Alternatively, one uses actions on trees to compute $H_n^G(E_{\mathcal{FLN}}(G); K_R)$, see Section [14.7], and treats the relative group $H_n^G(E_{\mathcal{FLN}}(G) \to E_{\mathcal{VCY}}(G); K_R)$ separately, for which the results of Section [12.7] are very useful. Thanks to the splitting results of Section [12.7] one can put these two computations together to get a full description of $H_n^G(E_{\mathcal{VCY}}(G); K_R)$. The analogous remark applies to L-theory.

Remark 13.36 (Passing to overgroups of finite index). It is not known whether the Baum-Connes Conjecture [13.11] with coefficients passes to overgroups of finite index. The same is true for the K- and L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories (with involution), see Conjecture [12.11] and Conjecture [12.16]. This was the reason why we have introduced in Section [12.4] the versions “with finite wreath products”. One can do the same in the Baum-Connes setting.

13.7 Reducing the Family of Subgroups for the Baum-Connes Conjecture

The following result is proved in [76] Theorem 0.5] based on a Completion Theorem, see [202] Theorem 6.5] and a Universal Coefficient Theorem, see [128] 471]. An argument for the complex case using equivariant Euler
classes is given by Mislin and Matthey [637] for the complex case. It is not clear to us whether it is possible to extend the methods of [637] to the real case.

Theorem 13.37 (Reducing the family of subgroups for the Baum-Connes Conjecture). For any group \(G \) the relative assembly maps

\[
K^n_\mathbb{G}(E_{\mathcal{FCY}}(G)) \to K^n_\mathbb{G}(E_{\mathcal{FIN}}(G));
\]

\[
KO^n_\mathbb{G}(E_{\mathcal{FCY}}(G)) \to KO^n_\mathbb{G}(E_{\mathcal{FIN}}(G)),
\]

are bijective for all \(n \in \mathbb{Z} \), where \(\mathcal{FCY} \) is the family of finite cyclic subgroups.

Remark 13.38 (\(\mathcal{FCY} \) is the smallest family for the Baum-Connes Conjecture). Let \(C \) be a finite cyclic group and \(\mathcal{F} \) be a family of subgroups of \(C \). Then the assembly map

\[
K^0_C(E_F(C)) \to K^0_C(C/C) = R_C(C)
\]

is surjective if and only if \(\mathcal{F} \) consists of all subgroups. This follows from [586, Theorem 0.7 and Lemma 3.4] since they predict that the homomorphism induced by the various inclusions

\[
\bigoplus_{D \in \mathcal{F}} R_C(D) \to R_C(C)
\]

is rationally surjective and hence \(C \) must be contained in \(\mathcal{F} \).

Let \(\mathcal{C} \) be a class of groups which is closed under taking subgroups and passing to isomorphic groups. Examples are the classes of finite cyclic groups or of finite groups. Given a group \(G \), let \(\mathcal{C}(G) \) be the family of subgroups of \(G \) which belong to \(G \). Suppose that for any group \(G \) the assembly map

\[
K^n_\mathbb{G}(E_{\mathcal{C}(G)}(G)) \to K^n_\mathbb{G}(G/G)
\]

is bijective. The considerations above imply that \(\mathcal{C} \) has to contain all finite cyclic subgroups. So, roughly speaking, \(\mathcal{FCY} \) is the smallest family for which one can hope that the Baum-Connes Conjecture [13.9] is true for all groups.

13.8 Applications of the Baum-Connes Conjecture

The Baum-Connes Conjecture for torsionfree groups [9.44] follows from the Baum-Connes Conjecture [13.9], see Remark [13.14], and implies, see Subsections [9.4.1] and [9.4.2]

- **Trace Conjecture** [9.56] for torsionfree groups
 For a torsionfree group \(G \) the image of
\(\text{tr}_{C^*_r(G)} : K_0(C^*_r(G)) \to \mathbb{R} \)

consists of the integers.

- **Kadison Conjecture** [9.52]
 If \(G \) is a torsionfree group, then the only idempotent elements in \(C^*_r(G) \) are 0 and 1.

The Baum-Connes Conjecture [13.9] implies by Theorem [13.29]

- **Strong Novikov Conjecture** [13.26]
 The assembly maps

 \[
 \text{asmb}^{G,C}(BG)_* : K_n(BG) \to K_n(C^*_r(G; \mathbb{C})); \\
 \text{asmb}^{G,R}(BG)_* : KO_n(BG) \to KO_n(C^*_r(G; \mathbb{R})).
 \]

of (9.42) and (9.43) are rationally injective for all \(n \in \mathbb{Z} \).

The strong Novikov Conjecture [13.26] (and hence also the Baum-Connes Conjecture [13.9]) implies, see Subsection 9.4.3,

- **Zero-in-the-spectrum Conjecture** [9.55]
 If \(\tilde{M} \) is the universal covering of an aspherical closed Riemannian manifold \(M \), then zero is in the spectrum of the minimal closure of the \(p \)th Laplacian on \(\tilde{M} \) for some \(p \in \{0, 1, \ldots, \dim M\} \).

Moreover, we have already shown in Theorem [13.29] that the Baum-Connes Conjecture [13.9] implies

- **Novikov Conjecture** [8.134]
 Higher signatures are homotopy invariant.

Next we deal with some other conjectures which follows from the Baum-Connes Conjecture.

13.8.1 The Modified Trace Conjecture

Denote by \(\Lambda^G \) the subring of \(\mathbb{Q} \) which is obtained from \(\mathbb{Z} \) by inverting all orders \(|H| \) of finite subgroups \(H \) of \(G \), i.e.,

\[
\Lambda^G = \mathbb{Z} \left[|H|^{-1} \mid H \subset G, |H| < \infty \right].
\]

The following conjecture generalizes Conjecture [9.50] to the case where the group need no longer be torsionfree. For the standard trace see (9.48).

Conjecture 13.40 (Trace Conjecture, modified). Let \(G \) be a group. Then the image of the homomorphism induced by the standard trace
13.8 Applications of the Baum-Connes Conjecture

\[(13.41) \quad \text{tr}_{C_r^* (G)} : K_0 (C_r^* (G)) \to \mathbb{R}\]

is contained in \(A^G\).

The following result is proved in [586, Theorem 0.3].

Theorem 13.42. Let \(G\) be a group. Then the image of the composite

\[
K_0^G (E_{FIN} (G)) \otimes_\mathbb{Z} A^G \xrightarrow{\text{asmb}_{G, \mathbb{C}} (E_G) \otimes \text{id}} K_0 (C_r^* (G)) \otimes_\mathbb{Z} A^G \xrightarrow{\text{tr}_{C_r^* (G)}} \mathbb{R}
\]

is \(A^G\). Here \(\text{asmb}^{G, \mathbb{C}} (E_G)_n\) is the map appearing in the Baum-Connes Conjecture 13.9. In particular the Baum-Connes Conjecture 13.9 implies the Modified Trace Conjecture 13.40.

The original version of the Trace Conjecture due to Baum and Connes [96, page 21] makes the stronger statement that the image of \(\text{tr}_{C_r^* (G)} : K_0 (C_r^* (G)) \to \mathbb{R}\) is the additive subgroup of \(\mathbb{Q}\) generated by all numbers \(\frac{1}{|H|}\), where \(H \subset G\) runs through all finite subgroups of \(G\). Roy has constructed a counterexample to this version in [796] based on her article [797]. The examples of Roy do not contradict the Modified Trace Conjecture 13.40 or the Baum-Connes Conjecture 13.9.

Exercise 13.43. The \(G\) be a finite group. Show that the image of the trace map \(\text{tr}_{C_r^* (G)} : K_0 (C_r^* (G)) \to \mathbb{R}\) is \(\{ n \cdot |G|^{-1} \mid n \in \mathbb{Z} \}\).

13.8.2 The Stable Gromov-Lawson-Rosenberg Conjecture

The Stable Gromov-Lawson-Rosenberg Conjecture is a typical conjecture relating Riemannian geometry to topology. It is concerned with the question when a given manifold admits a metric of positive scalar curvature. It is related to the real version of the Baum-Connes Conjecture 13.9.

Let \(\Omega_n^{\text{Spin}} (BG)\) be the bordism group of closed Spin-manifolds \(M\) of dimension \(n\) with a reference map to \(BG\). Given an element \([u : M \to BG] \in \Omega_n^{\text{Spin}} (BG)\), we can take the \(C_r^* (G; \mathbb{R})\)-valued index of the equivariant Dirac operator associated to the \(G\)-covering \(\overline{M} \to M\) determined by \(u\). Thus we get a homomorphism

\[(13.44) \quad \text{ind}_{C_r^* (G; \mathbb{R})} : \Omega_n^{\text{Spin}} (BG) \to KO_n (C_r^* (G; \mathbb{R})).\]

A Bott manifold is any simply connected closed Spin-manifold \(B\) of dimension 8 whose A-genus \(\tilde{A}(B)\) is 1. We fix such a choice, the particular choice does not matter for the sequel. Notice that \(\text{ind}_{C_r^* (\{1\}, \mathbb{R})} (B) \in KO_8 (\mathbb{R}) \cong \mathbb{Z}\) is a generator and the product with this element induces the Bott periodicity isomorphisms \(KO_n (C_r^* (G; \mathbb{R})) \xrightarrow{\sim} KO_{n+8} (C_r^* (G; \mathbb{R})).\) In particular
The Baum-Connes Conjecture

\[\text{ind}_{C^*_{r}(G;\mathbb{R})}(M) = \text{ind}_{C^*_{r}(G;\mathbb{R})}(M \times B), \]

if we identify \(KO_n(C^*_{r}(G;\mathbb{R})) = KO_{n+4}(C^*_{r}(G;\mathbb{R})) \) via Bott periodicity.

Conjecture 13.46 (Stable Gromov-Lawson-Rosenberg Conjecture).
Let \(M \) be a connected closed Spin-manifold of dimension \(n \geq 5 \). Let \(u_M : M \to B\pi_1(M) \) be the classifying map of its universal covering. Then \(M \times B^k \) carries for some integer \(k \geq 0 \) a Riemannian metric with positive scalar curvature if and only if

\[\text{ind}_{C^*_{r}(\pi_1(M);\mathbb{R})}([M, u_M]) = 0 \in KO_n(C^*_{r}(\pi_1(M);\mathbb{R})). \]

If \(M \) carries a Riemannian metric with positive scalar curvature, then the index of the Dirac operator must vanish by the Bochner-Lichnerowicz formula \[772\]. The converse statement that the vanishing of the index implies the existence of a Riemannian metric with positive scalar curvature is the hard part of the conjecture. The following result is due to Stolz. A sketch of the proof can be found in \[844\], Section 3, details are announced to appear in a different paper.

Theorem 13.47 (The Baum-Connes Conjecture implies the Stable Gromov-Lawson Conjecture). If the assembly map for the real version of the Baum-Connes Conjecture \[13.9\] is injective for the group \(G \), then the Stable Gromov-Lawson-Rosenberg Conjecture \[13.46\] is true for all closed Spin-manifolds of dimension \(\geq 5 \) with \(\pi_1(M) \cong G \).

The requirement \(\dim(M) \geq 5 \) is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur. The unstable version of this conjecture says that \(M \) carries a Riemannian metric with positive scalar curvature if and only if \(\text{ind}_{C^*_{r}(\pi_1(M);\mathbb{R})}([M, u_M]) = 0 \). Schick \[809\] constructs counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau, see also \[291\]. There are counterexamples with \(\pi \cong \mathbb{Z}^4 \times \mathbb{Z}/3 \). However for appropriate \(\rho : \mathbb{Z}/3 \to \text{aut}(\mathbb{Z}^4) \) the unstable version does hold for \(\pi \cong \mathbb{Z}^4 \times \rho \mathbb{Z}/3 \) and \(\dim(M) \geq 5 \), see \[254\], Theorem 0.7 and Remark 0.9. More infinite groups, for which the unstable version holds, are presented in \[454\], Theorem 1.7.

Since the Baum-Connes Conjecture \[13.9\] is true for finite groups (for the trivial reason that \(E_{\text{AS}}(G) = \{ \bullet \} \) for finite groups \(G \)), Theorem \[13.47\] implies that the Stable Gromov-Lawson Conjecture \[13.46\] holds for finite fundamental groups, see also \[784\]. It is not known at the time of writing whether the unstable version is true for finite fundamental groups.

The index map appearing in \[13.44\] can be factorized as a composite

\[\text{ind}_{C^*_{r}(G;\mathbb{R})} : \Omega_{n}^{\text{Spin}}(BG) \xrightarrow{D} KO_n(BG) \xrightarrow{\text{asmb}^{G,\mathbb{C}}(BG)} KO_n(C^*_{r}(G;\mathbb{R})), \]

\[(13.48) \]
where D sends $[M, u]$ to the class of the G-equivariant Dirac operator of the G-manifold \overline{M} given by u and $\text{asmb}^{G, \mathbb{C}}(BG)_n$ is the real version of the classical assembly map. The homological Chern character defines an isomorphism

$$KO_n(BG) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \bigoplus_{p \in \mathbb{Z}} H_{n+4p}(BG; \mathbb{Q}).$$

Recall that associated to M there is the \hat{A}-class

$$\hat{A}(M) \in \prod_{p \geq 0} H^p(M; \mathbb{Q})$$

which is a certain polynomial in the Pontrjagin classes. The map D appearing in (13.48) sends the class of $u: M \to BG$ to $u_*(\hat{A}(M) \cap [M]_\mathbb{Q})$, i.e., the image of the Poincaré dual of $\hat{A}(M)$ under the map induced by u in rational homology. Hence $D([M, u]) = 0$ if and only if $u_*(\hat{A}(M) \cap [M]_\mathbb{Q})$ vanishes. For $x \in \prod_{k \geq 0} H^k(BG; \mathbb{Q})$ define the higher \hat{A}-genus of (M, u) associated to x to be

$$(13.50) \quad \hat{A}_x(M, u) = \langle \hat{A}(M) \cup u^*x, [M]_\mathbb{Q} \rangle = \langle x, u_*(\hat{A}(M) \cap [M]_\mathbb{Q}) \rangle \in \mathbb{Q}.$$

The vanishing of $\hat{A}(M)$ is equivalent to the vanishing of all higher \hat{A}-genera $\hat{A}_x(M, u)$. The following conjecture is a weak version of the Stable Gromov-Lawson-Rosenberg Conjecture.

Conjecture 13.51 (Homological Gromov-Lawson-Rosenberg Conjecture). Let G be a group. Then for any closed Spin-manifold M, which admits a Riemannian metric with positive scalar curvature, the \hat{A}-genus $\hat{A}_x(M, u)$ vanishes for all maps $u: M \to BG$ and elements $x \in \prod_{k \geq 0} H^k(BG; \mathbb{Q})$.

From the discussion above we obtain the following result.

Lemma 13.52. If the assembly map

$$KO_n(BG) \otimes_{\mathbb{Z}} \mathbb{Q} \to KO_n(C^*_r(G; \mathbb{R})) \otimes_{\mathbb{Z}} \mathbb{Q}$$

is injective for all $n \in \mathbb{Z}$, then the Homological Gromov-Lawson-Rosenberg Conjecture [13.51] holds for G.

The following conjecture is due to Gromov-Lawson [395], page 313.

Conjecture 13.53 (Aspherical closed manifolds carry no Riemannian metric with positive scalar curvature). An aspherical closed manifold carries no Riemannian metric with positive scalar curvature.

Conjecture [13.53] is true in dimensions 4 and 5 by Chodosh-Li [216] and Gromov [394].
Lemma 13.54. Let M be an aspherical closed Spin-manifold whose fundamental group satisfies the Homological Gromov-Lawson-Rosenberg Conjecture [13.51].

Then M satisfies Conjecture 13.53, i.e., M carries no Riemannian metric with positive scalar curvature.

Proof. Suppose M carries a Riemannian metric of positive scalar curvature. Since M is aspherical, we can take $M = BG$ for $G = \pi_1(M)$ and $f = \text{id}_G$ in Conjecture 13.51. Since $\hat{A}(M)_0 = 1$, we get for all $x \in H^{\dim(M)}(M; \mathbb{Q})$ that $\langle x, [M] \rangle = 0$ holds, a contradiction. \Box

Exercise 13.55. Let $F \to M \to S^1$ be a fiber bundle such that F is an orientable closed surface and M is a closed spin-manifold. Show that M carries a Riemannian metric with positive scalar curvature if and only if F is S^2.

The (moduli) space of metrics of positive scalar curvature of closed spin manifolds is studied in [136, 137, 236, 293, 416, 813].

13.8.3 L^2-Rho-Invariants and L^2-Signatures

Let M be an orientable connected closed Riemannian manifold. Denote by $\eta(M) \in \mathbb{R}$ the eta-invariant of M and by $\eta^{(2)}(M) \in \mathbb{R}$ the L^2-eta-invariant of the $\pi_1(M)$-covering given by the universal covering $\tilde{M} \to M$. Let $\rho^{(2)}(M) \in \mathbb{R}$ be the L^2-rho-invariant which is defined to be the difference $\eta^{(2)}(\tilde{M}) - \eta(M)$. These invariants were studied by Cheeger and Gromov [212, 213]. They show that $\rho^{(2)}(M)$ depends only on the diffeomorphism type of M and is in contrast to $\eta(M)$ and $\eta^{(2)}(\tilde{M})$ independent of the choice of Riemannian metric on M. The following conjecture is taken from Mathai [636].

Conjecture 13.56 (Homotopy Invariance of the L^2-Rho-Invariant for Torsionfree Groups). If $\pi_1(M)$ is torsionfree, then $\rho^{(2)}(M)$ is a homotopy invariant.

Theorem 13.57 (Homotopy Invariance of $\rho^{(2)}(M)$). Let M be an oriented connected closed manifold of odd dimension such that $G = \pi_1(M)$ is torsionfree. Suppose that the assembly map $K_0(BG) \to K_0(C^*_\text{max}(G))$ for the maximal group C^*-algebra, see Subsection 13.5.1, is surjective.

Then $\rho^{(2)}(M)$ is a homotopy invariant.

Proof. This is proved by Keswani [521, 529]. \Box

Remark 13.58 (L^2-signature Theorem). Let X be a $4n$-dimensional Poincaré space over \mathbb{Q}. Let $\overline{X} \to X$ be a normal covering with torsionfree covering group G. Suppose that the assembly map $K_0(BG) \to K_0(C^*_\text{max}(G))$ for
the maximal group C^*-algebra is surjective see Subsection 13.5.1 or suppose that the rationalized assembly map for L-theory
\[
H_{4n}(BG; L^{(-\infty)}(\mathbb{Z})) \otimes_{\mathbb{Z}} \mathbb{Q} \to L_{4n}^{(-\infty)}(\mathbb{Z}G) \otimes_{\mathbb{Z}} \mathbb{Q}
\]
is an isomorphism. Then the following L^2-signature theorem is proved in Lück-Schick [613, Theorem 0.3]

\[(13.59) \quad \text{sign}^{(2)}(\overline{X}) = \text{sign}(X).\]

If one drops the condition that G is torsionfree this equality becomes false. Namely, Wall has constructed a finite Poincaré space X with a finite G covering $\overline{X} \to X$ for which $\text{sign}(\overline{X}) \neq |G| \cdot \text{sign}(X)$ holds, see [756, Example 22.28], [896, Corollary 5.4.1]. If X is a closed topological manifold, then (13.59) is true for all groups G, see [613, Theorem 0.2].

Remark 13.60. Chang-Weinberger [201] assign to an oriented connected closed $(4k-1)$-dimensional manifold M a Hirzebruch-type invariant $\tau^{(2)}(M) \in \mathbb{R}$ as follows. By a result of Hausmann [423] there is an oriented connected closed $4k$-dimensional smooth manifold W with $M = \partial W$ such that the inclusion $\partial W \to W$ induces an injection on the fundamental groups. Define $\tau^{(2)}(M)$ as the difference $\text{sign}^{(2)}(\tilde{W}) - \text{sign}(W)$ of the L^2-signature of the $\pi_1(W)$-covering given by the universal covering $\tilde{W} \to W$ and the signature of W. This is indeed independent of the choice of W. We conjecture that $\rho^{(2)}(M) = \tau^{(2)}(M)$ is always true. Chang-Weinberger [201] use $\tau^{(2)}$ to prove that, if $\pi_1(M)$ is not torsionfree, there are infinitely many diffeomorphically distinct smooth manifolds of dimension $4k + 3$ with $k \geq 1$, which are tangentially simple homotopy equivalent to M.

Suppose that the L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in the ring with involution is rationally true for $R = \mathbb{Z}$, i.e., the rationalized assembly map
\[
H_n(BG; L^{(-\infty)}(\mathbb{Z})) \otimes_{\mathbb{Z}} \mathbb{Q} \to L_n^{(-\infty)}(\mathbb{Z}G) \otimes_{\mathbb{Z}} \mathbb{Q}
\]
is an isomorphism for $n \in \mathbb{Z}$. We mention without proof that then $\tau^{(2)}(M)$ is a homotopy invariant.

Remark 13.61 (Obstructions for knots to be slice). Cochran-Orr-Teichner give in [218] new obstructions for a knot to be slice which are sharper than the Casson-Gordon invariants. They use L^2-signatures and the Baum-Connes Conjecture 13.9. We also refer to the survey article [217] about non-commutative geometry and knot theory.
13.9 Notes

The Baum-Connes Conjecture has also been formulated and proved for (not necessarily discrete) topological groups, see for instance [97, 100, 199, 544]. It is interesting for representation theory, see for instance [101].

The Baum-Connes assembly maps in terms of localizations of triangulated categories are considered in [461, 462, 463, 641, 642, 643].

Certain so called Cuntz-Lie C^*-algebras, see [240, 241], were classified in [566, Corollary 1.3]. The main difficulty is to compute the topological K-theory of these C^*-algebras which boils down to the computation of the topological C^*-algebra of certain crystallographic groups. This in turn leads via the Baum-Connes Conjecture to an open conjecture about group homology which was solved in the case needed for this application, see [557, 558].

Other classification results, whose proof uses the Baum-Connes Conjecture [13.9] can be found in [296, Theorem 0.1].

We propose that one should also construct a Baum-Connes assembly map for the Fréchet algebra $\mathcal{R}(G)$ associated to a group G. This will lead to the intriguing factorization of the Baum-Connes assembly map

$$K^G_n(EG) \to K_n(\mathcal{R}(G)) \to K_n(L^1(G)) \to K_n(C^*_r(G)).$$

There is some hope that the methods of proof for the K-theoretic Farrell-Jones Conjecture carry over to group Fréchet algebras. This would lead for instance to the proof of the bijectivity of $K^G_n(EG) \to K_n(\mathcal{R}(G))$ for (not necessarily cocompact) lattices in second countable locally compact Hausdorff groups with finitely many path components. Note that the Baum-Connes Conjecture [13.9] is open for $\text{SL}_n(\mathbb{Z})$ for $n \geq 3$.

For more information about the Baum-Connes Conjecture and its applications we refer for instance to [36, 97, 431, 439, 440, 441, 532, 538, 604, 666, 725, 781, 810, 875].

last edited on 25.11.2021
last compiled on March 21, 2022
name of texfile: ic
Chapter 14
The (Fibered) Meta- and Other
Isomorphism Conjectures

14.1 Introduction

In this section we deal with Isomorphism Conjectures in their most general form. Namely, given a G-homology theory H^G_* the Meta-Isomorphism Conjecture 14.2 predicts that, for a group G and a family \mathcal{F} of subgroups of G, the map induced by the projection $E_\mathcal{F}(G) \to G/G$

$$H^G_n(E_\mathcal{F}(G)) \to H^G_n(G/G)$$

is bijective for all $n \in \mathbb{Z}$.

If we take special examples for H^G_* and \mathcal{F}, then we obtain the Farrell-Jones Conjecture for a ring R (with involution), see Conjectures 12.1 and 12.4, and the Baum-Connes Conjecture 13.9. We will also introduced a Fibered Meta-Isomorphism Conjecture 14.8 which is more general and has much better inheritance properties, see Section 14.6. The versions of the Farrell-Jones Conjecture with coefficients in additive categories, see Conjectures 12.11 and 12.16 and the Baum-Connes Conjecture 13.11 with coefficients are automatically fibered, see Theorem 14.9 and hence have good inheritance properties.

The main tool to reduce the family of subgroups is the Transitivity Principle which we discuss in Section 14.5.

Section 14.7 is devoted to actions on trees and their implications such as the existence of Mayer-Vietoris sequences associated to amalgamated free products and Wang sequences associated to semidirect products with \mathbb{Z}, or more generally to HNN-extensions.

In Section 14.8 we pass to the special case, where the homology theory comes from a functor from spaces to spectra which respects weak homotopy equivalences and disjoint unions, and discuss inheritance properties in this framework.

By specifying the functor from spaces to spectra, we obtain the Farrell-Jones Conjecture for Waldhausen’s A-theory and for pseudoisotopy in Section 14.10. We also deal with topological Hochschild homology and cyclic homology in Section 14.11. We explain the Farrell-Jones Conjecture for homotopy K-theory in Section 14.12. The only instance, where we will consider not necessarily discrete groups is the Farrell-Jones Conjecture 14.78 for the algebraic K-theory of the Hecke algebra of a totally disconnected locally compact second countable Hausdorff group.
In Section 14.14 interesting relations between these conjectures are discussed, namely, between the Farrell-Jones Conjecture for the K-theory of groups rings, for A-theory and for pseudoisotopy, between the L-theoretic Farrell-Jones Conjecture and the Baum-Connes Conjecture, and between the Farrell-Jones Conjecture for K-theory and homotopy K-theory. We will briefly also relate the geometric surgery sequence in the topological category to an analytic surgery exact sequence.

14.2 The Meta-Isomorphism Conjecture

Let G be a (discrete) group. Let \mathcal{H}^G_* be a G-homology theory with values in A-modules for some commutative associative ring with unit A. Recall that it assigns to every G-CW-pair (X, A) and integer $n \in \mathbb{Z}$ a A-module $\mathcal{H}^G_n(X, A)$ such that the obvious generalization to G-CW-pairs of the axioms of a (non-equivariant generalized) homology theory for CW-complexes holds, i.e., G-homotopy invariance, the long exact sequence of a G-CW-pair, excision, and the disjoint union axiom are satisfied. The precise definition of a G-homology theory can be found in Definition 11.1 and of a G-CW-complex in Definition 10.2, see also Remark 10.3.

Recall that we have defined the notion of a family of subgroups of a group G in Definition 2.52, namely, to be a set of subgroups of G which is closed under conjugation with elements of G and passing to subgroups. Let \mathcal{F} be a family of subgroups of G. Denote by $E_{\mathcal{F}}(G)$ a model for the classifying G-CW-complex for the family \mathcal{F} of subgroups of G, i.e., a G-CW-complex $E_{\mathcal{F}}(G)$ whose isotropy groups belong to \mathcal{F} and for which for each $H \in \mathcal{F}$ the H-fixed point set $E_{\mathcal{F}}(G)^H$ is weakly contractible. Such a model always exists and is unique up to G-homotopy, see Definition 10.18 and Theorem 10.19.

The projection $pr: E_{\mathcal{F}}(G) \to G/G$ induces for all integers $n \in \mathbb{Z}$ a homomorphism of A-modules

\[(14.1) \quad \mathcal{H}^G_n(pr): \mathcal{H}^G_n(E_{\mathcal{F}}(G)) \to \mathcal{H}^G_n(G/G)\]

which is sometimes called assembly map.

Conjecture 14.2 (Meta-Isomorphism Conjecture). The group G satisfies the Meta-Isomorphism Conjecture with respect to the G-homology theory \mathcal{H}^G_* and the family \mathcal{F} of subgroups of G if the assembly map

$\mathcal{H}_n(pr): \mathcal{H}^G_n(E_{\mathcal{F}}(G)) \to \mathcal{H}^G_n(G/G)$

of (14.1) is bijective for all $n \in \mathbb{Z}$.

If we choose \mathcal{F} to be the family \mathcal{ALL} of all subgroups, then G/G is a model for $E_{\mathcal{ALL}}(G)$ and the Meta-Isomorphism Conjecture is obviously true. The point is to find an as small as possible family \mathcal{F}. The idea of the
Meta-Isomorphism Conjecture 14.2 is that one wants to compute \(H^G_n(G/G) \) which is the unknown and the interesting object, by assembling it from the values \(H^G_n(G/H) \) for \(H \in \mathcal{F} \), which are usually much more accessibly since the structure of the groups \(H \) is easy. For instance \(\mathcal{F} \) could be the family \(\mathcal{FN} \) of all finite subgroups or the family \(\mathcal{VCY} \) of all virtually cyclic subgroups.

The various Isomorphism Conjectures are now obtained by specifying the \(G \)-homology theory \(H^G_n \) and the family \(\mathcal{F} \). For instance, the \(K \)-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \(\mathbb{R} \) and the \(L \)-theoretic Farrell-Jones Conjecture 12.4 with coefficients in the ring with involution \(\mathbb{R} \) are equivalent to the Meta-Isomorphism Conjecture 14.2 if we choose \(\mathcal{F} \) to be \(\mathcal{VCY} \) and \(H^G_n \) to be \(H^G_n(_; \mathbb{K}_R) \) and \(H^G_n(_; \mathbb{L}_{(\infty)}) \). The analogous statement holds for the versions with coefficients in additive \(G \)-categories (with involutions), Conjectures 12.11, 12.16, and 13.11.

Exercise 14.3. Let \(H_\Lambda \) be an equivariant homology theory with values in \(\Lambda \)-modules in the sense of Definition 11.9. Fix a class of groups \(\mathcal{C} \) which is closed under isomorphisms, taking subgroups and taking quotients, e.g., the class of finite groups or the class of virtually cyclic subgroups. For a group \(G \) let \(\mathcal{C}(G) \) be the family of subgroups of \(G \) which belong to \(\mathcal{C} \). Then we obtain for each group \(G \) an assembly map induced by the projection \(E_{\mathcal{C}(G)}(G) \to G/G \).

\[
H^G_n(E_{\mathcal{C}(G)}(G)) \to H^G_n(G/G)
\]

Explain that using the induction structure of \(H_\Lambda \) we can turn the source and target to be functors from the category of groups to the category of \(\Lambda \)-modules such that the assembly maps yield a natural transformation of such functors.

14.3 The Fibered Meta-Isomorphism Conjecture

Given a group homomorphism \(\phi: K \to G \) and a family \(\mathcal{F} \) of subgroups of \(G \), define the family of subgroups of \(K \) by

\[
\phi^* \mathcal{F} := \{ H \subseteq K \mid \phi(H) \in \mathcal{F} \}.
\]

If \(\phi \) is an inclusion of subgroups, we also write

\[
\mathcal{F}|_K := \phi^* \mathcal{F} = \{ H \subseteq K \mid H \in \mathcal{F} \}.
\]

If \(\psi: H \to K \) is another group homomorphism, then
Exercise 14.7. Let $\phi: K \to G$ be a group homomorphism. Consider a family \mathcal{F} of subgroups of G and a G-CW-model $E\mathcal{F}(G)$. Show that its restriction to K by $\phi: K \to G$ is a K-CW-complex which is a model for $E_{\phi^*\mathcal{F}}(K)$.

Consider an equivariant homology theory \mathcal{H}_Γ^* over the group Γ with values in Λ-modules in the sense of Definition 11.83.

Conjecture 14.8 (Fibered Meta-Isomorphism Conjecture). A group (G, ξ) over Γ satisfies the Fibered Meta-Isomorphism Conjecture with respect to \mathcal{H}_Γ^* and the family \mathcal{F} of subgroups of G if for each group homomorphism $\phi: K \to G$ the group K satisfies the Meta-Isomorphism Conjecture 14.2 with respect to the K-homology theory \mathcal{H}_K^* and the family $\phi^*\mathcal{F}$ of subgroups of K.

14.4 The Farrell-Jones Conjecture with Coefficients in Additive G-Categories is Fibered

We will see that it is important for inheritance properties to pass to the fibered version. It turns out that the fibered version is automatically built into the versions of the Farrell-Jones Conjecture with coefficients in additive G-categories (with involution).

Theorem 14.9 (The Farrell-Jones Conjecture with coefficients in additive G-categories (with involutions) is automatically fibered).

(i) Let $\phi: K \to G$ be a group homomorphism. Let \mathcal{F} be a family of subgroups of G. Suppose that the assembly map

$$H^G_n(pr): H^G_n(E\mathcal{F}(G); K_A) \to H^G_n(G/G; K_A) = \pi_n(K_A(I(G)))$$

is bijective for every $n \in \mathbb{Z}$ and every additive G-category A.

Then the assembly map

$$H^K_n(pr): H^K_n(E_{\phi^*\mathcal{F}}(K); K_B) \to H^K_n(K/K; K_B) = \pi_n(K_B(I(K)))$$

is bijective for every $n \in \mathbb{Z}$ and every additive K-category B;

(ii) Suppose that G satisfies the K-theoretic Farrell-Jones Conjecture 12.11 with coefficients in additive G-categories.

Then the Fibered Meta-Isomorphism Conjecture 14.8 holds for the group (G, \id_G) over G, the family $\mathcal{V}\mathcal{C}\mathcal{Y}$ and the equivariant homology theory $H^K_*(--; K_A)$ over G for every additive G-category A;

(iii) Let $\phi: K \to G$ be a group homomorphism. Let \mathcal{F} be a family of subgroups of G. Suppose that the assembly map

$$\psi^*(\phi^*\mathcal{F}) = (\phi \circ \psi)^*\mathcal{F}.$$
14.5 Transitivity Principles

\[H_n^G(\text{pr}): H_n^G(E_F(G); L_A^{(-\infty)}) \to H_n^G(G/G; L_A^{(-\infty)}) = \pi_n(L_A^{(-\infty)}(I(G))) \]

is bijective for every \(n \in \mathbb{Z} \) and every additive \(G \)-category with involution \(A \).

Then the assembly map

\[H_n^K(\text{pr}): H_n^K(E_{\phi,F}(G); L_B^{(-\infty)}) \to H_n^K(K/K; L_B^{(-\infty)}) = \pi_n(L_B^{(-\infty)}(I(K))) \]

is bijective for every \(n \in \mathbb{Z} \) and every additive \(K \)-category with involution \(B \);

(iii) Suppose that \(G \) satisfies the \(L \)-theoretic Farrell-Jones Conjecture \[12.16\] with coefficients in additive \(G \)-categories with involution.

Then the Fibered Meta-Isomorphism Conjecture \[14.8\] holds for the group \((G, \text{id}_G) \) over \(G \), the family \(\mathcal{VCY} \) and the equivariant homology theory \(H_n^G(-; L_A^{(-\infty)}) \) over \(G \) for every additive \(G \)-category with involution \(A \);

Proof. \[\square\] See [84, Corollary 4.3].

(i) This follows from assertion (i) by taking \(B = \phi^*A \) since a direct inspection of the definitions in [77, Section 9] shows that the \(K \)-homology theory obtained by taking in \(H_n^K(-; K_A) \) the variable \(? \) to be \(\phi \) is the same as the \(K \)-homology theory \(H_n^K(-; K_{\phi^*A}) \) associated to the additive \(K \)-category \(\phi^*A \).

This follows from (iii) by the same proof as it appears in assertion (ii).

It is useful to have the Fibered Meta Conjecture \[14.8\] available, since there are other situations, where it is not known to formulate it with adequate coefficients, as it is possible in the Farrell-Jones setting for \(K \)- and \(L \)-theory.

14.5 Transitivity Principles

In this subsection we treat only equivariant homology theories \(H_n^\gamma \) to keep the notation and exposition simple. The generalizations to an equivariant homology theory over a group \(\Gamma \) are obvious, just equip each group occurring below with the appropriate reference map to \(\Gamma \).

Lemma 14.10. Let \(G \) be a group and let \(\mathcal{F} \) be a family of subgroups of \(G \). Let \(m \) be an integer. Let \(Z \) be a \(G \)-CW-complex. For \(H \subseteq G \) let \(\mathcal{F}|_H \) be the family of subgroups of \(H \) given by \(\{ L \subseteq H \mid L \in \mathcal{F} \} \). Suppose for each \(H \subseteq G \), which occurs as isotropy group in \(Z \), that the maps induced by the projection \(\text{pr}_H: E_{\mathcal{F}|_H}(H) \to H/H \)

\[H_n^H(\text{pr}_H): H_n^H(E_{\mathcal{F}|_H}(H)) \to H_n^H(H/H) \]

satisfy one of the following conditions
(i) They are bijective for \(n \in \mathbb{Z} \) with \(n \leq m \);

(ii) They are bijective for \(n \in \mathbb{Z} \) with \(n \leq m - 1 \) and surjective for \(n = m \).

Then the maps induced by the projection \(\text{pr}_2 : E_F(G) \times Z \to Z \)

\[\mathcal{H}_n^G(\text{pr}_2) : \mathcal{H}_n^G(E_F(G) \times Z) \to \mathcal{H}_n^G(Z) \]

satisfies the same condition.

Proof. We first prove the claim for finite dimensional \(G \)-CW-complexes by induction over \(d = \text{dim}(Z) \). The induction beginning \(\text{dim}(Z) = -1 \), i.e. \(Z = \emptyset \), is trivial. In the induction step from \((d - 1)\) to \(d \) we choose a \(G \)-pushout

\[
\begin{array}{ccc}
\prod_{i \in I_d} G/H_i \times S^{d-1} & \to & Z_{d-1} \\
\downarrow & & \downarrow \\
\prod_{i \in I_d} G/H_i \times D^d & \to & Z_d
\end{array}
\]

If we cross it with \(E_F(G) \), we obtain another \(G \)-pushout of \(G \)-CW-complexes.

The various projections induce a map from the Mayer-Vietoris sequence of the latter \(G \)-pushout to the Mayer-Vietoris sequence of the first \(G \)-pushout.

By the Five-Lemma (or its obvious variant, if we consider assumption (ii)) it suffices to prove that the following maps

\[
\begin{align*}
\mathcal{H}_n^G(\text{pr}_2) : \mathcal{H}_n^G(E_F(G) \times \prod_{i \in I_d} G/H_i \times S^{d-1}) & \to \mathcal{H}_n^G(\prod_{i \in I_d} G/H_i \times S^{d-1}) \\
\mathcal{H}_n^G(\text{pr}_2) : \mathcal{H}_n^G(E_F(G) \times Z_{d-1}) & \to \mathcal{H}_n^G(Z_{d-1}); \\
\mathcal{H}_n^G(\text{pr}_2) : \mathcal{H}_n^G(E_F(G) \times \prod_{i \in I_d} G/H_i \times D^d) & \to \mathcal{H}_n^G(\prod_{i \in I_d} G/H_i \times D^d),
\end{align*}
\]

satisfy condition (i) or (ii). This follows from the induction hypothesis for the first two maps. Because of the disjoint union axiom and \(G \)-homotopy invariance of \(\mathcal{H}_*^G \) the claim follows for the third map if we can show for any \(H \subseteq G \) which occurs as isotropy group in \(Z \) that the maps

\[
(14.11) \quad \mathcal{H}_n^G(\text{pr}_2) : \mathcal{H}_n^G(E_F(G) \times G/H) \to \mathcal{H}_n^G(G/H)
\]

satisfy condition (i) or (ii). The \(G \)-map

\[
G \times H \, \text{res}_G^H \, E_F(G) \to G/H \times E_F(G) \quad (g, x) \mapsto (gH, gx)
\]

is a \(G \)-homeomorphism where \(\text{res}_G^H \) denotes the restriction of the \(G \)-action to an \(H \)-action. Since \(F|_H = \{ K \cap H \mid K \in F \} \), the \(H \)-space \(\text{res}_G^H \, E_F(G) \) is a model for \(E_{F|_H}(H) \). We conclude from the induction structure that the map (14.11) can be identified with the map
\[H_n^H(K_H): H_n^H(E_{F|H}(H)) \to H_n^H(H/H) \]

which is satisfies condition \(i \) or \(ii \) by assumption. This finishes the proof in the case that \(Z \) is finite dimensional. The general case follows by a colimit argument using Lemma 11.5. \(\square \)

Theorem 14.12 (Transitivity Principle for equivariant homology). Suppose \(F \subseteq G \) are two families of subgroups of the group \(G \). Suppose for every \(H \in G \) that the maps induced by the projection

\[H_n^H(E_{F|H}(H)) \to H_n^H(H/H) \]

satisfy one of the following conditions

(i) They are bijective for \(n \in \mathbb{Z} \) with \(n \leq m \);
(ii) They are bijective for \(n \in \mathbb{Z} \) with \(n \leq m - 1 \) and surjective for \(n = m \).

Then the maps induced by the up to \(G \)-homotopy unique \(G \)-map \(\iota_{F \subseteq G}: E_F(G) \to E_G(G) \)

\[H_n^G(E_{F \subseteq G})(H) \to H_n^G(E_G(G)) \]

satisfy the same condition.

Proof. If we equip \(E_F(G) \times E_G(G) \) with the diagonal \(G \)-action, it is a model for \(E_{F}(G) \). Now apply Lemma 14.10 in the special case \(Z = E_G(G) \). \(\square \)

This implies the following transitivity principle for the Fibered Isomorphism Conjecture. At the level of spectra this transitivity principle is due to Farrell and Jones [332, Theorem A.10].

Theorem 14.13 (Transitivity Principle). Suppose \(F \subseteq G \) are two families of subgroups of \(G \).

(i) Assume that for every element \(H \in G \) the group \(H \) satisfies the Meta-Isomorphism Conjecture 14.2 or the Fibered Meta-Isomorphism Conjecture 14.8 respectively for \(F|_H \).

Then the group \(G \) satisfies the Meta-Isomorphism Conjecture 14.2 or the Fibered Meta-Isomorphism Conjecture 14.8 respectively with respect to \(G \) if and only if \(G \) satisfies the Meta-Isomorphism Conjecture 14.2 or the Fibered Meta-Isomorphism Conjecture 14.8 respectively with respect to \(F \);

(ii) The group \(G \) satisfies the Fibered Meta-Isomorphism Conjecture 14.8 with respect to \(G \) if \(G \) satisfies the Fibered Meta-Isomorphism Conjecture 14.8 respectively with respect to \(F \);

Proof. We first treat the (slightly harder) case of the Fibered Meta-Isomorphism Conjecture 14.8.

Consider a group homomorphism \(\phi: K \to G \). Then for every subgroup \(H \) of \(K \) we conclude

\[(\phi|_H)^*(F|_{\phi(H)}) = (\phi^* F)|_H \]
from (14.6), where \(\phi|_H : H \to \phi(H) \) is the group homomorphism induced by \(\phi \). For every element \(H \in \phi^*G \) the map

\[
\mathcal{H}_n^H(E(\phi|_H)^*(\mathcal{F}|_{\phi(H)})(H)) = \mathcal{H}_n^H(E_{\phi^*\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(H/H)
\]

is bijective for all \(n \in \mathbb{Z} \) by the assumption that the element \(\phi(H) \in G \) satisfies the Fibered Isomorphism Conjecture for \(\mathcal{F}|_{\phi(H)} \). Hence by Theorem 14.12 applied to the inclusion \(\phi^*\mathcal{F} \subseteq \phi^*G \) of families of subgroups of \(K \) we get an isomorphism

\[
\mathcal{H}_n^K(\iota_{\phi^*\mathcal{F} \subseteq \phi^*G}) : \mathcal{H}_n^K(E_{\phi^*\mathcal{F}}(K)) \xrightarrow{\cong} \mathcal{H}_n^K(E_{\phi^*G}(K)).
\]

Therefore the map \(\mathcal{H}_n^K(E_{\phi^*\mathcal{F}}(K)) \to \mathcal{H}_n^K(K/K) \) is bijective for all \(n \in \mathbb{Z} \) if and only if the map \(\mathcal{H}_n^K(E_{\phi^*G}(K)) \to \mathcal{H}_n^K(K/K) \) is bijective for all \(n \in \mathbb{Z} \).

The argument for the Meta-Isomorphism Conjecture 14.8 is analogous, just specialize the argument above to the case \(\phi = \text{id}_G \).

(ii) We want to apply assertion (i). We have to show that for every element \(H \in \mathcal{G} \) the group \(H \) satisfies the Fibered Meta-Isomorphism Conjecture 14.8 for \(\mathcal{F} \) and \(\mathcal{G} \). This follows from the elementary Lemma 14.16 below since \(\mathcal{F}|_H = i^*\mathcal{F} \) for the inclusion \(i : H \to G \).

Note that assertion (ii) of Theorem 14.13 is only formulated for the fibered version.

The Fibered Isomorphism Conjecture is also well behaved with respect to finite intersections of families of subgroups.

Lemma 14.14. Let \(G \) be a group and \(\mathcal{F} \) and \(\mathcal{G} \) be families of subgroups. Suppose that \(G \) satisfies the Fibered Meta-Isomorphism Conjecture 14.8 for both \(\mathcal{F} \) and \(\mathcal{G} \).

Then \(G \) satisfies the Fibered Meta-Isomorphism Conjecture 14.8 for the family \(\mathcal{F} \cap \mathcal{G} := \{ H \subseteq G \mid H \in \mathcal{F} \text{ and } H \in \mathcal{G} \} \).

Proof. Obviously \(\mathcal{F} \cup \mathcal{G} := \{ H \subseteq G \mid H \in \mathcal{F} \text{ or } H \in \mathcal{G} \} \) is a family of subgroups of \(G \).

Consider a group homomorphism \(\phi : K \to G \). We have to show that the Meta-Isomorphism Conjecture 14.2 holds for \(G \) with respect to \(\phi^*(\mathcal{F} \cap \mathcal{G}) \).

Choose \(G \)-\(CW \)-models \(E_{\mathcal{F} \cap \mathcal{G}}(G) \), \(E_{\mathcal{F}}(G) \) and \(E_{\mathcal{G}}(G) \) such that \(E_{\mathcal{F} \cap \mathcal{G}}(G) \) is a \(G \)-\(CW \)-subcomplex of both \(E_{\mathcal{F}}(G) \) and \(E_{\mathcal{G}}(G) \). This can be arranged by a mapping cylinder construction. Define a \(G \)-\(CW \)-complex

\[
X = E_{\mathcal{F}}(G) \cup_{E_{\mathcal{G}}(\mathcal{F} \cap \mathcal{G})} E_{\mathcal{G}}(G).
\]

For any subgroup \(H \subseteq G \) we get

\[
X^H = E_{\mathcal{F}}(G)^H \cup_{E_{\mathcal{G}}(\mathcal{F} \cap \mathcal{G})^H} E_{\mathcal{G}}(G)^H.
\]
14.6 Inheritance Properties of the Fibered Meta-Isomorphism Conjecture

If $E_{\mathcal{F}}(G)^H$ and $E_{\mathcal{G}}(G)^H$ are empty, the same is true for X^H. If $E_{\mathcal{F}}(G)^H$ is empty, then $E_{\mathcal{G}}(G)^H = X^H$. If $E_{\mathcal{G}}(G)^H$ is empty, then $E_{\mathcal{F}}(G)^H = X^H$. If $E_{\mathcal{F}}(G)^H$, $E_{\mathcal{G}}(G)^H$ and $E_{\mathcal{F},\mathcal{G}}(G)^H$ are weakly contractible, the same is true for X^H. Hence X is a model for $E_{\mathcal{F},\mathcal{G}}(G)$. If we apply restriction with ϕ, we get a decomposition of $E_{\phi^*(\mathcal{F},\mathcal{G})}(K) = \phi^* E_{\mathcal{F},\mathcal{G}}(G)$ as the union of $E_{\phi^* \mathcal{F}}(K) = \phi^* E_{\mathcal{F}}(G)$ and $E_{\phi^* \mathcal{G}}(K) = \phi^* E_{\mathcal{G}}(G)$ such that the intersection of $E_{\phi^* \mathcal{F}}(K)$ and $E_{\phi^* \mathcal{G}}(K)$ is $E_{\phi^* (\mathcal{F},\mathcal{G})}(K) = \phi^* E_{\mathcal{F},\mathcal{G}}(G)$. By assumption and by Theorem 14.13 (ii) the Fibered Meta-Isomorphism Conjecture [14.8] holds for G with respect to $\phi^*(\mathcal{F},\mathcal{G})$, $\phi^* \mathcal{F}$ and $\phi^* \mathcal{G}$. Using the Mayer-Vietoris sequence for the decomposition of $E_{\phi^* (\mathcal{F},\mathcal{G})}(K)$ above and the Five-Lemma, we conclude that Meta-Isomorphism Conjecture [14.2] holds for G with respect to $\phi^*(\mathcal{F},\mathcal{G})$. Since $\phi: K \to G$ is an arbitrary group homomorphism with target G, the group G satisfies the Fibered Meta-Isomorphism Conjecture [14.2] for the family $\mathcal{F} \cap \mathcal{G}$.

Exercise 14.15. Assume that the Fibered Meta-Isomorphism Conjecture [14.8] holds for $G = \mathbb{Z}$, the family $\mathcal{F} = \mathcal{F}\mathcal{I}\mathcal{N}$, and the equivariant homology theory $H^*_\Gamma(-; \mathbb{K}_R)$ for a given ring R.

Show that then we have $NK^\Gamma_n(RG) = 0$ for every group G and $n \in \mathbb{Z}$.

14.6 Inheritance Properties of the Fibered Meta-Isomorphism Conjecture

The Fibered Meta-Isomorphism Conjecture [14.8] has better inheritance properties than the Meta-Isomorphism Conjecture [14.2].

In this subsection we treat only equivariant homology theories H^*_Γ for simplicity. The generalizations to an equivariant homology theory over a group Γ are obvious.

Lemma 14.16. Let $\phi: K \to G$ be a group homomorphism and \mathcal{F} be a family of subgroups. If (G, \mathcal{F}) satisfies the Fibered Meta-Isomorphism Conjecture [14.8] then $(K, \phi^* \mathcal{F})$ satisfies the Fibered Meta-Isomorphism Conjecture [14.8].

Proof. If $\psi: L \to K$ is a group homomorphism, then $\psi^*(\phi^* \mathcal{F}) = (\phi \circ \psi)^* \mathcal{F}$ by (14.6).

Exercise 14.17. Fix a class of groups \mathcal{C} which is closed under isomorphisms and taking subgroups, e.g., the class of finite groups or the class of virtually cyclic subgroups. For a group G let $\mathcal{C}(G)$ be the family of subgroups of G which belong to \mathcal{C}. Suppose that the Fibered Meta-Isomorphism Conjecture [14.8] holds for $(G, \mathcal{C}(G))$. Let $H \subseteq G$ be a subgroup.
Lemma 14.18. Fix a class of groups \mathcal{C} which is closed under isomorphisms, taking subgroups and taking quotients, e.g., the class of finite groups or the class of virtually cyclic subgroups. For a group G take subgroups and take quotients, e.g., the class of finite groups or the class of virtually cyclic subgroups. For a group G let $\mathcal{C}(G)$ be the family of subgroups of G which belong to \mathcal{C}. Let $1 \to K \to G \xrightarrow{p} Q \to 1$ be an extension of groups. Suppose that $(Q, \mathcal{C}(Q))$ and $(p^{-1}(H), \mathcal{C}(p^{-1}(H)))$ for every $H \in \mathcal{C}(Q)$ satisfy the Fibered Meta-Isomorphism Conjecture [14.8].

Then $(G, \mathcal{C}(G))$ satisfies the Fibered Meta-Isomorphism Conjecture [14.8].

Proof. By Lemma [14.16] the pair $(G, p^*\mathcal{C}(Q))$ satisfies the Fibered Meta-Isomorphism Conjecture [14.8]. Obviously $\mathcal{C}(G) \subseteq p^*\mathcal{C}(Q)$. Because of the Transitivity Principle [14.13] it remains to show for each $L \in p^*\mathcal{C}(Q)$ that the pair $(L, \mathcal{C}(L))$ satisfies the Fibered Meta-Isomorphism Conjecture [14.8]. Since $L \subseteq p^{-1}(p(L))$ and $p(L) \in \mathcal{C}(Q)$ holds, we conclude from Exercise [14.17] that this follows from the assumption that $(p^{-1}(H), \mathcal{C}(p^{-1}(H)))$ satisfy the Fibered Meta-Isomorphism Conjecture [14.8] for every $H \in \mathcal{C}(Q)$.

Fix an equivariant homology theory H^* with values in Λ-modules. Let X be a G-CW-complex. Let $\alpha \colon H \to G$ be a group homomorphism. Denote by α^*X the H-CW-complex obtained from X by restriction with α. Recall that α_*Y denotes the induction of an H-CW-complex Y and is a G-CW-complex. The functors α_* and α^* are adjoint to one another. In particular the adjoint of the identity on α^*X is a natural G-map

$$f(X, \alpha) : \alpha_\ast \alpha^*X \to X.$$

(14.19)

It sends an element in $G \times \alpha \alpha^*X$ given by (g, x) to gx. Define the Λ-map

$$a_n = a_n(X, \alpha) : H^*_n(\alpha^*X) \xrightarrow{\text{ind}_H} \mathcal{H}^*_n(\alpha_*\alpha^*X) \xrightarrow{\mathcal{H}^*_n(f(X, \alpha))} \mathcal{H}^*_n(X).$$

If $\beta : G \to K$ is another group homomorphism, then by the axioms of an induction structure the composite $H^*_n(\alpha^*\beta^*X) \xrightarrow{a_n(\beta^*X, \alpha)} H^*_n(\beta^*X) \xrightarrow{a_n(X, \beta)} \mathcal{H}^*_n(X)$ agrees with $a_n(X, \beta \circ \alpha) : H^*_n(\alpha^*\beta^*X) = H^*_n((\beta \circ \alpha)^*X) \to \mathcal{H}^*_n(X)$ for a K-CW-complex X.

Consider a directed system of groups $\{G_i \mid i \in I\}$ with $G = \text{colim}_{i \in I} G_i$ and structure maps $\psi_i : G_i \to G$ for $i \in I$ and $\phi_{i,j} : G_i \to G_j$ for $i, j \in I, i \leq j$. We obtain for every G-CW-complex X a system of Λ-modules $\{H^*_n(\psi_i^*X) \mid i \in I\}$ with structure maps $a_n(\psi_i^*X, \phi_{i,j}) : H^*_n(\psi_i^*X) \to H^*_n(\psi_j^*X)$. We get a map of Λ-modules

$$\mathcal{J}_n^G(X, A) := \text{colim}_{i \in I} a_n(X, \psi_i) : \text{colim}_{i \in I} H^*_n(\psi_i^*(X, A)) \to H^*_n(X, A).$$
14.6 Inheritance Properties of the Fibered Meta-Isomorphism Conjecture

Definition 14.21 ((Strongly) continuous equivariant homology theory). An equivariant homology theory \mathcal{H}_\ast is called continuous if for every group G and every directed system of subgroups $\{G_i \mid i \in I\}$ of G with $G = \bigcup_{i \in I} G_i$ the Λ-map, see (14.20),

$$t^G_n(\{\bullet\}) : \operatorname{colim}_{i \in I} \mathcal{H}_n^{G_i}(\{\bullet\}) \to \mathcal{H}_n^G(\{\bullet\})$$

is an isomorphism for every $n \in \mathbb{Z}$.

An equivariant homology theory \mathcal{H}_\ast over Γ is called strongly continuous if for every group G and every directed system of groups $\{G_i \mid i \in I\}$ with $G = \operatorname{colim}_{i \in I} G_i$ and structure maps $\psi_i : G_i \to G$ for $i \in I$ the Λ-map

$$t^G_n(X,A) : \operatorname{colim}_{i \in I} \mathcal{H}_n^{G_i}(\psi_i^!(X,A)) \to \mathcal{H}_n^G(X,A)$$

is bijective for every $n \in \mathbb{Z}$.

The next result is taken from [71, Lemma 3.4].

Lemma 14.22. Consider a directed system of groups $\{G_i \mid i \in I\}$ with $G = \operatorname{colim}_{i \in I} G_i$ and structure maps $\psi_i : G_i \to G$ for $i \in I$. Suppose that \mathcal{H}_\ast is strongly continuous.

Then the Λ-homomorphism, see (14.20)

$$t^G_n(X,A) : \operatorname{colim}_{i \in I} \mathcal{H}_n^{G_i}(\psi_i^!(X,A)) \xrightarrow{\cong} \mathcal{H}_n^G(X,A)$$

is bijective for every $n \in \mathbb{Z}$.

The proof of the next result is based on Lemma 14.22.

Lemma 14.23. Fix a class of groups \mathcal{C} which is closed under isomorphisms, taking subgroups and taking quotients, e.g., the class of finite groups or the class of virtually cyclic subgroups. For a group G let $\mathcal{C}(G)$ be the family of subgroups of G which belong to \mathcal{C}. Let G be a group.

(i) Let G be the directed union of subgroups $\{G_i \mid i \in I\}$. Suppose that \mathcal{H}_\ast is continuous and for every $i \in I$ the Meta-Isomorphism Conjecture [14.2] holds for G_i and $\mathcal{C}(G_i)$.

Then the Meta-Isomorphism Conjecture [14.2] holds for G and $\mathcal{C}(G)$;

(ii) Let G be the directed union of subgroups $\{G_i \mid i \in I\}$. Suppose that \mathcal{H}_\ast is continuous and for every $i \in I$ the assembly map appearing in the Meta-Isomorphism Conjecture [14.2] for G_i and $\mathcal{C}(G_i)$ is injective for all $n \in \mathbb{Z}$.

Then the assembly map appearing in the Meta-Isomorphism Conjecture [14.2] for G and $\mathcal{C}(G)$ is injective for all $n \in \mathbb{Z}$;

(iii) Let $\{G_i \mid i \in I\}$ be a directed system of groups with $G = \operatorname{colim}_{i \in I} G_i$ and structure maps $\psi_i : G_i \to G$. Suppose that \mathcal{H}_\ast is strongly continuous and for every $i \in I$ the Fibered Meta-Isomorphism Conjecture [14.8] holds for G_i and $\mathcal{C}(G_i)$.

Then the Fibered Meta-Isomorphism Conjecture [14.8] holds for G and $\mathcal{C}(G)$.
Proof. (i) is proved in \[75\] Proposition 3.4.

(ii) The proof of \[75\] Proposition 3.4 for isomorphism yields also a proof for the injectivity version, since the colimit over a directed system is an exact functor and hence preserves injectivity.

(iii) See \[71\] Theorem 5.6.

\[\square\]

Remark 14.24 (Injectivity and the Transitivity principle). For colimits over a directed system of subgroups we did get a statement about injectivity in Lemma \[14.23\] (ii), essentially since the colimit over a directed system is an exact functor. We cannot prove such injectivity statement for assertion (iii) since its proof uses the Transitivity Principle \[14.13\] for which the injectivity version is not true in general, essentially, because the Five-Lemma does not has a version for injectivity.

14.7 Actions on Trees

In this subsection we treat only equivariant homology theories \(\mathcal{H}_t\) for simplicity. The generalizations to an equivariant homology theory over a group \(\Gamma\) are obvious.

Given a subgroup \(H \subseteq G\), we obtain a \(G\)-homeomorphism \(G \times_H E_H|_H \xrightarrow{\cong} G/H \times EG\) sending \((g, z)\) to \((gH, gz)\), where \(G\) acts diagonally on the target. The inverse sends \((gH, z)\) to \((g, g^{-1}z)\). Since \(E_H|_H\) is a model for \(E_H\), we obtain a \(G\)-homotopy equivalence

\[(14.25) \quad \mu(H): G \times_H E_H \xrightarrow{\cong} G/H \times EG.\]

Recall that we obtain for any subgroup \(H \subseteq G\) and \(n \in \mathbb{Z}\) from the induction structure an isomorphism

\[(14.26) \quad \text{ind}_H^G: \mathcal{H}_{n}^H(E_H) \xrightarrow{\cong} \mathcal{H}^G_{n}(G \times_H E_H).\]

In the sequel we denote by \(pr\) the obvious projection and by \(\iota\) the obvious inclusion.

Lemma 14.27. Suppose that \(G\) acts on the tree \(T\) by automorphisms of trees without inversion. Let \(\mathcal{H}_t\) be an equivariant homology theory.

(i) We can write \(T\) as a \(G\)-pushout

\[
\begin{array}{ccc}
\prod_{j \in J} G/K_j \times S^0 & \xrightarrow{q} & \prod_{i \in I} G/H_i \\
\downarrow k & & \downarrow \pi \\
\prod_{j \in J} G/K_j \times D^1 & \xrightarrow{\eta} & T
\end{array}
\]
where there are for every \(j \in J \) two elements \(i(j,+) \) and \(i(j,-) \) in \(I \) such that the restriction of \(q \) to \(G/K_j \) considered as \(G \)-subspace of \(\coprod_{j \in J} G/K_j \times S^0 \) by

\[
G/K_j = G/K_j \times \{ \pm 1 \} \subseteq G/K_j \times S^0 \subseteq \coprod_{j \in J} G/K_j \times S^0
\]

\[\text{is given by the composite of a } G\text{-map } \hat{q}_{j,\pm 1}: G/K_j \to G/H_{i(j,\pm)} \text{ with the canonical inclusion } G/H_{i(j,\pm)} \to \coprod_{i \in I} G/H_i;\]

(ii) We obtain a long exact sequence

\[
\cdots \to \bigoplus_{j \in J} \mathcal{H}_n^K(EK_j) \xrightarrow{t_n(j,+)-t_n(j,-)} \bigoplus_{i \in I} \mathcal{H}_n^H(EH_i) \xrightarrow{s_n} \mathcal{H}_n^G(EG) \\
\to \bigoplus_{j \in J} \mathcal{H}_n^{K_j}(EK_j) \xrightarrow{t_{n-1}(j,+)-t_{n-1}(j,-)} \bigoplus_{i \in I} \mathcal{H}_n^{H_i}(EH_i) \xrightarrow{s_{n-1}} \cdots
\]

where \(t_n(j,\pm) \) is given by the composite

\[
\mathcal{H}_n^K(EK_j) \xrightarrow{\text{ind}_{g,j}^G} \mathcal{H}_n^G(G \times K_j, EK_j) \xrightarrow{\mathcal{H}_n^G(\mu(K_j))} \mathcal{H}_n^G(G/K_j \times EG) \\
\xrightarrow{\mathcal{H}_n^G(\hat{q}_{j,\pm 1} \times \text{id}_{EG})} \mathcal{H}_n^G(G/H_{i(j,\pm)} \times EG) \xrightarrow{\mathcal{H}_n^G(\mu(H_{i(j,\pm)}))^{-1}} \mathcal{H}_n^G(G/H_{i(j,\pm)} \times EH_{i(j,\pm)}) \\
\xrightarrow{(\text{ind}_{H_{i(j,\pm)}}^G)^{-1}} \mathcal{H}_n^{H_{i(j,\pm)}(EH_{i(j,\pm)})} \xrightarrow{\bigoplus_{i \in I}} \mathcal{H}_n^H(EH_i)
\]

and \(s_n \) is the direct sum of the maps for \(i \in I \)

\[
\mathcal{H}_n^H(EH_i) \xrightarrow{\text{ind}_{g,i}^G} \mathcal{H}_n^G(G \times H_i, EH_i) \\
\mathcal{H}_n^G(\mu(H_i)) \xrightarrow{\mathcal{H}_n^G(\text{id}_{EG})} \mathcal{H}_n^G(G/H \times EG) \xrightarrow{\mathcal{H}_n^G(\text{pr})} \mathcal{H}_n^G(EG).
\]

Proof. [I] Since \(G \) acts on \(T \) by automorphisms of trees without inversion, \(T \) is a 1-dimensional \(G \)-CW-complex and the \(G \)-pushout just describes how the 1-skeleton is obtained from the 0-skeleton \(\coprod_{i \in I} G/H_i \).

[I] If we cross the \(G \)-pushout of assertion [I] with \(EG \) using the diagonal \(G \)-action, we obtain the \(G \)-pushout

\[
\coprod_{j \in J} G/K_j \times EG \times S^0 \xrightarrow{q \times \text{id}_{EG}} \coprod_{i \in I} G/H_i \times EG \\
\xrightarrow{k \times \text{id}_{EG}} \coprod_{j \in J} G/K_j \times EG \times D^1 \xrightarrow{\eta \times \text{id}_{EG}} T \times EG
\]
The H-fixed point set T^H is a non-empty subtree and therefore contractible for every finite subgroup $H \subseteq G$, see [525, Theorem 15 in 6.1 on page 58 and 6.3.1 on page 60]. We conclude that the projection $EG \times T \to EG$ is a G-homotopy equivalence from the Equivariant Whitehead Theorem, see for instance [579, Theorem 2.4 on page 36]. The desired long exact sequence can be derived from the Mayer-Vietoris sequence associated to the G-pushout (14.28) using the identifications (14.25) and (14.26).

Lemma 14.29. Suppose that G acts on the tree T by automorphisms of trees without inversion. Let H^G_1 be an equivariant homology theory. Suppose that the Meta-Isomorphism Conjecture 14.2 holds for G with respect to FLN. Assume that for any isotropy group H of the G-action on T the Meta-Isomorphism Conjecture 14.2 holds for H with respect to FLN.

(i) The projection $T \to \{\bullet\}$ induces for all $n \in \mathbb{Z}$ an isomorphism

$$H^G_n(T) \xrightarrow{\cong} H^G_n(\{\bullet\});$$

(ii) Write T as a G-pushout as described in Lemma 14.27. Let $g(j, \pm)$ be an element in G such that $g(j, \pm)K_jg(j, \pm))^{-1} \subseteq H_{i(j, \pm)}$ and the G-map $\tilde{q}_{j, \pm}: G/K_j \to G/H_{i(j, \pm)}$ is given by $gK_j \mapsto gg(j, \pm)^{-1}H_{i(j, \pm)}$. Let $c(g(j, \pm)) : K_j \to H_{i(j, \pm)}$ be the group homomorphism sending k to $g(j, \pm)kg(j, \pm)^{-1}$.

We get a long exact sequence

$$\cdots \to \bigoplus_{j \in J} \mathcal{H}^K_n(\{\bullet\}) \xrightarrow{\tau'_n(j, \pm)-\tau'_n(j, -)} \bigoplus_{i \in I} \mathcal{H}^H_n(\{\bullet\}) \xrightarrow{s'_n} \mathcal{H}^G_n(\{\bullet\}) \xrightarrow{s'_{n-1}} \cdots$$

where $\tau'_n(j, \pm)$ is given by the composite

$$\begin{align*}
\mathcal{H}^K_n(\{\bullet\}) & \xrightarrow{\text{ind}_i(g(j, \pm))} \mathcal{H}^H_n(\{\bullet\}) \\
& \xrightarrow{\text{pr}_{i}} \mathcal{H}^H_{i(j, \pm)}(\{\bullet\}) \\
& \xrightarrow{\sum_{i \in I}} \bigoplus_{i \in I} \mathcal{H}^H_{i(j, \pm)}(\{\bullet\})
\end{align*}$$

and s'_n is the direct sum of the maps for $i \in I$

$$\mathcal{H}^H_{i(j, \pm)}(\{\bullet\}) \xrightarrow{\text{ind}^G_{H_i}} \mathcal{H}^G_n(G \times H, \{\bullet\}) \xrightarrow{\text{pr}_G} \mathcal{H}^G_n(\{\bullet\}).$$

Proof. We have already explained in the proof of Lemma 14.27 that the projection $EG \times T \to EG$ is a G-homotopy equivalence. By assumption the projection $EG \to \{\bullet\}$ induces for all $n \in \mathbb{Z}$ isomorphisms $\mathcal{H}^G_n(EG) \to \mathcal{H}^G_n(\{\bullet\})$. Hence the projection $EG \times T \to \{\bullet\}$ induces for all
n ∈ ℤ isomorphisms \(H^G_n(EG \times T) \to H^G_n(\{\bullet\}) \). By Lemma 14.10 and the assumptions on \(T \) the projection \(EG \times T \to T \) induces for all \(n \in ℤ \) isomorphisms \(H^G_n(EG \times T) \to H^G_n(T) \). Hence the projection \(T \to \{\bullet\} \) induces for all \(n \in ℤ \) isomorphisms \(H^G_n(T) \to H^G_n(\{\bullet\}) \).

This follows from Lemma 11.12 and Lemma 14.27 (ii).

Example 14.30 (Amalgamated free products). Let \(H^G_n \) be an equivariant homology theory with values in \(Λ \)-modules. Let \(G \) be the amalgamated free product \(G_1 *_{G_0} G_2 \) for a common subgroup \(G_0 \) of the groups \(G_1 \) and \(G_2 \). Suppose that \(G_i \) for \(i = 0, 1, 2 \) and \(G \) satisfy the Meta-Isomorphism Conjecture 14.2 with respect to the family \(ℱ \mathcal{L} \mathcal{N} \). Then there is a long exact sequence

\[
\cdots \to H^G_n(\{\bullet\}) \to H^G_n(\{\bullet\}) \oplus H^G_n(\{\bullet\}) \to H^G_n(\{\bullet\}) \to H^G_{n-1}(\{\bullet\}) \oplus H^G_{n-1}(\{\bullet\}) \to \cdots
\]

Namely, there is a 1-dimensional \(G \)-CW-complex \(T \) whose underlying space is a tree such that the 1-skeleton is obtained from the 0-skeleton by the \(G \)-pushout

\[
\begin{array}{ccc}
G/G_0 \times S^0 & \overset{q}{\longrightarrow} & G/G_1 \coprod G/G_2 \\
\downarrow & & \downarrow \\
G/G_0 \times D^1 & \longrightarrow & T
\end{array}
\]

where \(q \) is the disjoint union of the canonical projection \(G/G_0 \to G/G_1 \) and \(G/G_0 \to G/G_2 \), see [825] Theorem 7 in §4.1 on page 32. Now the desired long exact sequence is the one appearing in Lemma 14.29 (ii). Suppose that \(G_0, G_1, G_2 \) and \(G \) satisfy the Baum-Connes Conjecture 13.9 which is equivalent the Meta-Isomorphism Conjecture 14.2 if we choose \(F \) to be \(ℱ \mathcal{L} \mathcal{N} \) and \(H^G_n \) to be \(H^G_n(\{-; K^\text{top}_G\}) \). Then we obtain a long exact sequence

\[
(14.31)
\]

\[
\begin{array}{ccccccc}
\cdots & \overset{\partial_{n+1}}{\longrightarrow} & K_n(C^*_r(G_0)) & K_n(C^*_r(\{i_1\})) \oplus K_n(C^*_r(\{i_2\})) & K_n(C^*_r(G_1)) & \oplus & K_n(C^*_r(G_2)) \\
& \overset{K_n(C^*_r(j_1)) - K_n(C^*_r(j_2))}{\longrightarrow} & K_n(C^*_r(G)) & \overset{\partial_n}{\longrightarrow} & K_{n-1}(C^*_r(G_0)) \\
& \overset{K_{n-1}(C^*_r(\{i_1\})) \oplus K_{n-1}(C^*_r(\{i_2\}))}{\longrightarrow} & K_{n-1}(C^*_r(G_2)) & \oplus & K_{n-1}(C^*_r(G_1)) \\
& \overset{K_{n-1}(C^*_r(j_1)) - K_{n-1}(C^*_r(j_2))}{\longrightarrow} & K_{n-1}(C^*_r(G_0)) & \overset{\partial_{n-1}}{\longrightarrow} & \cdots
\end{array}
\]

where \(i_1, i_2, j_1 \) and \(j_2 \) are the obvious inclusions. Actually, such long exact Mayer-Vietoris sequence exists always for an amalgamated free product \(G = G_1 *_{G_0} G_2 \), see Pimsner [730] Theorem 18 on page 632.

Suppose that \(G_0, G_1, G_2 \) and \(G \) satisfy the \(K \)-theoretic Farrell Conjecture Conjecture 12.1 with coefficients in the regular ring \(R \) with \(ℚ \subseteq R \). Then we
obtain using Theorem 12.43 (iv) a long exact sequence

\[\cdots \xrightarrow{\partial_{n+1}} K_n(RG_0) \xrightarrow{K_n(Ri) \oplus K_n(Rj)} K_n(RG_1) \oplus K_n(RG_2) \]

\[\xrightarrow{K_n(Rj) - K_n(Ri)} K_n(RG) \xrightarrow{\partial_n} K_{n-1}(RG_0) \]

\[\xrightarrow{K_{n-1}(Ri) \oplus K_{n-1}(Rj)} K_{n-1}(RG_1) \oplus K_{n-1}(RG_2) \]

\[\xrightarrow{K_{n-1}(Rj) - K_{n-1}(Ri)} K_{n-1}(RG) \xrightarrow{\partial_{n-1}} \cdots. \]

Without extra assumptions on \(R \) the long exact sequence above does not exist, certain Nil-terms enter, see Theorem 12.53.

Suppose that \(G_0, G_1, G_2 \) and \(G \) satisfy the \(L \)-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \(R \) with involution. Then we obtain using Theorem 12.53 [3] a long exact sequence

\[\cdots \xrightarrow{\partial_{n+1}} L_n(RG_0)[1/2] \]

\[\xrightarrow{L_n(Rj)[1/2] \oplus L_n(Ri)[1/2]} L_n(RG_1)[1/2] \oplus L_n(RG_2)[1/2] \]

\[\xrightarrow{L_n(Rj)[1/2] - L_n(Ri)[1/2]} L_n(RG)[1/2] \xrightarrow{\partial_n} L_{n-1}(RG_0)[1/2] \]

\[\xrightarrow{L_{n-1}(Rj)[1/2] \oplus L_{n-1}(Ri)[1/2]} L_{n-1}(RG_1)[1/2] \oplus L_{n-1}(RG_2)[1/2] \]

\[\xrightarrow{L_{n-1}(Rj)[1/2] - L_{n-1}(Ri)[1/2]} L_{n-1}(RG)[1/2] \xrightarrow{\partial_{n-1}} \cdots. \]

Note that the decoration of the \(L \)-groups does not play a role since we invert 2. Actually, such long exact Mayer-Vietoris sequence exists always for an amalgamated free product \(G = G_1 \ast_{G_0} G_2 \), see Cappell [181]. Without inverting 2 the long exact sequence above does not exist, certain UNil-terms enter.

Exercise 14.34. Let \(H^*_n \) be an equivariant homology theory. Let \(\phi: G \to G \) be a group automorphism. Let \(G \times \phi Z \) be the associated semidirect product. Denote by \(i: G \to G \times \phi Z \) the obvious inclusion Suppose that \(G \) and \(G \times \phi Z \) satisfy the Meta-Isomorphism Conjecture 14.2 with respect to the family \(\mathcal{FIN} \).

Prove the existence of a long exact sequence

\[\cdots \to H^*_n(\{\bullet\}) \xrightarrow{\phi_* \circ \text{id}} H^*_n(\{\bullet\}) \xrightarrow{k_*} H^*_{n \times \phi Z}(\{\bullet\}) \]

\[\to H^*_{n-1}(\{\bullet\}) \xrightarrow{\phi_* \circ \text{id}} H^*_{n-1}(\{\bullet\}) \xrightarrow{k_*} \cdots \]

where \(\phi_* : H^*_n(\{\bullet\}) \to H^*_n(\{\bullet\}) \) and \(k_* \) come from the induction structure and the identification \(\text{ind}_i(\{\bullet\}) = \{\bullet\} \) and the projection \(\text{ind}_i(\bullet) \to \{\bullet\} \).

Explain that this reduces in the case of the Baum-Connes Conjecture to the long exact sequence
14.8 The Meta-Isomorphism Conjecture for Functors from Spaces to Spectra

Let $S: \text{SPACES} \to \text{SPECTRA}$ be a covariant functor. Throughout this section we will assume that it respects weak equivalences and disjoint unions, i.e., a weak homotopy equivalence of spaces $f: X \to Y$ is sent to a weak homotopy equivalence of spectra $S(f): S(X) \to S(Y)$ and for a collection of spaces $\{X_i \mid i \in I\}$ for an arbitrary index set I the canonical map

$$\bigvee_{i \in I} S(X_i) \to S\left(\coprod_{i \in I} X_i\right)$$

is weak homotopy equivalence of spectra. We obtain a covariant functor

(14.35) $S^B: \text{GROUPOIDS} \to \text{SPECTRA}, \quad \mathcal{G} \mapsto S(B\mathcal{G})$

where $B\mathcal{G}$ is the classifying space of the category \mathcal{G} which is the geometric realization of the simplicial set given by its nerve and denoted by $B\text{bar}\mathcal{G}$ in [252, page 227]. Denote by $H^*_G(-; S^B)$ be the equivariant homology theory in the sense of Definition 11.9, which is associated to S_B by the construction of Theorem 11.27. It has the property that for any group G and subgroup $H \subseteq G$ we have canonical identifications

$$H^*_G(G/H; S^B) \cong H^*_H(H/H; S^B) \cong \pi_n(S(BH)).$$

Conjecture 14.36 (Meta-Isomorphism Conjecture for functors from spaces to spectra). Let $S: \text{SPACES} \to \text{SPECTRA}$ be a covariant functor which respects weak equivalences and disjoint unions. The group G satisfies the Meta-Isomorphism Conjecture for S with respect to the family F of subgroups of G if it satisfies the Meta-Isomorphism Conjecture [14.2] for the G-homology theory $H^G_*(-; S^B)$, i.e., the assembly map

$$H^G_n(\text{pr}): H^G_n(E_F(G); S^B) \to H^G_n(G/G; S^B)$$

is bijective for all $n \in \mathbb{Z}$.
Example 14.37 (The Farrell-Jones Conjecture in the setting of functors from spaces to spectra). In the sequel $\Pi(X)$ denotes the fundamental groupoid of a space X. If we take the covariant functor to be the one, which sends a space X to $K_R(\Pi(X))$, $L^{(-\infty)}_R(\Pi(X))$ or $K^{\text{top}}_R(\Pi(X))$ respectively, see Theorem 11.40, then the Meta-Isomorphism Conjecture 14.36 for S for a group G and the family \mathcal{VCY}, \mathcal{VCY} or \mathcal{FIN} respectively, see Theorem 11.40, then the Meta-Isomorphism Conjecture 14.36 for S for a group G and the family \mathcal{VCY}, \mathcal{VCY} or \mathcal{FIN} respectively, is equivalent to the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring R, the L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in the ring with involution R, or the Baum-Connes Conjecture 13.9 respectively. This follows from the obvious natural weak equivalence of groupoids $G \cong \Pi(BG)$.

Let G be a group and Z be a G-CW-complex. Define a covariant $\text{Or}(G)$-spectrum
\[(14.38)\quad S_Z^G : \text{Or}(G) \to \text{SPECTRA}, \quad G/H \mapsto S(G/H \times_G Z),\]
where $G/H \times_G Z$ is the orbit space of the diagonal left G-action on $G/H \times S$.

Note that there is an obvious homeomorphism $G/H \times_G Z \cong H\backslash Z$.

Conjecture 14.39 (Meta-Isomorphism Conjecture for functors from spaces to spectra with coefficients). Let $S : \text{SPACES} \to \text{SPECTRA}$ be a covariant functor which respects weak equivalences and disjoint unions. The group G satisfies the Meta-Isomorphism Conjecture for S with coefficients with respect to the family F of subgroups of G if for any free G-CW-complex Z the pair (G,F) satisfies the Meta-Isomorphism Conjecture 14.2 for $H^*_s(\cdot; S^G_Z)$, i.e., the assembly map
\[H^*_s(E_F(G); S^G_Z) \to H^*_s(G/G; S^G_Z)\]
is bijective for all $n \in \mathbb{Z}$.

Exercise 14.40. Let $S : \text{SPACES} \to \text{SPECTRA}$ be a covariant functor which respects weak equivalences and disjoint unions. Suppose that it satisfies the Meta-Isomorphism Conjecture 14.39 for every group G and the trivial family $\mathcal{T}R$ consisting of one element, the trivial subgroup. Show that then we obtain for every connected CW-complex X a weak homotopy equivalence
\[E\pi_1(X) + \wedge_{\pi_1(X)} S(\tilde{X}) \to S(X).\]
Show that $\pi_n(E\pi_1(X) + \wedge_{\pi_1(X)} S(\tilde{X}))$ and $\pi_n(B\pi_1(X) + \wedge S(\bullet))$ are not isomorphic in general, but that they are isomorphic if \tilde{X} is contractible or S is of the shape $Y \mapsto T(\Pi(Y))$ for some covariant functor $T : \text{GROUPOIDS} \to \text{SPECTRA}$.

Example 14.41 ($Z = EG$). If we take $Z = EG$ in Conjecture 14.39 then Conjecture 14.39 reduces to Conjecture 14.36 since there is a natural ho-
motopy equivalence $G/H \times_G EG \cong B\mathcal{G}^G(G/H)$ and hence we get a weak homotopy equivalence of $\text{Or}(G)$-spectra $S_{EG}^G \cong S^B(G/G)$.

Remark 14.42 (Relation to the original formulation). In [332, Section 1.7 on page 262] Farrell and Jones formulate a fibered version of their conjectures for a covariant functor $S: \text{SPACES} \to \text{SPECTRA}$ for every (Serre) fibration $\xi: Y \to X$ over a connected CW-complex X. In our set-up this corresponds to choosing Z to be the total space of the fibration obtained from $Y \to X$ by pulling back along the universal covering $\tilde{X} \to X$. This space Z is a free G-CW for $G = \pi_1(B)$. Note that an arbitrary free G-CW-complex Z can always be obtained in this fashion from the fiber bundle $EG \times G Z \to BG$ up to G-homotopy, compare [332, Corollary 2.2.1 on page 263].

We sketch the proof of this identification. Let A be a G-CW-complex. Let $\mathcal{E}(X)$ be the G-quotient of the diagonal $G = \pi_1(X)$-action on $A \times \tilde{X}$ and let $f: \mathcal{E}(X) \to X$ be the obvious projection. Denote by $\tilde{f}: \mathcal{E}(\xi) \to \mathcal{E}(X)$ the pullback of ξ with f. Let $q: \mathcal{E}(\xi) \to A/G$ be the composite of \tilde{f} with the map $\mathcal{E}(X) \to A/G$ induced by the projection $A \times X \to A$. This is a stratified fibration and one can consider the spectrum $\mathbb{H}(A/G; S(q))$ in the sense of Quinn [742, Section 8]. Put

$$\mathcal{H}_n^G(A; \xi) := \pi_n(\mathbb{H}(A/G; S(q))).$$

The projection $\text{pr}: A \to G/G$ induces maps

$$a_n(A): \mathcal{H}_n^G(A; \xi) \to \mathcal{H}_n^G(G/G; \xi) = \pi_n(S(Y)),$$

which is the assembly map in [332, Section 1.7 on page 262] if we take $A = E_{CG}(G)$. The construction of $\mathcal{H}_n^G(A; \xi) := \mathbb{H}(A/G; S(q))$ is very complicated, but, fortunately, for us only two facts are relevant. We obtain by $\mathcal{H}_n^G(\cdot; \xi)$ a G-homology theory in the sense of Definition 11.1 and for every $H \subseteq G$ we get a natural identification $\mathcal{H}_n^G(G/H; \xi) = S_{\mathbb{Z}}^G(G/H)$. Hence the functor G-CW-$\text{COMPLEXES} \to \text{SPECTRA}$ sending $A \to \mathbb{H}(A/G; S(q))$ is weakly excisive and its restriction to $\text{Or}(G)$ is the functor $S_{\mathbb{Z}}^G$. Corollary 17.14 implies that the map $\mathcal{H}_n^G(A; S_{\mathbb{Z}}) \to \mathcal{H}_n^G(G/G; S_{\mathbb{Z}}) = \pi_n(S(Z/G)) = \pi_n(S(Y)), which appears in Meta-Isomorphism Conjecture 14.39 for functors from spaces to spectra with coefficients.

Remark 14.44 (The condition free is necessary in Conjecture 14.39). In general Conjecture 14.39 is not true if we drop the condition that Z is free. Take for instance $Z = G/G$. Then Conjecture 14.39 predicts that the projection $E_{\mathcal{F}}(G)/G \to G/G$ induces for all $n \in \mathbb{Z}$ an isomorphism

$$H_n(\text{pr}; S(\{\bullet\})) : H_n(E_{\mathcal{F}}(G)/G; S(\{\bullet\})) \to H_n(\{\bullet\}; S(\{\bullet\}))$$
where \(H_\ast(-;S(\{\bullet\})) \) is the (non-equivariant) homology theory associated to the spectrum \(S(\{\bullet\}) \). This statement is in general wrong, except in extreme cases such as \(\mathcal{F} = A\mathcal{L} \).

The proof of the next theorem will be given at the end of Section 14.9.

Theorem 14.45 (Inheritance properties of the Meta-Isomorphism Conjecture [14.39] for functors from spaces to spectra with coefficients). Let \(S: \text{SPACES} \to \text{SPECTRA} \) be a covariant functor which respects weak equivalences and disjoint unions. Fix a class of groups \(\mathcal{C} \) which is closed under isomorphisms, taking subgroups and taking quotients.

(i) Suppose that the Meta-Isomorphism Conjecture 14.39 for functors from spaces to spectra with coefficients holds for the group \(G \) and the family of subgroups \(\mathcal{C}(G) := \{ K \subseteq G, K \in \mathcal{C} \} \) of \(G \). Let \(H \subseteq G \) be a subgroup. Then Conjecture 14.39 holds for \((H, \mathcal{C}(H)) \).

(ii) Let \(1 \to K \to G \to Q \to 1 \) be an extension of groups. Suppose that \((Q, \mathcal{C}(Q))\) and \((p^{-1}(H), \mathcal{C}(p^{-1}(H))\) for every \(H \in \mathcal{C}(Q) \) satisfy Conjecture 14.39. Then \((G, \mathcal{C}(G))\) satisfies Conjecture 14.39.

(iii) Suppose that Conjecture 14.39 is true for \((H_1 \times H_2, \mathcal{C}(H_1 \times H_2))\) for every \(H_1, H_2 \in \mathcal{C} \). Then for two groups \(G_1 \) and \(G_2 \) Conjecture 14.39 is true for the direct product \(G_1 \times G_2 \) and the family \(\mathcal{C}(G_1 \times G_2) \), if and only it is true for \((G_k, \mathcal{C}(G_k))\) for \(k = 1, 2 \).

(iv) Suppose that for any directed systems of spaces \(\{X_i | i \in I\} \) indexed over an arbitrary directed set \(I \) the canonical map

\[
\text{hocolim}_{i \in I} S(X_i) \to S(\text{hocolim}_{i \in I} X_i)
\]

is a weak homotopy equivalence. Let \(\{G_i | i \in I\} \) be a directed system of groups over a directed set \(I \) (with arbitrary structure maps). Put \(G = \text{colim}_{i \in I} G_i \). Suppose that Conjecture 14.39 holds for \((G_i, \mathcal{C}(G_i))\) for every \(i \in I \). Then Conjecture 14.39 holds for \((G, \mathcal{C}(G))\).

Exercise 14.46. Let \(\mathcal{C} \) be the class of finite groups or let \(\mathcal{C} \) be the class of virtually cyclic subgroups. Suppose that Conjecture 14.39 holds for \((H, \mathcal{C}(H))\) if \(H \) contains a subgroup \(K \) of finite index such that \(\bar{K} \) is a finite product of finitely generated free groups.

Show that for a collection of groups \(\{G_i | i \in I\} \) Conjecture 14.39 is true for the free product \(*_{i \in I} G_i\) and the family \(\mathcal{C}(\ast_{i \in I} G_i)\), if and only it is true for \((G_i, \mathcal{C}(G_i))\) for every \(i \in I \).

Lemma 14.47. Suppose that there is a spectrum \(E \) such that \(S: \text{SPACES} \to \text{SPECTRA} \) is given by \(Y \mapsto Y_+ \wedge E \).
(i) Then for any group G, any G-CW-complex X, which is contractible (after forgetting the G-action), and any free G-CW-complex Z the projection $X \to G/G$ induces for all $n \in \mathbb{Z}$ an isomorphism

$$H_n^G(X; S^G_Z) \xrightarrow{\cong} H_n^G(G/G; S^G_Z);$$

(ii) Both Conjecture 14.36 and Conjecture 14.39 for S hold for every group G and every family F of subgroups of G.

Proof. (i) There are natural isomorphisms of spectra

$$\text{map}_G(G/, X)_+ \wedge_{O_T(G)} \left(\left(\left(G/\times_G Z\right)_+ \wedge E\right)\right),$$

$$\xrightarrow{\cong} \left(\left(\text{map}_G(G/, X) \times_{O_T(G)} G/\times_G Z\right)_+ \wedge E\right),$$

$$\xrightarrow{\cong} (X \times_G Z)_+ \wedge E,$$

where the second isomorphism comes from the G-homeomorphism

$$\text{map}_G(G/, X)_+ \times_{O_T(G)} G/\times_G Z \xrightarrow{\cong} X$$

of [252] Theorem 7.4 (1). Since Z is a free G-CW-complex and X is contractible (after forgetting the group action), the projection $X \times_G Z \to G/G \times_G Z$ is a homotopy equivalence and hence induces a weak homotopy equivalence

$$(X \times_G Z)_+ \wedge E \xrightarrow{\cong} (G/G \times_G Z)_+ \wedge E,$$

Thus we get a weak homotopy equivalence

$$\text{map}_G(G/, X)_+ \times_{O_T(G)} G/\times_G Z \xrightarrow{\cong} (G/G \times_G Z)_+ \wedge E.$$

Under the identifications coming from the definitions

$$H_n^G(X; S^G_Z) := \pi_n \left(\text{map}_G(G/, X)_+ \wedge_{O_T(G)} \left(\left(G/\times_G Z\right)_+ \wedge E\right)\right),$$

$$H_n^G(G/G; S^G_Z) = \pi_n \left(\left(G/G \times_G Z\right)_+ \wedge E\right),$$

this weak homotopy equivalence induces on homotopy groups the isomorphism $H_n^G(X; S^G_Z) \to H_n^G(G/G; S^G_Z)$.

(ii) This follows from assertion (i).

Lemma 14.48. Let $S, T, U: \text{SPACES} \to \text{SPECTRA}$ be covariant functors which respects weak equivalences and disjoint unions. Let $i: S \to T$ and $p: T \to U$ be natural transformations such that for any space Y the map of spectra $S(Y) \xrightarrow{i(Y)} T(Y) \xrightarrow{p(Y)} U(Y)$ is up to weak homotopy equivalence a cofibration of spectra.

(i) Then we obtain for every group G and all G-CW-complexes X and Z a natural long exact sequence
(ii) Let G be a group and \mathcal{F} be a family of subgroups of G. Then Conjecture 14.36 or Conjecture 14.39 respectively holds for all three functors S, T and U for (G, \mathcal{F}) if Conjecture 14.36 or Conjecture 14.39 respectively holds for two of the functors S, T and U for (G, \mathcal{F}).

Proof. (i) This is a consequence of the fact following from the version for spectra of [252, Theorem 3.11] that we obtain an up to weak homotopy equivalence cofiber sequence of spectra

$$\cdots \to H_n^G(X; S_Z^G) \to H_n^G(X; T_Z^G) \to H_n^G(X; U_Z^G) \to \cdots$$

\begin{align*}
\to H_{n-1}^G(X; S_Z^G) \to H_{n-1}^G(X; T_Z^G) \to H_{n-1}^G(X; U_Z^G) \to \cdots
\end{align*}

(ii) This follows from assertion (i) and the Five-Lemma.

14.9 Proof of the Inheritance Properties

This section is entirely devoted to the proof of Theorem 14.45.

Let S: $\text{SPACES} \to \text{SPECTRA}$ be a covariant functor. Throughout this section we will assume that it respects weak equivalences and disjoint unions.

Lemma 14.49. Let $\psi: K_1 \to K_2$ be a group homomorphism.

(i) If Z is a K_1-CW-complex and X is a K_2-CW-complex, then there is a natural isomorphism

$$H_n^{K_1}(\psi^* X; S_{K_1}^Z) \xrightarrow{\cong} H_n^{K_2}(X; S_{\psi^* Z}^Z);$$

(ii) If Z is a K_2-CW-complex and X is a K_1-CW-complex, then there is a natural isomorphism

$$H_n^{K_1}(X; S_{K_1}^Z) \xrightarrow{\cong} H_n^{K_2}(\psi_* X; S_{\psi_* Z}^Z);$$

Proof. (i) The fourth isomorphisms appearing in [252, Lemma 1.9] implies that it suffices to construct a natural weak homotopy equivalence of $\text{Or}(K_2)$-spectra

$$u(\psi, Z): \psi_* S_{K_1}^Z \xrightarrow{\cong} S_{\psi_* Z}^Z,$$

where $\psi_* S_{K_1}^Z$ is the $\text{Or}(K_2)$-spectrum obtained by induction in the sense of [252, Definition 1.8] with the functor $\text{Or}(\psi): \text{Or}(K_1) \to \text{Or}(K_2)$, $K_1/H \mapsto \psi_*(K_1/H)$ applied to the $\text{Or}(K_1)$-spectrum $S_{K_1}^Z$. For a homogeneous space K_2/H we define $u(\psi, Z)(K_2/H)$ to be the composite
Here the first map comes from the adjunction isomorphism
\[\text{map}_{K_2}(\psi_*(K_1/?, K_2/H)) \cong \text{map}_{K_1}(K_1/?, \psi^*(K_2/H)) \times_{\text{Or}(K_1)} \text{S}(K_1/\sim \times_{K_1} Z) \]
and the third map comes from the canonical homeomorphism
\[\psi^*(K_2/H) \times_{K_1} Z \cong K_2/H \times_{K_2} \psi_* Z. \]
The second map is the special case \(T = \psi^* K_2/? \) of the natural weak homotopy equivalence defined for any \(K_1 \)-set \(T \)
\[\kappa(T): \text{map}_{K_1}(K_1/?, T) \times_{\text{Or}(K_1)} \text{S}(K_1/\sim \times_{K_1} Z) \cong \text{S}(T \times_{K_1} Z), \]
which is given by \((u: K_1/\sim \to T) \times s \mapsto \text{S}(u \times_{K_1} \text{id}_Z)(s) \). If \(T \) is a homogeneous \(K_1 \)-set, then \(\kappa(T) \) is an isomorphism by the Yoneda Lemma. Since \(\psi \) is compatible with disjoint unions, \(\text{S} \) is compatible with disjoint unions up to weak homotopy equivalence by assumption, and every \(K_1 \)-set is the disjoint union of homogeneous \(K_1 \)-sets, \(\kappa(T) \) is a weak homotopy equivalence for all \(K_1 \)-sets \(T \).

The third isomorphisms appearing in [252, Lemma 1.9] implies that it suffices to construct a natural weak homotopy equivalence of \(\text{Or}(K_1) \)-spectra
\[\nu(\psi, Z): \psi^* \text{S}^{K_2}_Z \cong \text{S}^{K_1}_{\psi_* Z}, \]
where \(\psi^* \text{S}^{K_2}_Z \) is the \(\text{Or}(K_1) \)-spectrum obtained by restriction in the sense of [252, Definition 1.8] with the functor \(\text{Or}(\psi): \text{Or}(K_1) \to \text{Or}(K_2), K_1/H \mapsto \psi_*(K_1/H) \) applied to the \(\text{Or}(K_2) \)-spectrum \(\text{S}^{K_2}_Z \). Actually, we obtain even an isomorphism \(\nu(\psi, Z) \) using the adjunction
\[\psi_*(K_1/H) \times_{K_2} Z \cong K_1/H \times_{K_1} \psi^* Z \]
for any subgroup \(H \subseteq K_1 \). \(\square \)

Note that for a homomorphism \(\phi: H \to G \) the restriction \(\phi^* Z \) of a free \(G \)-\(CW \)-complex \(Z \) is free again if and only if \(\phi \) is injective. We have already explained in Remark [14.44] that the assumption that \(Z \) is free is needed in Conjecture [14.39] In the Fibered Meta-Isomorphism Conjecture [14.8] it is crucial not to require that \(\phi: H \to G \) is injective since we want to have
good inheritance properties such as the one appearing in assertion (iii) of Lemma 14.23 which will be crucial for the proof of assertion (iv) of Theorem 14.45. Therefore we are forced to introduce the following construction.

Consider a group G and a G-CW-complex Z. We want to define an equivariant homology theory $H'_Z(-; S^G_Z)$ over G in the sense of Definition 11.83. Given a homomorphism $\phi: K \to G$ define the associated K-homology theory

$$H^K_{\phi}(-; S^G_Z) := H^K_{\phi}(\phi^*; S^K_{Z \times \phi^*}).$$

Given group homomorphisms $\psi: K_1 \to K_2$, $\phi_1: K_1 \to G$ and $\phi_2: K_2 \to G$ with $\phi_2 \circ \psi = \phi_1$, a K_1-CW-complex X, and $n \in \mathbb{Z}$, we have to define a natural map

$$H^K_{\phi_1}(X; S^G_{E K_1 \times \phi_1^* Z}) \to H^K_{\phi_2}(\psi_* X; S^G_{E K_2 \times \phi_2^* Z}).$$

We get the isomorphism $H^K_{\phi_2}(\psi_* X; S^G_{E K_2 \times \phi_2^* Z}) = H^K_{\phi_1}(X; S^G_{\psi^*(E K_2 \times \phi_2^* Z)})$ from Lemma 14.49 (iii). Hence it suffices to specify a K_1-map

$$EK_1 \times \phi_1^* Z \to \psi^*(EK_2 \times \phi_2^* Z) = \psi^*(EK_2) \times \phi_1^* Z.$$

The homomorphism $\psi: K_1 \to K_2$ induces a K_1-map $EK_1 \to \psi^*(EK_2)$ and we can take its product with $\text{id}_{\phi_1^* Z}$.

The proof of the next Lemma is left to the reader.

Lemma 14.50. Given a group G and a G-CW-complex Z, all the axioms of an equivariant homology theory over G, see Definition 11.83, are satisfied by $H'_Z(-; S^G_Z)$.

Exercise 14.51. Let G be a group and Z be a G-CW-complex. Consider the functor

$$E: \text{GROUPOIDS} \downarrow G \to \text{SPECTRA}, \quad p: \mathcal{G} \to I(G) \to S(E\mathcal{G} \times_G p^* Z).$$

Here $E\mathcal{G}$ is the classifying G-CW-complex associated to \mathcal{G}, see Definition 3.8], for which we use the functorial model $E_{\text{bar}}\mathcal{G}$ of [252 page 230], we consider Z as a $I(G)$-CW-complex and hence get a G-CW-complex $p^* Z$ by restriction with $p: \mathcal{G} \to I(G)$, and the space $E\mathcal{G} \times_G p^* Z$ is defined in [252 Definition 1.4].

Show that the equivariant homology theory $H'_Z(-; E)$ over G associated to E in Theorem 11.85 is isomorphic to $H'_Z(-; S^G_Z)$.

Lemma 14.52. Let $\phi: H \to K$ and $\psi: K \to G$ be a group homomorphisms.

(i) Let X be a G-CW-complex and let Z be a K-CW-complex. Then we obtain a natural isomorphism

$$H^H_{\phi}(\phi^* \psi^* X; S^G_Z) \cong H^G_{\psi}(X; S^G_Z).$$
(ii) Let \(X \) be a \(H \)-CW-complex and let \(Z \) be a \(G \)-CW-complex. Then we obtain a natural isomorphism

\[
H_n^{H,\phi}(X; S_{\psi^* Z}^K) \cong H_n^{H,\psi \circ \phi}(X; S_Z^G).
\]

Proof. We have by definition

\[
H_n^{H,\phi}(\phi^* \psi^* X; S_{\psi^* Z}^K) := H_n^H(\phi^* \psi^* X; S_{EH \times \phi^* Z}^H).
\]

Now apply Lemma 14.49 (i).

We get by definition

\[
H_n^{H,\phi}(X; S_{\psi^* Z}^K) := H_n^H(X; S_{EH \times \phi^* \psi^* Z}^H) = H_n^H(X; S_{EH \times (\psi \circ \phi)^* Z}^H) =: H_n^{H,\psi \circ \phi}(X; S_Z^G).
\]

Conjecture 14.53 (Fibered Meta-Isomorphism Conjecture for a functor from spaces to spectra with coefficients). We say that \(S \) satisfies the Fibered Meta-Isomorphism Conjecture for a functor from spaces to spectra with coefficients for the group \(G \) and the family of subgroups \(F \) of \(G \) if for any \(G \)-CW-complex \(Z \) the equivariant homology theory \(H'_n(-; S_Z^G) \) over \(G \) satisfies the Fibered Meta-Isomorphism Conjecture 14.8 for the group \((G, \text{id}_G)\) over \(G \) and the family \(F \).

Note that Conjecture 14.39 is a statement about \(H'_n(-; S_Z^G) \), whereas Conjecture 14.53 is a statement about \(H'_n(-; S_Z^G) \).

Lemma 14.54. Let \(\psi: K \to G \) be a group homomorphism.

(i) Suppose that the Meta Conjecture 14.39 with coefficients holds for the group \(G \) and the family \(\mathcal{F} \). Then the Fibered Meta Conjecture 14.53 with coefficients holds for the group \(K \) and the family \(\psi^* \mathcal{F} \);

(ii) If the Fibered Meta Conjecture 14.53 with coefficients holds for the group \(G \) and the family \(\mathcal{F} \), then the Meta Conjecture 14.39 with coefficients holds for the group \(G \) and the family \(\mathcal{F} \);

(iii) Suppose that the Fibered Meta Conjecture 14.53 with coefficients holds for \(K \) and the family \(\mathcal{F} \). Then for every \(G \)-CW-complex \(Z \) the Fibered Meta-Isomorphism Conjecture 14.8 holds for the equivariant homology theory \(H_n(-; S_Z^G) \) over \(G \) for the group \((K, \psi)\) over \(G \) and the family \(\mathcal{F} \) of subgroups of \(K \).

Proof. This follows from Lemma 14.52 since in the notation used there we have \(\phi^* \psi^* E_{\mathcal{F}}(G) = \phi^* E_{\psi^* \mathcal{F}}(K) \) and \(\phi^* \psi^* G/G = H/H \), and \((\psi \circ \phi)_*(EH \times \phi^* Z)\) is a free \(G \)-CW-complex.

This follows from the fact that for a free \(G \)-CW-complex \(Z \) the projection
$EG \times Z \to Z$ is a G-homotopy equivalence and hence we get a natural
isomorphism

$$H_n^{G,\text{id}_G}(X; S^G_Z) := H_n^G(X; S^G_{EG \times Z}) \xrightarrow{\cong} H_n^G(X; S^G_Z)$$

for every G-CW-complex X and $n \in \mathbb{Z}$.

This follows from Lemma 14.52 [i].

Lemma 14.55. Suppose that for any directed systems of spaces $\{X_i \mid i \in I\}$
indexed over an arbitrary directed set I the canonical map

$$\text{hocolim}_{i \in I} S(X_i) \to S(\text{hocolim}_{i \in I} X_i)$$

is a weak homotopy equivalence.

Then for every group G and G-CW-complex Z the equivariant homology
theory over G given by $H^*_G(-)$ is strongly continuous.

Proof. We only treat the case $\text{id}_G: G \to G$, the case of a group $\psi: K \to G$ over
G is completely analogous. Consider a directed system of groups $\{G_i \mid i \in I\}$
with $G = \text{colim}_{i \in I} G_i$. Let $\psi_i: G_i \to G$ be the structure map for $i \in I$.

The canonical map

$$\text{hocolim}_{i \in I} S(EG_i \times_{G_i} \psi_i^* Z) \to S(\text{hocolim}_{i \in I}(EG_i \times_{G_i} \psi_i^* Z))$$

is by assumption a weak homotopy equivalence. We have the homeomorphisms

$$EG_i \times_{G_i} \psi_i^* Z \xrightarrow{\cong} (\psi_i)_* EG_i \times_G Z;$$

$$\text{hocolim}_{i \in I}(\psi_i)_* EG_i \times_G Z \xrightarrow{\cong} \text{hocolim}_{i \in I}((\psi_i)_* EG_i \times_G Z).$$

They induce a homeomorphism

$$\text{hocolim}_{i \in I} (\psi_i)_* EG_i \to EG$$

is a G-homotopy equivalence. The proof of this fact is a special case of the
argument appearing in the proof of [620, Theorem 4.3 on page 516]. It induces
a weak homotopy equivalence

$$S(\text{hocolim}_{i \in I}(\psi_i)_* EG_i \times_G Z) \to S(EG \times_G Z).$$

Hence we get by taking the composite of the maps (14.56), (14.57) and (14.58)
a weak homotopy equivalence

$$\text{hocolim}_{i \in I} S(EG_i \times_{G_i} \psi_i^* Z) \to S(EG \times_G Z).$$
It induces after taking homotopy groups for every $n \in \mathbb{Z}$ an isomorphism
\[
\colim_{i \in I} \pi_n\left(\mathcal{S}(EG_i \times_G, \psi_i^*Z)\right) \to \pi_n\left(\mathcal{S}(EG \times_G Z)\right)
\]
which is by definition the same as the canonical map
\[
\colim_{i \in I} H_n^{G, \psi_i}(G_i/G_i; S_Z^{iG}) \to H_n^{G, \mathrm{id}_G}(G/G; S_Z^{iG}).
\]
This finishes the proof of Lemma 14.55.

Proof of Theorem 14.45. We consider a free H-CW-complex Z. Let $i : H \to G$ be the inclusion. Then i_*Z is a free G-CW-complex, $i^* E_{C(G)}(G)$ is a model for $E_{C(H)}(H)$ and $i^*G/G = K/K$. From Lemma 14.49, we obtain a commutative diagram with isomorphisms as vertical maps
\[
\begin{align*}
H_n^H(E_{C(H)}(H); S_Z^H) &\longrightarrow H_n^H(H/H; S_Z^H) \\
\cong &\quad \cong \\
H_n^G(E_{C(G)}(G); S_Z^{G,G}) &\longrightarrow H_n^G(G/G; S_Z^{G,G})
\end{align*}
\]
where the horizontal maps are induced by the projections. The lower map is bijective by assumption. Hence the upper map is bijective as well.

(i) Since $(Q, C(Q))$ and $(p^{-1}(H), C(p^{-1}(H)))$ for every $H \in C(Q)$ satisfy the Meta-Isomorphism Conjecture Conjecture 14.39 with coefficients by assumption, we conclude from Lemma 14.54 that the Fibered Meta-Isomorphism Conjecture 14.53 with coefficients holds for the group G and the family $p^* C(Q)$ and that for every $H \in C(Q)$ the Fibered Meta-Isomorphism Conjecture 14.53 with coefficients holds for $p^{-1}(H)$ and the family $C(p^{-1}(H)) = C(G)|_{p^{-1}(H)}$. Lemma 14.54 (ii) implies that for every $H \in C(Q)$ and G-CW-complex Z the Fibered Meta-Isomorphism Conjecture 14.5 holds for the equivariant homology theory $H_n^G(-; S_Z^{G,G})$ over G for the group $(p^{-1}(H) \subseteq G)$ over G and the family $C(G)|_{p^{-1}(H)}$. Since for every $L \in p^* C(Q)$ we have $p(L) \in C(Q)$ and hence $L \subseteq p^{-1}(p(L))$, we conclude from Lemma 14.16 that for every $L \in p^* C(Q)$ and G-CW-complex Z the Fibered Meta-Isomorphism Conjecture 14.5 holds for the equivariant homology theory $H_n^G(-; S_Z^{G,G})$ over G for the group $(L \subseteq G)$ over G and the family $C(G)|_L$. The Transitivity Principle 14.13 implies that for every G-CW-complex Z the Fibered Meta-Isomorphism Conjecture 14.5 holds for the equivariant homology theory $H_n^G(-; S_Z^{G,G})$ over G for the group (G, id_G) over G and the family $C(G)$, in other words, the Fibered Meta-Isomorphism Conjecture 14.53 with coefficients holds for G and the family $C(G)$. We conclude from Lemma 14.54 (iii) that the Meta-Isomorphism Conjecture 14.39 holds for the group G and the family $C(G)$.

(ii) If the Meta-Isomorphism Conjecture 14.39 with coefficients holds for
$(G_1 \times G_1, \mathcal{C}(G_1 \times G_2))$, it holds for G_k and the family $\mathcal{C}(G_k) = \mathcal{C}(G_1 \times G_2)|_{G_k}$ for $k = 1, 2$ by assertion (i).

Suppose that the Meta-Isomorphism Conjecture 14.39 with coefficients holds for $(G_k, \mathcal{C}(G_k))$ for $k = 1, 2$. By assertion (iii) applied to the obvious exact sequence $1 \to H_2 \to G_1 \times H_2 \to G_1 \to 1$, Conjecture 14.39 holds for $(G_1 \times H_2, \mathcal{C}(G_1 \times H_2))$ for every $H_2 \in \mathcal{C}(G_2)$. By assertion (ii) applied to the obvious exact sequence $1 \to G_1 \to G_1 \times G_2 \to G_2 \to 1$ Conjecture 14.39 with coefficients holds for $(G_1 \times G_2, \mathcal{C}(G_1 \times G_2))$.

(iii) Since the Meta-Isomorphisms Conjecture 14.39 holds for G_i and $\mathcal{C}(G_i)$ for every $i \in I$ by assumption, we conclude from Lemma 14.54 (i) that the Fibered Meta-Isomorphism Conjecture 14.39 with coefficients holds for the group G_i and the family $\mathcal{C}(G_i)$ for every $i \in I$. Lemma 14.54 (iii) implies that for every $i \in I$ and G-CW-complex Z the Fibered Meta-Isomorphism Conjecture 14.8 holds for the equivariant homology theory $H_n^G(\mathcal{S})$ over G for the group $\psi_i : G_i \to G$ over G and the family $\mathcal{C}(G_i)$. We conclude from Lemma 14.23 (iii) and Lemma 14.55 that for every G-CW-complex Z the Fibered Meta-Isomorphism Conjecture 14.8 holds for the equivariant homology theory $H_n^G(\mathcal{S})$ over G for the group (G, id_G) over G and the family $\mathcal{C}(G)$, in other words, the Fibered Meta-Isomorphism Conjecture 14.53 with coefficients holds for the group G and the family $\mathcal{C}(G)$. We conclude from Lemma 14.54 (iii) that the Meta-Isomorphism Conjecture 14.39 with coefficients holds for the group G and the family $\mathcal{C}(G)$. This finishes the proof of Theorem 14.45.

14.10 The Farrell-Jones Conjecture for A-Theory and Pseudoisotopy

Conjecture 14.59 (Farrell-Jones Conjecture for A-theory (with coefficients)). A group G satisfies the Farrell-Jones Conjecture for A-theory if the Meta-Isomorphism Conjecture 14.36 for functors from spaces to spectra applied to the case $S = A$ for the functor non-connective A-theory A introduced in (7.11) holds for $(G, \mathcal{V}C\mathcal{Y})$.

A group G satisfies the Farrell-Jones Conjecture for A-theory with coefficients if the Meta-Isomorphism Conjecture 14.39 for functors from spaces to spectra with coefficients applied to the case $S = A$ for the functor non-connective A-theory A introduced in (7.11) holds for $(G, \mathcal{V}C\mathcal{Y})$.

Note that A respects weak equivalences and disjoint unions, see Theorem 7.15.

Exercise 14.60. Suppose that G is torsionfree and satisfies the Farrell-Jones Conjecture 14.59 for A-theory. Show that $\pi_n(A(BG)) = 0$ for $n \leq -1$ and $\pi_0(A(BG)) \cong \mathbb{Z}$.

Conjecture 14.61 (Farrell-Jones Conjecture for (smooth) pseudoisotopy (with coefficients)). A group G satisfies the Farrell-Jones Conjecture for (smooth) pseudoisotopy if the Meta-Isomorphism Conjecture 14.36 for functors from spaces to spectra applied to the case $S = P$ or $S = P^{\text{Diff}}$ for the functor non-connective (smooth) pseudoisotopy P and P^{Diff} of Definition 7.1 holds for (G, VCY). A group G satisfies the Farrell-Jones Conjecture for (smooth) pseudoisotopy with coefficients if the Meta-Isomorphism Conjecture 14.39 for functors from spaces to spectra with coefficients applied to the case $S = P$ or $S = P^{\text{Diff}}(X)$ for the functor non-connective (smooth) pseudoisotopy P and P^{Diff} of Definition 7.1 holds for (G, VCY).

Note that P and P^{Diff} respect weak equivalences and disjoint unions, see Theorem 7.3.

Question 14.62 (Reducing VCY to VCY_I for A-theory). Does it make sense to replace in Conjecture 14.59 VCY by VCY_I?

Note that for algebraic K-theory this replacement does make sense by Theorem 12.39. Question 14.62 is also interesting for pseudoisotopy.

Question 14.63 (Splitting of the relative assembly maps for $FIN \subseteq VCY$ for A-theory). Is there an analogue for A-theory of the splitting of the relative assembly maps for $E_{FIN}(G)$ and $E_{VCY}(G)$ in K-theory, see Theorem 12.29?

The construction of such a splitting in [617, Theorem 0.1] for K-theory is based on a twisted Bass-Heller-Swan Theorem for the algebraic K-theory of additive categories. For connective A-theory an untwisted Bass-Heller-Swan decomposition is established and analyzed in [457, 458]. Question 14.63 makes sense for pseudoisotopy. Untwisted Bass-Heller-Swan decompositions for connective pseudoisotopy are treated in [453, 523].

14.11 The Farrell-Jones Conjecture for Topological Hochschild and Cyclic Homology

There are the notions of Hochschild homology and cyclic homology of algebras which are defined in the algebraic setting, see for instance Connes [221] or Loday [574]. One of the important insights of Waldhausen was that one can define an analogue of algebraic K-theory for rings, where one “specifies” the constructions. This led to A-theory which we have described in Chapter 7. These circle of ideas motivated also the definition of topological Hochschild homology by Bökstedt and then of topological cyclic homology by Bökstedt-Hsiang-Madsen [131] which are better approximations of the algebraic K-theory than their original algebraic counterparts. A systematic study how
much algebraic cyclic homology detects from algebraic K-theory of group rings is presented in [605] showing that the topological versions are much more effective. Roughly speaking, in the topological versions one replaces rings by ring spectra and tensor products by (highly structured and strictly commutative) smash products. The role of the ring \mathbb{Z} of integers, which is initial in the category of rings, is now played by the sphere spectrum S, which is initial in the category of ring spectra. We refer for further information to the book by Dundas-Goodwillie-McCarthy [287] and the survey article by Madsen [626].

Given a symmetric ring spectrum A and a prime p, one can define functors see [607, (14.1) and Example 14.3]

\begin{align*}
\text{THH}_A : \text{GROUPOIDS} &\to \text{SPECTRA}; \\
\text{TC}_{A,p} : \text{GROUPOIDS} &\to \text{SPECTRA},
\end{align*}

such that for a group G considered as groupoid $I(G)$ the value of these functors is the topological Hochschild homology and the topological cyclic homology with respect to the prime p of the group ring spectrum $A[G] := A \wedge G_+$.

From Theorem 11.27 we obtain equivariant homology theories $H_*^G(_ ; \text{THH}_A)$ and $H_*^G(_ ; \text{TC}_{A,p})$ satisfying for any group G and subgroup $H \subseteq G$

\begin{align*}
H_*^G(G/H; \text{THH}_A) &= H_*^H(H/H; \text{THH}_A) = \pi_n(\text{THH}(A[G])); \\
H_*^G(G/H; \text{TC}_{A,p}) &= H_*^H(H/H; \text{TC}_{A,p}) = \pi_n(\text{TC}(A[G]; p)).
\end{align*}

14.11.1 Topological Hochschild Homology

The following theorem is taken from [607, Theorem 1.19]. The notion of a very well pointed spectrum and of a connective \pm-spectrum are introduced in [607, Subsection 4J]. These are mild condition which are satisfied by the sphere spectrum S and the Eilenberg-MacLane spectrum of a discrete ring.

Theorem 14.66 (The Farrell-Jones Conjecture holds for topological Hochschild homology). Let G be a group and \mathcal{F} be a family of subgroups. Let A be a very well pointed symmetric ring spectrum. Then the map induced by the projection $\text{pr} : E_\mathcal{F}(G) \to G/G$

\[H_*^G(E_\mathcal{F}(G); \text{THH}_A) \to H_*^G(G/G; \text{THH}_A) = \pi_n(\text{THH}(A[G])) \]

is split injective for all $n \in \mathbb{Z}$. If \mathcal{F} contains all cyclic subgroups, then it is bijective for all $n \in \mathbb{Z}$.

Topological Hochschild homology is one of the rare instances where an Isomorphism Conjecture is known for all groups and an interesting family of subgroups, namely the family of all cyclic subgroups, but the reasons are not completely elementary.
14.11.2 Topological Cyclic Homology

For the rest of this subsection we assume that A is connective$^+$. The assembly map for topological cyclic homology

$$H^G_n(E_{\text{VCY}}(G); \text{TC}_{A,p}) \to H^G_n(G/G; \text{TC}_{A,p}) = \pi_n(\text{TC}_p(A[G]))$$

for the family VCY of virtually cyclic subgroups is not bijective in general. For instance, it is not surjective for $n = -1$ if $A = \mathbb{Z}(p)$ and G is either finitely generated free abelian or torsionfree hyperbolic, but not cyclic, see [608, Theorem 1.5]. More counterexamples against surjectivity are presented in [608, Remark 6.7]. Counterexamples against rational injectivity are described in [608, Remark 1.9] based on [607, Remark 3.7].

There are also some positive results.

Theorem 14.67 (Bijectivity of the assembly map for topological cyclic homology for finite groups and the family of cyclic subgroups). If G is finite, then the assembly map for the family of cyclic subgroups

$$H^G_n(E_{\text{CYC}}(G); \text{TC}_{A,p}) \to H^G_n(G/G; \text{TC}_{A,p}) = \pi_n(\text{TC}_p(A[G]))$$

is bijective for all $n \in \mathbb{Z}$.

Proof. See [608, Theorem 1.1]. \qed

Exercise 14.68. Let S_3 be the symmetric group on the set $\{1, 2, 3\}$. Let C_2 and C_3 be any cyclic subgroups of S_3 of order 2 and 3.

Show that for any prime p there is a weak equivalence

$$\text{TC}(A[C_2]; p) \vee ((E_{C_2})_+ \wedge_{C_2} \text{TC}(A[C_3]; p)) \xrightarrow{\sim} \text{TC}(A[S_3]; p),$$

where C_2 acts on C_3 by sending the generator to its inverse, and $\text{TC}(A[G]; p)$ is the homotopy cofiber of the map $\text{TC}(A;p) \to \text{TC}(A[G]; p)$ induced by the inclusion.

Theorem 14.69. Let G be a group and p be a prime.

(i) Assume that there is a G-CW-model for $E_{\text{FLN}}(G)$ of finite type. Then the map induced by the projection $\text{pr}: E_{\text{FLN}}(G) \to G/G$

$$H^G_n(E_{\text{FLN}}(G); \text{TC}_{A,p}) \to H^G_n(G/G; \text{TC}_{A,p}) = \pi_n(\text{TC}(A[G]; p))$$

is split injective for all $n \in \mathbb{Z}$;

(ii) Assume that G is hyperbolic or virtually finitely generated abelian. Then the map induced by the projection $\text{pr}: E_{\text{VCY}}(G) \to G/G$
The (Fibered) Meta- and Other Isomorphism Conjectures

\[H^G_n(E_{VCY}(G); \mathbf{TC}_{A,p}) \to H^G_n(G/G; \mathbf{TC}_{A,p}) = \pi_n(\mathbf{TC}(A[G]; p)) \]

is injective for all \(n \in \mathbb{Z} \);

Proof. See [608, Theorem 1.4], \(\square \)

A more general result about rational injectivity of the assembly map for topological cyclic homology can be found in [608, Theorem 1.8].

One of the reasons why topological cyclic homology is much harder than topological Hochschild homology is that in the construction of topological cyclic homology a homotopy inverse limits occurs and taking smash product does not commute with homotopy inverse limits in general, see [609]. This is the main reason for the existence of the counterexamples above.

Remark 14.70 (Pro-systems). If one does not pass to the assembly maps but argues on the level of pro-systems, then there is a kind of assembly map for pro-systems for any group \(G \) and the family \(\mathcal{CYC} \) of cyclic subgroups which is indeed a pro-isomorphism, see [608, Theorem 1.3]. In other words, a pro-system version of the Farrell-Jones Conjecture for topologically cyclic homology holds for any group \(G \) and any connective spectrum \(A \) for the family \(\mathcal{CYC} \) of cyclic subgroups.

More information about topological cyclic homology and its applications to algebraic \(K \)-theory via the cyclotomic trace can be found for instance in [287, 426, 681].

14.12 The Farrell-Jones Conjecture for Homotopy \(K \)-Theory

Let \(E : \text{ADD-CAT} \to \text{SPECTRA} \) be a (covariant) functor from the category \(\text{ADD-CAT} \) of small additive categories. In [610, Definition 8.1] its homotopy stabilization is constructed which consists of a covariant functor

\[\mathbf{EH} : \text{ADD-CAT} \to \text{SPECTRA} \]

together with a natural transformation

\[h : E \to \mathbf{EH} \]

We call \(E \) homotopy stable if \(h(A) \) is an equivalence for any object \(A \) in \(\text{ADD-CAT} \).

This construction has the following basic properties. Given an automorphism \(\Phi : A \to A \), let \(A_\Phi[t] \) be the additive category of twisted polynomials with coefficients in \(A \), see [618, Definition 1.2]. Let \(\text{ev}^+_0 : A_\Phi[t] \to A \) be the functor of additive categories given by taking \(t = 0 \) and let \(1^+ : A \to A_\Phi[t] \) be the obvious inclusion see [618 (1.10) and (1.12)].
Lemma 14.71. Let $E : \text{ADD-CAT} \to \text{SPECTRA}$ be a covariant functor.

(i) EH is homotopy stable;
(ii) Suppose that E is homotopy stable. Let A be any additive category with an automorphism $\Phi : A \xrightarrow{\cong} A$. Then the maps

$$E(\text{ev}_0^+) : E(A_\Phi[t]) \xrightarrow{\cong} E(A);$$
$$E(\text{i}^+) : E(A) \xrightarrow{\cong} E(A_\Phi[t]),$$

are weak homotopy equivalences;
(iii) The functor E is homotopy stable if and only if for every additive category A the inclusion $A \to A[t]$ induces a weak homotopy equivalence $E(A) \to E(A[t])$.

Proof. [i] and [ii] See [616, Lemma 8.2].

[iii] The only if statement follows from assertion (ii). The if-statement is a direct consequence of the definition of EH, see [616, Definition 8.1].

Lemma 14.71(ii) essentially says that homotopy stable automatically implies homotopy stable in the twisted sense.

Remark 14.72 (Universal property of EH). Note that Lemma 14.71(ii) says that up to weak homotopy equivalence the transformation $h : E \to EH$ is universal (from the left) among transformations $f : E \to F$ to homotopy stable functors $F : \text{ADD-CAT} \to \text{SPECTRA}$ since we obtain a commutative square whose lower vertical arrow is a weak homotopy equivalence

$$
\begin{array}{ccc}
E & \xrightarrow{h} & EH \\
\downarrow{f} & & \downarrow{Hf} \\
F & \xrightarrow{\cong} & HF
\end{array}
$$

Definition 14.73 (Homotopy K-theory). Let $K : \text{ADD-CAT} \to \text{SPECTRA}$ be the covariant functor which sends an additive category to its non-connective K-theory spectrum, see for instance [186, 616, 719]. Define the homotopy K-theory functor

$$KH : \text{ADD-CAT} \to \text{SPECTRA}$$

to be the homotopy stabilization of K.

The next result is taken from [616, Lemma 8.6].

Theorem 14.74 (Bass-Heller-Swan decomposition for homotopy K-theory). Let A be an additive category with an automorphism $\Phi : A \xrightarrow{\cong} A$. Then we get for all $n \in \mathbb{Z}$ a weak homotopy equivalence
\[a : T_{KH(\Phi^{-1})} \xrightarrow{\cong} KH(A[\phi[t, t^{-1}]]), \]

where \(T_{KH(\Phi^{-1})} \) is the mapping torus of the self-map \(KH(\Phi^{-1}) : KH(A) \to KH(A) \).

Remark 14.75 (Identification with Weibel’s definition). Weibel has defined a version of homotopy \(K \)-theory for a ring \(R \) by a simplicial construction in [907]. It is not hard to check using Remark 14.72, which applies also to the constructions of [907] instead of \(H \), that \(\pi_i(KH(R)) \) can be identified with the one in [907], if \(R \) is a skeleton of the category of finitely generated free \(R \)-modules.

Conjecture 14.76 (Farrell-Jones Conjecture for homotopy \(K \)-theory with coefficients in additive \(G \)-categories). We say that \(G \) satisfies the Farrell-Jones Conjecture with coefficients for homotopy \(K \)-theory in additive \(G \)-categories if for every additive \(G \)-category \(\mathcal{A} \) and every \(n \in \mathbb{Z} \) the assembly map given by the projection \(\text{pr}: \text{FIN}(G) \to G/G \)

\[H^n_G(\text{FIN}(G); KH_{\mathcal{A}}) \to H^n_G(G/G; KH_{\mathcal{A}}) = \pi_n(KH_{\mathcal{A}}(I(G))) \]

is bijective, where \(KH_{\mathcal{A}} : \text{GROUPOIDS} \downarrow G \to \text{SPECTRA} \) is analogously defined as the functor appearing in [12.10] but with \(K \) replaced by \(KH \).

The version of Conjecture 14.76 has been treated for rings in [75].

Conjecture 14.77 (Farrell-Jones Conjecture for homotopy \(K \)-theory with coefficients in additive \(G \)-categories with finite wreath products). We say that \(G \) satisfies the Farrell-Jones Conjecture with coefficients for homotopy \(K \)-theory in additive \(G \)-categories with finite wreath products if for any finite group \(F \) the group \(G \wr F \) satisfies the Farrell-Jones Conjecture with coefficients for homotopy \(K \)-theory in additive \(G \wr F \)-categories [14.76].

14.13 The Farrell-Jones Conjecture for TotallyDisconnected Groups and Hecke Algebras

There is one instance, where one can formulate the Farrell-Jones Conjecture for non-discrete groups, namely, for the algebraic \(K \)-theory of a Hecke algebra \(\mathcal{H}(G) \) of a totally disconnected locally compact second countable Hausdorff group \(G \).

Denote by \(\mathcal{H}(G) \) the Hecke algebra of \(G \) which consists of locally constant functions \(G \to \mathbb{C} \) with compact support and inherits its multiplicative structure from the convolution product. The Hecke algebra \(\mathcal{H}(G) \) plays the same role for \(G \) as the complex group ring \(\mathbb{C}G \) for a discrete group \(G \) and reduces to this notion if \(G \) happens to be discrete. There is a \(G \)-homology theory \(\mathcal{H}_G^* \) with the property that for any open and closed subgroup \(H \subseteq G \) and all \(n \in \mathbb{Z} \)
we have $\mathcal{H}_n^G(G/H) = K_n(\mathcal{H}(H))$, where $K_n(\mathcal{H}(H))$ is the algebraic K-group of the Hecke algebra $\mathcal{H}(H)$. There is also the notion of a classifying space $E_{KO}(G)$ for the family of compact-open subgroups of G. Note that KO is not closed under passing to subgroups but at least under finite intersections which suffices to our purposes. The space $E_{KO}(G)$ is characterized by the property that for any G-CW-complex X whose isotropy groups are compact-open, there is up to G-homotopy precisely one G-map from X to $E_{KO}(G)$. More information about this space and the comparison with the classifying space for numerable G-spaces $J_{KO}(G)$ can be found in [590]. The following conjecture has appeared already in [604, Conjecture 119 on page 773].

Conjecture 14.78 (The Farrell-Jones Conjecture for the algebraic K-theory of Hecke-Algebras). For a totally disconnected locally compact second countable Hausdorff group G the assembly map

$$H_n^G(E_{KO}(G)) \to H_n^G(G) = K_n(\mathcal{H}(G))$$

induced by the projection $pr: E_{KO}(T) \to \{\bullet\}$ is an isomorphism for all $n \in \mathbb{Z}$.

In the case $n = 0$ this reduces to the statement that

$$\mathrm{colim}_{G/H \in \text{Or}_{KO}(G)} K_0(\mathcal{H}(H)) \to K_0(\mathcal{H}(G))$$

is an isomorphism. Some evidence for this comes for instance from [246]. For $n \leq -1$ one obtains the statement that $K_n(\mathcal{H}(G)) = 0$. The group $K_0(\mathcal{H}(G))$ is closely related to the theory of the smooth representations of G, see for instance [816, 817]. **Comment 14:** Are these the right references? The G-homology theory can be constructed using an appropriate functor $K_H: \text{Or}_{KO}(G) \to \text{SPECTRA}$ and the recipe explained in Theorem 11.24. The desired functor $K_{\mathcal{H}}$ is constructed in [804]. **Comment 15:** Discuss the notions and results of the paper by Bartels and Lück on this topic when it is written.

14.14 Relations among the Isomorphisms Conjectures

Let G be a group and let X be a G-CW-complex. We get from the linearization map of (7.10) a natural map

$$L_n^G(X): H_n^G(X; \mathbb{A}^B) \to H_n^G(X; K_{\mathbb{Z}}).$$

if we take Example 14.37 into account. We conclude from Theorem 7.17 and the equivariant Atiyah Hirzebruch spectral sequence, see Theorem 11.45 that
\[L^G_n(X)\] is bijective for \(n \leq 1\), surjective for \(n = 2\) and rationally bijective for all \(n \in \mathbb{Z}\). If we take \(X = E_{VCY}(G)\) and \(X = G/G\) we obtain a commutative diagram, where the horizontal maps are assembly maps and the vertical maps are given by the maps \(\{14.81\} \).

\[
\begin{array}{ccc}
H^G_n(E_{VCY}(G); A^B) & \longrightarrow & H^G_n(G/G; A^B) = \pi_n(A(BG)) \\
\downarrow & & \downarrow \\
H^G_n(E_{VCY}(G); KZ) & \longrightarrow & H^G_n(G/G; KZ) = K_n(ZG)
\end{array}
\]

We conclude that for \(n \in \mathbb{Z}\) with \(n \leq 1\) that the upper arrow is bijective if and only if the lower arrow is bijective. We also conclude for every \(n \in \mathbb{Z}\) and that the lower arrow is rationally bijective if and only if the lower arrow is rationally bijective for \(n \in \mathbb{Z}\). This gives some interesting relations between the \(K\)-theoretic Farrell-Jones Conjecture \([12.1]\) with coefficients in the ring \(Z\) and the Farrell-Jones Conjecture \([14.59]\) for \(A\)-theory (without coefficients).

For instance, they are equivalent in degrees \(n \leq 1\), and they are rationally equivalent.

The case, where we allow in the Farrell-Jones Conjecture \([14.59]\) for \(A\)-theory coefficients is more complicated since in Theorem \([7.17]\) the assumption occurs that the space under consideration has to be aspherical. Consider a free \(G\)-CW-complex \(Z\) which is simply connected (but not necessarily contractible). Then \(\pi_1(G/H \times_G Z) \cong H\). We still get a commutative diagram

\[
\begin{array}{ccc}
H^G_n(E_{VCY}(G); A^G_Z) & \longrightarrow & H^G_n(G/G; A^G_Z) = \pi_n(A(G\backslash Z)) \\
\downarrow & & \downarrow \\
H^G_n(E_{VCY}(G); KZ) & \longrightarrow & H^G_n(G/G; KZ) = K_n(ZG)
\end{array}
\]

but we only know that the vertical arrows are bijective for \(n \leq 1\) and surjective for \(n = 2\), but not anymore that they are rationally bijective for all \(n \in \mathbb{Z}\).

14.14.2 The Farrell-Jones Conjecture for \(A\)-Theory and for Pseudoisotopy

The Farrell Jones Conjecture \([14.59]\) for \(A\)-theory (with coefficients) and the Farrell-Jones Conjecture \([14.61]\) for (smooth) pseudoisotopy (with coefficients) are equivalent. This follows from the non-connective analogues of \([7.19]\) and \([7.21]\) for pseudoisotopy, and from the non-connective ana-
logues of (7.24), and (7.25) for smooth pseudoisotopy, see [728], using Lemma 14.47 (ii) and Lemma 14.48 (ii).

14.14.3 The Farrell-Jones Conjecture for K-Theory and for topological cyclic homology

The basic reason why topological cyclic homology is a powerful approximation of algebraic K-theory is the cyclotomic trace due to Bökstedt-Hsiang-Madsen [131]. It can extended to the equivariant setting and thus be used together with the linearization map (7.16) to construct the following commutative diagram which is closely related to the main diagram in [609, (3.1)] for $n \geq 0$

\[
\begin{align*}
H^G_n(E_{FCY}(G); K^0_{\geq 0}) &\longrightarrow H^G_n(G/G; K^0_{\geq 0}) = K_n(ZG) \\
H^G_n(E_{FCY}(G); K^0_{\geq 0}) &\longrightarrow H^G_n(G/G; K^0_{\geq 0}) = K_n(ZG) \\
H^G_n(E_{FCY}(G); A^0) &\longrightarrow H^G_n(G/G; A^0) = A_n(BG) \\
H^G_n(E_{FCY}(G); TC_\mathcal{S}) &\longrightarrow H^G_n(G/G; TC_{\mathcal{S}, p}) = TC_n(BG, p),
\end{align*}
\]

where FCY is the family of finite cyclic subgroups of G, the superscript ≥ 0 indicates that we consider the 0-connective covers, the vertical arrows from the third row to the second row come from the linearization map and the vertical arrows from the third row to the fourth row come from the cyclotomic trace. All arrows marked with $\cong_\mathbb{Q}$ are known to be bijective. This follows from the maps induced by the linearization from Theorem 7.17. For the map $H^G_n(E_{FCY}(G); K^0_{\geq 0})$ this follows from Theorem 12.43 (v) and further computations based equivariant Chern characters using Theorem 11.71 and [609, Example 12.12]. The natural map $H^G_n(E_{FCY}(G); K^0_{\geq 0}) \to H^G_n(E_{FCY}(G); K_\mathcal{S})$ is split injective and its cokernel is given by an expression involving the groups $K_{n-1}(C)$ for finite cyclic subgroups $C \subseteq G$. Thus the diagram (14.82) implies that the K-theoretic Farrell-Jones assembly map is rationally injective, ignoring certain contributions from the collection of the groups $K_{n-1}(C)$ for finite cyclic subgroups $C \subseteq G$, provided that the lowermost horizontal arrow is rationally injective. This is the basic idea in the proof of rational injectivity results for the K-theoretic Farrell-Jones assembly map presented in [609], where the actual argument is more involved and uses the C-functors as well.
A rational computation of $K_n(ZG)$ is given in Theorem 16.4 provided that if G satisfies the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \mathbb{Z}. With the methods mentioned above one can detect under certain conditions the source of the map appearing in Theorem 16.4 if one ignores the summand for $q = -1$.

14.14.4 The L-Theoretic Farrell-Jones Conjecture and the Baum-Connes Conjecture

In the sequel $[1/2]$ stands for inverting 2 at the level of spectra or abelian groups. Note that for a spectrum E we have a natural isomorphism $\pi_n(E)[1/2] \cong \pi_n(E[1/2])$.

One can construct the following commutative diagram
where all horizontal maps are assembly maps and the vertical arrows are induced by transformations of functors \(\text{GROUPOIDS} \to \text{SPECTRA} \). These transformations are induced by change of rings maps except the one from \(K_{\text{top}}^n[1/2] \) to \(L_p^P(C^*_r(G;R))[1/2] \) which is much more complicated and carried out in [55]. Actually, it does not exist without inverting two on the spectrum level. Since it is a weak equivalence, the maps \(i_4 \) and \(j_4 \) are bijections.

On the level of homotopy groups the comparison between the algebra \(L \)-theory and the topological \(K \)-theory of a real and of a complex \(C^* \)-algebra have already been explained in Theorem 9.78, namely we obtain isomorphisms

\[
\begin{align*}
(14.84) & \quad KO_n(A)[1/2] \cong L_p^n(A)[1/2], \quad \text{if } A \text{ is a real } C^*-\text{algebra}; \\
(14.85) & \quad K_n(A) \cong L_p^n(A), \quad \text{if } A \text{ is a complex } C^*-\text{algebra}.
\end{align*}
\]
Since for any finite group H each of the following maps is known to be a bijection because of [756, Proposition 22.34 on page 252] and $\mathbb{R} H = C^*_r(H; \mathbb{R})$

$$L^n_\mathbb{R}(\mathbb{Z} H)[1/2] \xrightarrow{\cong} L^n_\mathbb{Q}(\mathbb{Q} H)[1/2] \xrightarrow{\cong} L^n_\mathbb{R}(\mathbb{R} H)[1/2] \xrightarrow{\cong} L^n_\mathbb{C}(C^*_r(H; \mathbb{R})),$$

we conclude from the equivariant Atiyah Hirzebruch spectral sequence, see Theorem [11.45] that the vertical arrows $i_1, i_2,$ and i_3 are isomorphisms. The arrow j_1 is bijective by [754, page 376]. The maps l are isomorphisms for general results about localizations.

The lowermost vertical arrows i_5 and j_5 are known to be split injective, a splitting comes by restriction with the inclusions $C^*_r(G; \mathbb{R}) \to C^*_r(G; \mathbb{C})$. The following conjecture is already raised as question in [530, Remark 23.14 on page 197], see also [554, Conjecture 1 in Subsection 5.2].

Conjecture 14.86 (Passage for L-theory from $\mathbb{Q} G$ to $\mathbb{R} G$ to $C^*_r(G; \mathbb{R})$).

The maps j_2 and j_3 appearing in diagram (14.83) are bijective.

One easily checks

Lemma 14.87. Let G be a group.

(i) Suppose that G satisfies the L-theoretic Farrell-Jones Conjecture [12.4] with coefficients in the ring $R = \mathbb{Q}$ and $R = \mathbb{R}$ and the complex version of the Baum-Connes Conjecture [13.9]. Then G satisfies Conjecture [14.86].

(ii) Suppose that G satisfies Conjecture [14.86]. Then G satisfies the L-theoretic Farrell-Jones Conjecture [12.4] for the ring \mathbb{Z} after inverting 2, if and only if G satisfies the real version of the Baum-Connes Conjecture [13.9] after inverting 2.

(iii) Suppose that the assembly map appearing in the complex version of the Baum-Connes Conjecture [13.9] is (split) injective after inverting 2. Then the assembly map appearing in L-theoretic Farrell-Jones Conjecture [12.4] with coefficients in the ring for $R = \mathbb{Z}$ is (split) injective after inverting 2.

Proof. This follows from Theorem [12.53] (i), Remark [13.13] and the diagram (14.83). \qed

14.14.5 Mapping Surgery to Analysis

Let X be a connected CW-complex with fundamental group π. Let $\tilde{X} \to X$ be its universal covering. Denote by ϵ one of the decorations s, h or p. We have constructed functors $L^\mathbb{Z}_\epsilon$ and $K^\text{top}_R : \text{GROUPOIDS} \to \text{SPECTRA}$ in Theorem [11.40]. We obtain maps of spectra

$$X_+ \wedge L^\mathbb{Z}_\epsilon({\ast}) \xrightarrow{\cong} \tilde{X}_+ \wedge_\pi L^\mathbb{Z}_\epsilon(\mathbb{G}^\pi(\pi)) \longrightarrow L^\mathbb{Z}_\epsilon(\mathbb{G}^\pi(\pi/\pi))$$

$$X_+ \wedge K^\text{top}_R({\ast}) \xrightarrow{\cong} \tilde{X}_+ \wedge_\pi K^\text{top}_R(\mathbb{G}^\pi(\pi)) \longrightarrow K^\text{top}_R(\mathbb{G}^\pi(\pi/\pi))$$
Here \{\ast\} denotes the trivial groupoid with one object, the horizontal arrows pointing to the left are defined in the obvious way and are weak homotopy equivalences, since \(\widetilde{X}\) is a free \(\pi\)-CW-complex with \(\pi \backslash \widetilde{X} = X\) and \(\mathcal{G}_\pi(\pi) \to \{\ast\}\) is an equivalence of groupoids, and the horizontal arrows to the right are assembly maps composed with maps induced by a fixed \(\pi\)-map \(\widetilde{X} \to E\pi\). (If one wants to get rid of the dependency of a choice of \(\pi\)-map \(\widetilde{X} \to E\pi\), one can consider \(\Pi(\pi/H \times_\pi \widetilde{X})\) instead of \(\mathcal{G}_\pi(\pi/H)\) for objects \(\pi/H\) in \(\text{Or}(\pi)\).)

Denote by \(S^\epsilon(X)\) and \(D(X)\) respectively the homotopy fiber of the arrow pointing to the right in the first and second row above.

After taking homotopy groups we obtain long exact sequences

\[
\cdots \to H_{n+1}(X; L_\mathbb{Z}^\epsilon\{\ast\}) \to L^\epsilon_{n+1}(\mathbb{Z}\pi) \to \pi_n(S^\epsilon(X)) \to H_n(X; L_\mathbb{Z}^\epsilon\{\ast\}) \to L^\epsilon_n(\mathbb{Z}\pi) \to \cdots,
\]

and

\[
\cdots \to KO_{n+1}(X) \to KO_{n+1}(C^*_r(\pi; \mathbb{R})) \to \pi_n(D(X)) \to KO_n(X) \to KO_n(C^*_r(\pi; \mathbb{R})) \to \cdots.
\]

After inverting 2 there is a zigzag of natural transformation from \(K_\mathbb{R}^{\text{top}}[1/2]\) \(L_\mathbb{Z}[1/2]\) as explained in Subsection 14.14.4. It yields a map between long exact sequence
Lemma 14.91. Suppose that \(\pi \) satisfies the \(L \)-theoretic Farrell-Jones Conjecture [12.4] with coefficients in the ring with involution \(\mathbb{Z} \) and the Baum-Connes Conjecture [13.9] for the real group \(C^* \)-algebra.

Then the map

\[
\pi_n(D(M))[1/2] \cong \pi_n(S'(M))[1/2]
\]

is bijective for \(n \in \mathbb{Z} \).

Proof. The first and fourth horizontal arrow in the diagram (14.90) are bijective since there are given by transformation of homology theories and their evaluation at \(\{ \bullet \} \) is known to be bijective. The Rothenberg sequences of Subsection 8.10.4, Theorem 12.53 (i) and the diagram (14.83) together with the assumption that \(\pi \) satisfies the \(L \)-theoretic Farrell-Jones Conjecture [12.4] with coefficients in the ring with involution \(\mathbb{Z} \) and the Baum-Connes Conjecture [13.9] for the real group \(C^* \)-algebra imply that the second and fifth horizontal arrow in the diagram (14.90) are bijective. Now apply the Five-Lemma to the diagram (14.90).

Now consider the case \(X = M \) for a closed orientable topological manifold \(M \) of dimension \(d \). Then the part of the sequence (14.88) for \(n \geq d \) can identified with the long exact surgery sequence in the topological category, see Theorem [8.127] see for instance [756, Theorem 18.5 on page 198] or [538].
Some extra care is necessary at the end in degree \(d\) since one has to pass to the 1-connective cover of the \(L\)-theory spectrum. In particular we get an identification of \(\pi_d(S^*(M))\) with the topological structure set \(S^\text{TOP,*}_d(M)\), see Subsection 8.12.1, which is the central object of study in the classification of topological manifolds. Note that in view of Lemma 14.91 one can hope for an identification of \(S^\text{TOP,*}_d(M)\) after inverting 2 with \(\pi_d(D(M))\) which is an object related to topological \(K\)-theory of spaces and \(C^*\)-algebras. An analytic surgery exact sequence in terms of the topological \(K\)-theory of \(C^*\)-algebra associated to \(M\) is constructed in [441, Section 1]

Problem 14.92 (Identification of analytic surgery exact sequences).

Identify the real version of the analytic surgery sequence appearing in [441, Section 1] with the exact sequence (14.89) for a closed orientable manifold of dimension \(d\).

Note that Higson-Roe have to work with smooth manifolds since they want to apply index theory. So they have to consider the surgery sequence in the smooth category. They construct a diagram relating the surgery exact sequence in the smooth category to their analytic surgery exact sequence.

A more direct approach to the map comparing the surgery sequence in the smooth category to the analytic surgery exact sequence is given in Piazza-Schick [726].

A comparison map starting with the surgery exact sequence in the topological category is constructed in Zenobi [942] using the approach of [726] and Lipschitz structures.

Recall that the surgery exact sequence in the topological category is an exact sequence of abelian groups, what is not true for the smooth category. It is not clear whether the construction in Zenobi [942] is compatible with the structures of an abelian groups on the topological and analytic structure sets.

Note that that the comparison maps appearing in [441, 726, 942] go in the opposite direction, namely from \(L\)-theory to \(KO\)-theory, in comparison with the transformations appearing in [553].

So one can state the following problem after Problem 14.92 has been solved:

Problem 14.93 (Identification of transformations from the surgery exact sequence to its analytic counterpart). Identify the comparison map (14.90) from the surgery exact sequence in the topological category to the analytic surgery sequence appearing in [441, Section 5] with the comparison map appearing in Zenobi [942].
14.14.6 The Baum-Connes Conjecture and the Bost Conjecture

We have the factorization of the Baum-Connes assembly map appearing in the Baum-Connes Conjecture [13.11] with coefficients

$$\text{asmb}_A^{G,C}(EG) : K_0^G(EG; A) \xrightarrow{\text{asmb}_A^{G,C,L^1}(EG)} K_*(A \rtimes_{L^1} G) \xrightarrow{K_*(q)} K_*(A \rtimes_r G).$$

Recall that the Bost Conjecture with coefficients predicts the bijectivity of the first map. We have also mentioned that there are counterexamples to the Baum-Connes Conjecture [13.11] with coefficients. The group G involved in these counterexamples can be constructed as colimits of hyperbolic groups. For such colimits the Bost Conjecture with coefficients is known to be true. Hence for such a group G the map $K_*(q) : K_*(A \rtimes_{L^1} G) \to K_*(A \rtimes_r G)$ fails to be bijective. More details about this discussion can be found in [71, Section 1.5].

Proof. See [616, Theorem 9.1 (iii)].

Remark 14.95 (Implications of the homotopy K-theory version to the K-theory version). Next we discuss some cases, where the Farrell-Jones Conjecture [14.76] for homotopy K-theory with coefficients in additive G-categories gives implications for the injectivity part of the K-theoretic Farrell-Jones Conjecture [12.1] with coefficients in the ring R. These all follow by inspecting for a ring R the following commutative diagram

$$
\begin{array}{ccc}
H_n^G(E_{VCY}(G); K_R) & \longrightarrow & H_n^G(\bullet; K_R) = K_n(RG) \\
\cong & & \\
H_n^G(E_{FIN}(G); K_R) & \longrightarrow & H_n^G(\bullet; KH_R) = KH_n(RG)
\end{array}
$$
where the two vertical arrows pointing downwards are induced by the transformation $h: K \to KH$, the map $ι_{FN \subseteq VCY}$ is induced by the inclusion of families $FN \subseteq VCY$ and the two horizontal arrows are the assembly maps for K-theory and homotopy K-theory.

Suppose that R is regular and the order of any finite subgroup of G is invertible in R. Then the two left vertical arrows are known to be bijections. This follows for $ι_{FN \subseteq VCY}$ from [604, Proposition 70 on page 744] and for h from [252, Lemma 4.6] and the fact that RH is regular for all finite subgroups H of G and hence $K_n(RH) \to KH_n(RH)$ is bijective for all $n \in \mathbb{Z}$ by Theorem [6,16]. Hence the (split) injectivity of the lower horizontal arrow implies the (split) injectivity of the upper horizontal arrow.

Suppose that R is regular. Then the two left vertical arrows are rational bijections. This follows for $ι_{FN \subseteq VCY}$ from [617, Theorem 0.3]. To show it for h it suffices because of [252, Lemma 4.6] to show that $K_n(RH) \to KH_n(RH)$ is rationally bijective for each finite group H and $n \in \mathbb{Z}$. By the version of the spectral sequence appearing in [907, 1.3] for non-connective K-theory, it remains to show that $NP^pK_n(RH)$ vanishes rationally for all $n \in \mathbb{Z}$. Since $R[t]$ is regular if R is, this boils down to show that $NK_p(RH)$ is rationally trivial for any regular ring R and any finite group H. The proof that $NK_p(RH)$ is rationally trivial for any regular ring R and any finite group H can be found for instance in [617, Theorem 9.4]. Hence the upper horizontal arrow is rationally injective if the lower horizontal arrow is rationally injective.

The next conjecture generalizes Conjecture [6,67] from torsionfree groups to arbitrary groups.

Conjecture 14.96 (K-theory versus homotopy K-theory for regular rings). Let G be a group. Suppose that R is regular and the order of any finite subgroup of G is invertible in R.

Then the natural map

$$K_n(RG) \to KH_n(RG)$$

is an isomorphism for all $n \in \mathbb{Z}$.

Exercise 14.98. Let G be a group. Suppose that R is regular and the order of any finite subgroup of G is invertible in R. Suppose that Conjecture [14,96] is true for G. Show that then $NK_n(RG) = 0$ holds for all $n \in \mathbb{Z}$.
14.15 Notes

One can also define a version of the Meta-Isomorphism Conjecture 14.2 or of the Fibered Meta-Isomorphism Conjecture 14.8 with finite wreath products, compare Section 12.4. Let \mathcal{C} be a class of groups closed under isomorphisms and taking subgroups and quotients. Let \mathcal{H}_* be an equivariant homology theory.

Definition 14.99 (Fibered Meta-Isomorphism Conjecture with finite wreath products).

A group G satisfies the *Fibered Isomorphism Conjecture with finite wreath products* with respect to \mathcal{H}_* and \mathcal{C} if for any finite group F the wreath product $G \wr F$ satisfies the Fibered Meta-Isomorphism Conjecture 14.8 with respect to \mathcal{H}_* and the family $\mathcal{C}(G \wr F)$ consisting of subgroups of $G \wr F$ which belong to \mathcal{C}.

The inheritance properties for the Fibered Meta-Isomorphism Conjecture 14.8 plus the passage to overgroups of finite index do also hold for the Fibered Meta-Isomorphism Conjecture 14.99 with finite wreath products, see [537, Section 3].

Proofs of some of the inheritance properties above are also given in [414, 793].

One may ask whether one can find abstractly for the Fibered Meta-Isomorphism Conjecture 14.8 a smallest family for which it is true. For instance what happens if one takes the intersection of all families for which the Fibered Meta-Isomorphism Conjecture 14.8 is true. This questions turns out to be equivalent to the difficult and unsolved question whether the Fibered Meta-Isomorphism Conjecture 14.8 holds for an infinite product of groups, provided that for each of these groups the Fibered Meta-Isomorphism Conjecture 14.8 is true.

The following observation is taken from [737, Section 7]. Fix an equivariant homology theory \mathcal{H}_*. Take for simplicity Γ to be the trivial group when considering the Fibered Meta-Isomorphism Conjecture 14.8.

We consider the following properties:

- **(P)**

 For any set $\{(G_i, \mathcal{F}_i) \mid i \in I\}$ for G_i a group and \mathcal{F}_i a family of subgroups of G_i such that (G_i, \mathcal{F}_i) satisfies the Fibered Meta Isomorphism Conjecture 14.8 for every $i \in I$, the group $\prod_{i \in I} G_i$ with respect to the family

 \[
 \prod_{i \in I} \mathcal{F}_i := \left\{ H \subseteq \prod_{i \in I} G_i \mid \exists H_i \in \mathcal{F}_i \text{ for every } i \in I \text{ with } H \subseteq \prod_{i \in I} H_i \right\}
 \]

 satisfies the Fibered Meta-Isomorphism Conjecture 14.8.
• (I) For any group G and families of subgroups $\{F_i \mid i \in I\}$ of G such that (G, F_i) satisfies the Fibered Meta Isomorphism Conjecture \[14.8\] for every $i \in I$, the pair $(G, \bigcap_{i \in I} F_i)$ satisfies the Fibered Meta Isomorphism Conjecture \[14.8\].

Lemma 14.100. The properties (I) and (P) are equivalent.

Exercise 14.101. Prove Lemma \[14.100\] using Lemma \[14.16\].
Chapter 15
Status

15.1 Introduction

In this chapter we give a status report about the class of groups for which the Full Farrell-Jones Conjecture \([12.23]\) see Theorem \([15.1]\) the Baum-Connes \([13.11]\) with coefficients, see Theorem \([15.7]\) the Baum-Connes Conjecture \([13.9]\) see Theorem \([15.12]\) and the Novikov Conjecture \([8.134]\) see Section \([15.7]\) have been proved. We discuss also injectivity results in Sections \([15.5]\) and \([15.6]\). In order to restrict the length of the exposition we do not present the history of these results and concentrate only on the current state of art, although this unfortunately means that certain papers, which were spectacular break throughs at the time of their writing and had a big impact on the following papers, do not appear here.

A review of and status report for some classes of groups is given in Section \([15.8]\). This may be helpful for a reader who is interested in a certain class of groups, although this means that there are some repetitions of statements of results.

At the time of writing no counterexamples to the Full Farrell-Jones Conjecture \([12.23]\) the Baum-Connes Conjecture \([13.9]\) without coefficients, and the Novikov Conjecture \([8.134]\) are known. These conjectures are open in general. In Section \([15.10]\) we explain that the search for counterexamples is not easy at all. In Subsection \([15.10.5]\) we mention a few results which are consequences of the \(K\)-theoretic Farrell-Jones Conjecture \([12.1]\) with coefficients in the ring \(R\) and for which there exist independent proofs for all groups.

15.2 Status of the Full Farrell-Jones Conjecture

The most general form of the Farrell-Jones Conjecture is the Full Farrell-Jones Conjecture \([12.23]\). It has the best inheritance properties and all variants of the Farrell-Jones Conjecture presented in this book are special cases of it.

Theorem 15.1 (Status of the Full Farrell-Jones Conjecture \([12.23]\)).

Let \(\mathcal{FJ}\) be the class of groups for which the Full Farrell-Jones Conjecture \([12.23]\) is true. Then

(i) The following classes of discrete groups belong to \(\mathcal{FJ}\):

(a) Hyperbolic groups;
(b) Finite dimensional CAT(0)-groups;
(c) Virtually solvable groups;
(d) (Not necessarily cocompact) lattices in path connected second countable locally compact Hausdorff groups.

More generally, if \(L \) is a (not necessarily cocompact) lattice in a second countable locally compact Hausdorff group \(G \) such that \(\pi_0(G) \) is discrete and belongs to \(\mathcal{FJ} \), then \(L \) belongs to \(\mathcal{FJ} \);

(e) Fundamental groups of (not necessarily compact) connected manifolds (possibly with boundary) of dimension \(\leq 3 \);

(f) The groups \(\text{GL}_n(\mathbb{Q}) \) and \(\text{GL}_n(F(t)) \) for \(F(t) \) the function field over a finite field \(F \);

(g) \(S \)-arithmetic groups;

(h) The mapping class group \(\Gamma_{g,r}^s \) group of a closed orientable surface of genus \(g \) with \(r \) boundary components and \(s \) punctures for \(g, r, s \geq 0 \);

(i) Fundamental groups of graphs of abelian groups;

(j) Fundamental groups of graphs of virtually cyclic groups;

(k) Artin’s full braid groups \(B_n \);

(l) Coxeter groups;

(ii) The class \(\mathcal{FJ} \) has the following inheritance properties:

(a) Passing to subgroups
Let \(H \subseteq G \) be an inclusion of groups. If \(G \) belongs to \(\mathcal{FJ} \), then \(H \) belongs to \(\mathcal{FJ} \);

(b) Passing to finite direct products
If the groups \(G_0 \) and \(G_1 \) belong to \(\mathcal{FJ} \), then also \(G_0 \times G_1 \) belongs to \(\mathcal{FJ} \);

(c) Group extensions
Let \(1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1 \) be an extension of groups. Suppose that for any infinite cyclic subgroup \(C \subseteq Q \) the group \(p^{-1}(C) \) belongs to \(\mathcal{FJ} \) and that the groups \(K \) and \(Q \) belong to \(\mathcal{FJ} \).

Then \(G \) belongs to \(\mathcal{FJ} \);

(d) Group extensions with virtually torsionfree hyperbolic groups as kernel
Let \(1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1 \) be an extension of groups such that \(K \) is virtually torsionfree hyperbolic and \(Q \) belongs to \(\mathcal{FJ} \). Then \(G \) belongs to \(\mathcal{FJ} \);

(e) Directed colimits
Let \(\{G_i \mid i \in I\} \) be a direct system of groups indexed by the directed set \(I \) (with arbitrary structure maps). Suppose that for each \(i \in I \) the group \(G_i \) belongs to \(\mathcal{FJ} \).

Then the colimit \(\text{colim}_{i \in I} G_i \) belongs to \(\mathcal{FJ} \);

(f) Passing to free products
Consider a collection of groups \(\{G_i \mid i \in I\} \) such that \(G_i \) belongs \(\mathcal{FJ} \) for each \(i \in I \). Then \(*_{i \in I} G_i \) belongs to \(\mathcal{FJ} \);
(g) Passing to overgroups of finite index
Let G be an overgroup of H with finite index $[G : H]$. If H belongs to \mathcal{FJ}, then G belongs to \mathcal{FJ}.

(h) Graph products
A graph product of groups, each of which belongs to \mathcal{FJ}, belongs to \mathcal{FJ} again.

Proof. [ia] This is proved for K-theory in [80, Main Theorem] and for L-theory in [78, Theorem B], but not including the “with finite wreath product” property. How this can be included, is explained in [82, Remark 6.4].

[ib] This is proved for K-theory in degree ≤ 1 and for L-theory in all degrees in [78, Theorem B]. The argument why the K-theory case holds in all degrees can be found in [913, Theorem 1.1 and Theorem 3.4]. Note that for a finite dimensional CAT(0)-group G and a finite group F the wreath product $G \wr F$ is a finite dimensional CAT(0)-group again so that the passage to the version with finite wreath products is automatically true;

[ic] See [904, Theorem 1.1]. (The special case of nearly crystallographic groups is treated by Farrell-Wu [339].)

[ia] See [487, Theorem 8] whose proof is based on the case of a cocompact lattices in an almost connected Lie groups handled in [72, Theorem 1.2 and Remark 1.4].

[ia] In dimension 3 this is proved in [72, Corollary 1.3 and Remark 1.4], where Roushon [793, 794] is used. The dimensions 1 and 2 can be handled directly or reduced to dimension 3 by crossing with D^1.

[id] See [799, Theorem 8.13].

[i] This follows from assertion [ia] and the inheritance property passing to subgroups, see assertion [ia], since any S-arithmetic group is a subgroup of $\text{GL}_n(\mathbb{Q})$ or of $\text{GL}_n(F(t))$ for $F(t)$ the function field over a finite field F.

[i] Bartels-Bestvina [70, Remark 9.4] prove the case, where $r = 0$ and $6g + 2s - 6 \geq 0$ holds. We will explain in Lemma [15.28] why this implies the claim for all $g, r, s \geq 0$.

[ii] See Gandini-Meinert-Rüping [373].

[ia] See Wu [925].

[iii] The pure Artin braid group P_n is a strongly poly-surface group in the sense of Definition [15.23] by [39, Theorem 2.1]. Hence it satisfies the Full Farrell-Jones Conjecture [12.23] by Theorem [15.24]. Since the full braid group B_n contains P_n as a subgroup of finite index, B_n satisfies the Full Farrell-Jones Conjecture [12.23] by assertion [ia].

[iii] The argument in Bartels-Lück [78, page 636] for the version without “finite wreath products” extends directly to the case with “finite wreath products”.

[ia] See Theorem [12.24] except for assertions [iic], [iid] and [iih].
Because of assertion (iig), it suffices to show assertion (iic) only in the case where \(C \) can be any infinite virtually cyclic subgroup. Then the claim follows from [537, Lemma 3.16].

Assertion (iih) is proved by Gandini-Rüping [374].

Assertion (iid) follows from assertion (iic) and from [121, Proposition 2.2 and Theorem 2.3] using [70, Remark 9.4].

\[\square \]

Exercise 15.2. Let \(G \) be a cocompact torsionfree lattice in an almost connected Lie group \(L \) with \(\dim(L) \geq 5 \). Let \(M \) be an aspherical closed manifold with fundamental group \(G \). Let \(K \subseteq L \) be a maximal compact subgroup. Show that then \(M \) is homeomorphic to \(G \setminus L/K \).

Exercise 15.3. Let \(U \) be a group which is universal finitely presented, i.e., any finitely presented group is isomorphic to a subgroup of \(G \). (Such a group exists by Higman [427, page 456], and there is even a universal finitely presented groups which is the complement of an embedded \(S^2 \) in \(S^4 \), see [383, Corollary 3.4].) Show that the Full Farrell-Jones Conjecture 12.23 holds for all groups if and only if it holds for \(U \).

Exercise 15.4. Let \(S \subseteq R \) be a subring of \(R \) such that \(R \) as right \(S \)-module is finitely generated free. Suppose that for every natural number \(m \) the group \(GL_m(S) \) belongs to \(FJ \). Show that \(GL_n(R) \) belongs to \(FJ \) for every natural number \(n \).

15.3 Status of the Farrell-Jones Conjecture for homotopy \(K \)-theory

Theorem 15.5 (Status of the Farrell-Jones Conjecture for homotopy \(K \)-theory). Let \(\mathcal{FKK} \) be the class of groups for which the Farrell-Jones Conjecture 14.77 for homotopy \(K \)-theory with coefficients in additive \(G \)-categories with finite wreath products is true.

(i) The class \(\mathcal{FKK} \) contains the class \(\mathcal{FJ} \) of groups for which the Full Farrell-Jones Conjecture 12.23 holds. (The class \(\mathcal{FJ} \) is analyzed in Theorem 15.1.) Moreover, \(\mathcal{FKK} \) contains all elementary amenable groups and all one-relator groups;

(ii) The class \(\mathcal{FKK} \) has the following inheritance properties:

(a) Passing to subgroups

Let \(H \subseteq G \) be an inclusion of groups. If \(G \) belongs to \(\mathcal{FKK} \), then also \(H \) belongs to \(\mathcal{FKK} \);
(b) Passing to finite direct products

 If the groups G_0 and G_1 belong to \mathcal{FJKH}, then $G_0 \times G_1$ belong to \mathcal{FJKH};

(c) Group extensions

 Let $1 \to K \to G \to Q \to 1$ be an extensions of groups. If K and Q belong to \mathcal{FJKH}, then G belongs to \mathcal{FJKH};

(d) Directed colimits

 Let $\{G_i \mid i \in I\}$ be a direct system of subgroups indexed by the directed set I (with arbitrary structure maps). Suppose that for each $i \in I$ the group G_i belongs to \mathcal{FJKH}, then $\text{colim}_{i \in I} G_i$ belongs to \mathcal{FJKH};

(e) Passing to free products

 Consider a collection of groups $\{G_i \mid i \in I\}$ such that G_i belongs \mathcal{FJKH} for each $i \in I$. Then $*_{i \in I} G_i$ belongs to \mathcal{FJKH};

(f) Passing to overgroups of finite index

 Let G be an overgroup of H with finite index $[G:H]$. If H belongs to \mathcal{FJKH}, then G belongs to \mathcal{FJKH};

(g) Graph products

 A graph product of groups, each of which belongs to \mathcal{FJKH}, belongs to \mathcal{FJKH} again;

(h) Actions on trees

 If G acts on a tree T without inversion such that every stabilizer group G_x of any vertex x in T belongs to \mathcal{FJKH}. Then G belongs to \mathcal{FJKH}.

Proof. This follows from Theorem 14.94 and [616, Remark 9.3] except for assertion (iig). Here the arguments of [374] apply also directly to homotopy K-theory, the situation is actually easier because of assertion (iic). \qed

The class of groups \mathcal{FJKH} is larger and has better inheritance properties than the class \mathcal{FJ}. The decisive difference is that we can use for the homotopy K-theory the family \mathcal{FIN} instead of the family \mathcal{VCY}. This is essentially a consequence of and reflected by Theorem 14.74.

Exercise 15.6. Let G be a torsionfree elementary amenable group and let R be regular.

Show that then the assembly map $H_n(BG; K(R)) \to K_n(RG)$ is split injective.

15.4 Status of the Baum-Conjecture (with coefficients)

We have introduced the Baum-Connes Conjecture 13.11 with coefficients in Section 13.4.
Theorem 15.7 (Status of the Baum-Connes13.11 with coefficients).

Let \mathcal{BC} be the class of groups for which the Baum-Connes Conjecture13.11 with coefficients holds.

(i) The following classes of groups belong to \mathcal{BC}.

(a) A-T-menable groups;
(b) $\text{CAT}(0)$-cubical groups in the sense of140;
(c) G is a countable subgroup of $\text{GL}_2(F)$ for a field F;
(d) Hyperbolic groups;
(e) One-relator groups;
(f) Fundamental groups of compact 3-manifolds (possibly with boundary);
(g) Artin’s full braid groups B_n;
(h) Thompson’s groups F, T, and V;
(i) Coxeter groups;

(ii) The class \mathcal{BC} has the following inheritance properties:

(a) Passing to subgroups
Let $H \subseteq G$ be an inclusion of groups. If G belongs to \mathcal{BC}, then H belongs to \mathcal{BC};
(b) Passing to finite direct products
If the groups G_0 and G_1 belong to \mathcal{BC}, the also $G_0 \times G_1$ belongs to \mathcal{BC};
(c) Group extensions
Let $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$ be an extension of groups. Suppose that for any finite subgroup $F \subseteq Q$ the group $p^{-1}(F)$ belongs to \mathcal{BC} and that the group Q belongs to \mathcal{BC}.
Then G belongs to \mathcal{BC};
(d) Directed unions
Let $\{G_i \mid i \in I\}$ be a direct system of subgroups of G indexed by the directed set I such that $G = \bigcup_{i \in I} G_i$. Suppose that G_i belongs to \mathcal{BC} for every $i \in I$.
Then G belongs to \mathcal{BC};
(e) Actions on trees
Let G be a countable group acting without inversion on a tree T. Then G belongs to \mathcal{BC} if and only if the stabilizers of each of the vertices of T belong to \mathcal{BC}.
In particular \mathcal{BC} is closed under amalgamated products and HNN-extensions.

Proof. (ia). This is proved by Higson-Kasparov338 Theorem 1.1].
(ib) See140. This follows also from assertion (ia).
(ic) Such groups are a-T-menable by397 Théorème 4]. Now apply assertion (ia).
(id) This is proved by Lafforgue525 Théorème 0.4], see also736. The proof without coefficients can be found in Mineyev-Yu656.

Let M be a closed Seifert manifold. Then there is an extension $1 \to \mathbb{Z} \to \pi_1(M) \to Q \to 1$ such that Q contains a subgroup H of finite index which is isomorphic to the fundamental group of a closed surface S, see [706, Corollary 1.3]. If S carries the structure of a hyperbolic manifold, $\pi_1(S)$ and hence Q are hyperbolic and belong to BC by assertion (id). If S does not carry the structure of a hyperbolic manifold, its fundamental group and hence Q are virtually finitely generated abelian and hence belong to BC by assertion (ia). Now assertions (ia) and (iic) imply that $\pi_1(M)$ belongs to BC.

Let M be a closed hyperbolic 3-manifold. Then its fundamental group is hyperbolic and hence belongs to BC by assertion (id).

Let M be an irreducible closed 3-manifold. If it does not contain an incompressible torus, it is either Seifert or hyperbolic by the proof of Thurston’s Geometrization Conjecture due to Perelman, see for instance Morgan-Tian [675] and hence belongs to BC. If it contains an incompressible torus, it is Haken and hence belongs to BC by the argument above. We conclude that $\pi_1(M)$ belongs to BC for any compact irreducible 3-manifold. Since any prime 3-manifold that is not irreducible is an S_1-bundle over S^2, see [425, Lemma 3.13 on page 28], and hence belongs to BC, any compact prime 3-manifold M belongs to BC. Since any compact 3-manifold is a connected sum of prime compact 3-manifolds, see [425, Theorem 3.15 on page 31], assertion (if) follows from assertion (iie).

These groups are a-T-menable by Farley [319] and hence we can apply assertion (ia).

See Schick [812, Theorem 20].

Since a finitely generated Coxeter group is a-T-menable, it satisfies the Baum-Connes Conjecture [13.11 with coefficients by Theorem [15.7 (ia)]. By a colimit argument based on Theorem [15.7 (iid)] every Coxeter group satisfies the Baum-Connes Conjecture [13.11 with coefficients.

See Chabert-Echterhoff [198, Theorem 2.5].

See Chabert-Echterhoff [198, Theorem 3.17], or Oyono-Oyono [705, Corollary 7.12].

See Oyono-Oyono [705, Theorem 3.1].

This follows from Bartels-Echterhoff-Lück [71 Theorem 5.6 (i) and Lemma 6.2].

This is proved by Oyono-Oyono [706, Theorem 1.1]. □
Exercise 15.8. Let $1 \to K \to G \to Q \to 1$ be an extension of groups such that K and Q satisfy the Baum-Connes Conjecture \[13.11\] with coefficients and Q is torsionfree. Show that then G satisfies the Baum-Connes Conjec-
ture \[13.11\] with coefficients.

Exercise 15.9. Let G be a torsionfree group. Suppose that $\mathbb{C}G$ has an idem-
potent different from 0, 1. Show that then G cannot be a subgroup of a hyperbolic group, a finite dimensional CAT(0)-group, a lattice in an almost connected Lie group, the fundamental group of a manifold of dimension ≤ 3, an amenable group, a mapping class group, or a one-relator group.

Remark 15.10 (Passing to overgroups of finite index). It is not known in general whether a group G belongs to BC, i.e., G satisfies the Baum-Connes Conjecture \[13.11\] with coefficients, if a subgroup of finite index does. Partial answers to this question are given by Schick [812, Theorem 20].

This suggests to systematically implement the with “finite wreath product version” in the Baum-Connes setting, as we did in the Farrell-Jones setting, see Section 12.4.

Remark 15.11 (The Status of the Baum-Connes Conjecture for topological groups). We have only dealt with the Baum-Connes Conjecture for discrete groups. The Baum Connes Conjecture (with coefficients) makes also sense for second countable locally compact Hausdorff groups. Here some results in this setting.

Higson-Kasparov [433] treat the Baum-Connes Conjecture with coefficients for second countable locally compact Hausdorff groups which are a-T-menable.

Julg-Kasparov [482, Theorem 5.4 (i)] prove the Baum-Connes Conjecture with coefficients for connected Lie groups L whose Levi-Malcev decomposition $L = RS$ into the radical R and semisimple part S is such that S is locally of the form

$$S = K \times SO(n_1,1) \times \cdots \times SO(n_k,1) \times SU(m_1,1) \times \cdots \times SU(m_l,1)$$

for a compact group K. The Baum-Connes Conjecture with coefficients for $Sp(n,1)$ is proved by Julg [481].

The Baum-Connes Conjecture without coefficients has been proven by Chabert-Echterhoff-Nest [199] for second countable almost connected Hausdorff groups, based on the work of Higson-Kasparov [433] and Lafforgue [544].

Next we deal with the Baum-Connes Conjecture \[13.9\] without coefficients for (discrete) groups. Recall that all groups which satisfy the Baum-Connes Conjecture \[13.11\] with coefficients do in particular satisfy the Baum-Connes Conjecture \[13.9\]. Below are some case, some of which are not covered by this implication.
A length function on G is a function $L: G \to \mathbb{R}_{\geq 0}$ such that $L(1) = 0$, $L(g) = L(g^{-1})$ for $g \in G$ and $L(g_1 g_2) \leq L(g_1) + L(g_2)$ for $g_1, g_2 \in G$ holds. The word length metric L_S associated to a finite set S of generators is an example. A length function L on G has property (RD) ("rapid decay") if there exist $C, s > 0$ such that for any $u = \sum_{g \in G} \lambda_g \cdot g \in CG$ we have

$$||\rho_G(u)||_\infty \leq C \cdot \left(\sum_{g \in G} |\lambda_g|^2 \cdot (1 + L(g))^2s \right)^{1/2},$$

where $||\rho_G(u)||_\infty$ is the operator norm of the bounded G-equivariant operator $l^2(G) \to l^2(G)$ coming from right multiplication with u. A group G has property (RD) if there is a length function which has property (RD). This notion is due to Jolissaint [474]. More information about property (RD) can be found for instance in [208, 210], [541] and [875, Chapter 8]. Bolicity generalizes Gromov’s notion of hyperbolicity for metric spaces. A simply connected complete Riemannian manifold with non-positive sectional curvature is bolic. We refer to [500, Section 2] for a precise definition.

Theorem 15.12 (Status of the Baum-Connes Conjecture (without coefficients)). A group G satisfies the Baum-Connes Conjecture 13.9 (without coefficients) if it satisfies one of the following conditions.

(i) The group G is a discrete subgroup of a connected Lie groups L, whose Levi-Malcev decomposition $L = RS$ into the radical R and semisimple part S is such that S is locally of the form

$$S = K \times SO(n_1,1) \times \cdots \times SO(n_k,1) \times SU(m_1,1) \times \cdots \times SU(m_l,1)$$

for a compact group K;

(ii) The group G has property (RD) and admits a proper isometric action on a strongly bolic weakly geodesic uniformly locally finite metric space;

(iii) The group G is a discrete finite covolume subgroup of the isometry groups of a simply connected complete Riemannian manifold with pinched negative sectional curvature;

(iv) The group G is a discrete subgroup of $Sp(n,1)$.

Proof.

(i) See Julg-Kasparov [482].

(ii) See Lafforgue [540] or [831].

(iii) See [210, Corollary 0.3].

(iv) See Julg [481].
15.5 Injectivity Results in the Baum-Connes Setting

There are cases where one can show that the assembly maps appearing in the Farrell-Jones setting or Baum-Connes setting are injective without knowing that they are bijective. There is no case where one can prove surjectivity but does not know bijectivity as well. This is a common phenomenon in algebraic topology, where surjectivity arguments often contain an injectivity argument, essentially one applies the surjectivity argument to a cycle whose boundary is the image of a cycle representing an element in the kernel of the assembly map. Moreover, this shows that in general surjectivity results are harder than injectivity results.

The main value of surjectivity statements is that they allow to interpret elements in the \(K \)- or \(L \)-groups homologically and thus to obtain valuable information. The injectivity statements are interesting since they imply the Novikov Conjecture or give some idea how large the \(K \)- and \(L \)-groups are.

Theorem 15.13 (Split injectivity of the assembly map appearing in the Baum-Connes Conjecture [13.9] (without coefficients) for fundamental groups of complete Riemannian manifolds with non-positive sectional curvature).

The assembly map appearing in the Baum-Connes Conjecture [13.9] is split injective if \(G \) is the fundamental group of complete Riemannian manifold with non-positive sectional curvature.

Proof. See Kasparov [506, Theorem 6.7]. \(\square \)

More general results for bolic spaces are proved in Kasparov-Skandalis [501].

A metric space \((X, d)\) admits a uniform embedding into Hilbert space if there exist a separable Hilbert space \(H \), a map \(f : X \to H \) and non-decreasing functions \(\rho_1 \) and \(\rho_2 \) from \([0, \infty) \to \mathbb{R}\) such that \(\rho_1(d(x, y)) \leq ||f(x) - f(y)|| \leq \rho_2(d(x, y)) \) for \(x, y \in X \) and \(\lim_{r \to \infty} \rho_i(r) = \infty \) for \(i = 1, 2 \). A metric is proper if for each \(r > 0 \) and \(x \in X \) the closed ball of radius \(r \) centered at \(x \) is compact.

The next result is due to Yu [936, Theorem 2.2 and Proposition 2.6].

Theorem 15.14 (Status of the Coarse Baum-Connes Conjecture).

The Coarse Baum-Connes Conjecture [13.30] is true for a discrete metric space \(X \) of bounded geometry if \(X \) admits a uniform embedding into Hilbert space. In particular a countable group \(G \) satisfies the Coarse Baum-Connes Conjecture.
Conjecture 13.30 if G equipped with a proper left G-invariant length metric admits a uniform embedding into Hilbert space.

Theorem 15.15 (Split injectivity of the assembly map appearing in the Baum-Connes Conjecture 13.11 with coefficients). Let G be a countable group. Then for any C^*-algebra A the assembly map appearing in the Baum-Connes Conjecture 13.11

$$K^G_n(EG; A) \to K_n(A \rtimes_r G);$$

is split injective, if the group G has one of the following properties:

(i) The group G admits a proper left G-invariant length metric for which G admits a uniform embedding into Hilbert space;

(ii) The group G admits a proper left G-invariant length metric for which G admits a uniform embedding into a Banach space with property (H);

(iii) The group G is a subgroup of $GL_n(F)$ for some field F and natural number n;

(iv) The group G is a subgroup of an almost connected Lie group.

Proof. (i) This is proved by Skandalis-Tu-Yu [832, Theorem 6.1] using ideas of Higson [432] and Theorem 15.14.

(ii) See Kasparov-Yu [502, Theorem 1.3].

(iii) Assertion (i) applies to G by Guentner-Higson-Weinberger [397, Theorem 2 and 3].

(iv) Assertion (i) applies to G by Guentner-Higson-Weinberger [397, Theorem 7].

Exercise 15.16. Let G be a group such that for any finitely generated subgroup $H \subseteq G$ and every H-C^*-algebra A the assembly map $K^H_n(EG; A) \to K_n(A \rtimes_r H)$ injective.

Show that then the assembly map $K^G_n(EG; A) \to K_n(A \rtimes_r G)$ is injective for every G-C^*-algebra A. Prove the analogous statement for the K-theoretic and L-theoretic assembly maps with coefficients in additive categories (with involution) and the family of virtually cyclic subgroups.

Split injectivity of the Baum-Connes assembly map (for trivial coefficients) is proved under certain conditions about the compactifications of the model for the space of proper G-actions by Rosenthal [790] based on techniques developed by Carlsson-Pedersen [190].

Remark 15.17 (Groups Acting Amenably on a Compact Space). A continuous action of a discrete group G on a compact space X is called amenable if there exists a sequence

$$p_n : X \to M^1(G) = \{f : G \to [0, 1] | \sum_{g \in G} f(g) = 1\}$$
of weak-∗-continuous maps such that for each \(g \in G \) one has
\[
\lim_{n \to \infty} \sup_{x \in X} ||g * (p_n(x) - p_n(g \cdot x))||_1 = 0.
\]

Note that a group \(G \) is amenable if and only if its action on the one-point-space is amenable. More information about this notion can be found for instance in [25, 26].

A group \(G \) is called boundary amenable, if admits an amenable action on a compact metric space in the sense above.

Higson-Roe [437, Theorem 1.1 and Proposition 2.3] show that a finitely generated group is boundary amenable, if and only if it belongs to the class \(A \) defined in [334, Definition 2.1], and hence admits a uniform embedding into Hilbert space. Hence Theorem [15.15 (i)] implies the result of Higson [432, Theorem 1.1] that the assembly map \(K_n(EG; A) \to K_n(A \rtimes_r G) \) appearing in the Baum-Connes Conjecture [13.11] with coefficients is split injective if \(G \) is boundary amenable.

Finally we mention that a finitely generated group \(G \) is boundary amenable if and only if the reduced group \(C^* \)-algebra \(C^*_r(G) \) is exact, i.e., the minimal tensor product with it preserves short exact sequences of \(C^* \)-algebras, see for instance [36, Proposition 9.9].

15.6 Injectivity Results in the Farrell-Jones Setting

Theorem 15.18 (Split injectivity of the assembly map appearing in the \(L \)-theoretic Farrell Jones Conjecture with coefficients in the ring \(\mathbb{Z} \) for fundamental groups of complete Riemannian manifolds with non-positive sectional curvature). The assembly map appearing in the \(L \)-theoretic Farrell Jones Conjecture [12.3] with coefficients in the ring \(\mathbb{Z} \) is split injective, if \(G \) is the fundamental group of complete Riemannian manifold with non-positive sectional curvature.

Proof. See [349, Theorem 2.3]. \(\square \)

The asymptotic dimension of a proper metric space \(X \) is the infimum over all integers \(n \) such that for any \(R > 0 \) there exists a cover \(\mathcal{U} \) of \(X \) with the property that the diameter of the members of \(\mathcal{U} \) is uniformly bounded and every ball of radius \(R \) intersects at most \((n + 1) \) elements of \(\mathcal{U} \), see [393, page 29]. The asymptotic dimension of a finitely generated group is the asymptotic dimension of its Cayley graph (and is independent of the choice of set of finite generators.)

For a torsionfree group \(G \) with finite asymptotic dimension and a finite model for \(BG \) and any ring \(R \) the split injectivity of \(H_n(BG; K(R)) \to K_n(RG) \) is proved by Bartels [87, Theorem 1.1] and by Carlsson-Goldfarb [189, Main Theorem on page 406]. The \(L \)-theory version is proved in Bartels [87].
Section 7\) as well, provided that there exists a natural number \(N\) with \(K_{-i}(R) = 0\) for \(i \geq N\).

The notion of finite decomposition complexity was introduced and studied by Guentner-Tessera-Yu \[398, 399\]. It is a weaker notion than finite asymptotic dimension. The split injectivity of the assembly maps \(H_n(BG; K(R)) \rightarrow K_n(RG)\) and of \(H_n(BG; L^{(-\infty)}(R)) \rightarrow L_n^{(-\infty)}(RG)\) for a torsionfree group \(G\) with finite model for \(BG\) and finite decomposition complexity is proved by Ramras-Tessera-Yu \[749, Theorem 1.1\] and Guentner-Tessera-Yu \[398, page 334\] for any ring \(R\) (with involution), provided that in the \(L\)-theory case there exists a natural number \(N\) with \(K_{-i}(R) = 0\) for \(i \geq N\).

Kasprowski \[509, Theorem 8.1\], proved for a group \(G\) with finite dimensional model for \(E_{FIN}(G)\) and finite quotient finite decomposition complexity, a strengthening of the notion of finite decomposition complexity, and a global upper bound on the orders of the finite subgroups that the assembly map \(H^n_G(E_{FIN}(G); K_R) \rightarrow K_n(RG)\) is split injective for all \(n \in \mathbb{Z}\). An \(L\)-theory version is proved in \[509, Theorem 9.1\].

The paper \[509\] uses ideas of \[85\]. Kasprowski \[509, page 566\] points out a gap in the proof of \[85\] which has the consequence that the results in \[85\] are only proved under the additional assumption that there is a finite model for \(E_{FIN}(G)\).

The papers by Kasprowski \[510, 511\] are based on \[509\] and lead to the following two results.

Theorem 15.19 (Injectivity of the Farrell-Jones assembly map for \(FIN\) for subgroups of almost connected Lie groups). Let \(G\) be a subgroup of an almost connected Lie group. Suppose that \(G\) admits a finite dimensional model for the classifying space \(E_{FIN}(G)\).

(i) Let \(\mathcal{A}\) be an additive \(G\)-category. Then the assembly map

\[
H^n_G(E_{FIN}(G); K_{\mathcal{A}}) \rightarrow H^n_G(G/G; K_{\mathcal{A}}) = \pi_n(K_{\mathcal{A}}(I(G)))
\]

is split injective for all \(n \in \mathbb{Z}\);

(ii) Let \(\mathcal{A}\) be an additive \(G\)-category with involution. Suppose that there exists \(N \geq 0\) such that \(\pi_{-i}(K_{\mathcal{A}}(I(A))) = 0\) holds for all \(i \geq N\) and all virtually abelian subgroups \(A \subseteq G\).

Then the assembly map

\[
H^n_G(E_{FIN}(G); L^{(-\infty)}_{\mathcal{A}}) \rightarrow H^n_G(G/G; L^{(-\infty)}_{\mathcal{A}}) = \pi_n(L^{(-\infty)}_{\mathcal{A}}(I(G)))
\]

is split injective for all \(n \in \mathbb{Z}\);

(iii) A subgroup \(G\) of an almost connected Lie group admits a finite dimensional model for \(E_{FIN}(G)\) if and only if there exists \(N \in \mathbb{N}\) such that every finitely generated abelian subgroup of \(G\) has rank at most \(N\).

Proof. \[1\] and \[3\] If \(G\) is finitely generated, this is proved in \[510\] Theorem 1.1 and Theorem 6.1. Since every group is the union of its finitely generated
subgroups, the general case for injectivity follows from Lemma 14.23. One obtains even split injectivity since also the retraction is natural, see [510, Section 7].

\[\text{See } [510, \text{Proposition 1.3}].\]

\[\text{⊓ ⊔}\]

Theorem 15.20 (Injectivity of the Farrell-Jones assembly map for }\mathcal{FIN}\text{ for linear groups). Let \(R \) be a commutative ring with unit and let \(G \subseteq \text{GL}_n(R) \) be a subgroup. Suppose that \(G \) admits a finite dimensional model for the classifying space \(E_{\mathcal{FIN}}(G) \).

(i) Let \(A \) be any additive \(G \)-category. Then the assembly map

\[H_n^G(E_{\mathcal{FIN}}(G); \mathbf{K}_A) \to H_n^G(G/G; \mathbf{K}_A) = \pi_n(\mathbf{K}_A(I(G)))\]

is split injective for all \(n \in \mathbb{Z} \);

(ii) Let \(A \) be any additive \(G \)-category with involution. Suppose that there exists \(N \geq 0 \) such that \(\pi_{-i}(\mathbf{K}_A(I(H))) \) holds for all \(i \geq N \) and all virtually nilpotent subgroups \(H \subseteq G \).

Then the assembly map

\[H_n^G(E_{\mathcal{FIN}}(G); \mathbf{L}_A^{(-\infty)}) \to H_n^G(G/G; \mathbf{L}_A^{(-\infty)}) = \pi_n(\mathbf{L}_A^{(-\infty)}(I(G)))\]

is split injective for all \(n \in \mathbb{Z} \).

\[\text{Proof. If } G \text{ is finitely generated, this is proved in [511, Theorem 1.1]. Since every group is the union of its finitely generated subgroups, the general case for injectivity follows from Lemma 14.23. One obtains even split injectivity since also the retraction is natural, as explained in [510, Section 7].}\]

Split injectivity of the \(K \)- and \(L \)-theoretic Farrell-Jones assembly map (for trivial coefficients) is proved under certain conditions about the compactifications of the model for the space of proper \(G \)-actions by Rosenthal [786, 787, 788], based on techniques developed by Carlsson-Pedersen [190].

15.7 Status of the Novikov Conjecture

Recall that the Novikov Conjecture [8.134] holds for a group \(G \) if one of the following conditions is satisfied:

- The assembly map

\[H_n(BG; \mathbf{L}^{(-\infty)}(\mathbb{Z})) = H_n^G(EG; \mathbf{L}^{(-\infty)}(\mathbb{Z}))\]

\[\to H_n^G(G/G; \mathbf{L}^{(-\infty)}(\mathbb{Z})) = \mathbf{L}_n^{(-\infty)}(\mathbb{Z}G)\]

is rationally injective for all \(n \in \mathbb{Z} \), see Theorem 12.56 [8].
• The assembly map
\[H^n_G(E_{FIN}(G); L_{\mathcal{A}}^{(-\infty)}) \to H^n_G(G/G; L_{\mathcal{A}}^{(-\infty)}) = \pi_n(L_{\mathcal{A}}^{(-\infty)}(I(G))) \]
is rationally injective, see Lemma 12.31 and Theorem 12.56 (xi);
• The L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in the ring \(\mathbb{Z} \) holds, see Theorem 12.56 (xi);
• The assembly map
\[K_n(BG) \to K_n(C^*_r(G)) \]
is rationally injective for all \(n \in \mathbb{Z} \), see Theorem 13.29;
• The assembly map
\[K^n_G(E_{FIN}(G))) \to K_n(C^*_r(G)) \]
is rationally injective for all \(n \in \mathbb{Z} \), see Lemma 12.31 and Theorem 13.29
• The Baum-Connes Conjecture 13.9 holds for \(G \), see Theorem 13.29.

Hence all groups appearing in Theorems 15.1, 15.7, 15.12, 15.13, 15.15, 15.18, or 15.19 satisfy the Novikov Conjecture 8.134. In particular a group \(G \) satisfies Novikov Conjecture 8.134 if \(G \) is a countable discrete subgroup of one of the following type of groups:

• Hyperbolic groups (or more generally directed colimits of hyperbolic groups);
• Finite dimensional CAT(0)-groups;
• Almost connected Lie groups;
• (Not necessarily cocompact) lattices in second countable locally compact
 Hausdorff groups \(G \) for which \(\pi_0(G) \) is discrete and belongs to \(\mathcal{FJ} \);
• \(GL_n(F) \) for a field \(F \) and some natural number \(n \);
• \(S \)-arithmetic groups;
• mapping class groups;
• Fundamental groups of (not necessarily compact) connected manifolds
 (possibly with boundary) of dimension \(\leq 3 \);
• A-T-menable groups and hence also amenable and elementary amenable
 groups;
• One-relator groups;
• Coxeter groups;
• Thompson’s groups \(F, T \) and \(V \);
• Artin’s full braid groups \(B_n \);
• \(Out(F_n) \) or more generally, \(Out(\Gamma) \) for a torsionfree hyperbolic group or
 a right-angled Artin group \(\Gamma \), see [671].

Furthermore, the Novikov Conjecture 8.134 is satisfied for a countable group \(G \) if one of the following conditions are satisfied:

• \(G \) is the fundamental group of a complete Riemannian manifold with non-
 positive sectional curvature;
• The group G admits a proper left G-invariant length metric for which G admits a uniform embedding into Hilbert space;
• The group G admits a proper left G-invariant length metric for which G admits a uniform embedding into a Banach space with property (H);
• G has a finite model for BG and finite asymptotic dimension, see \[935\], or, more generally, has a finite model for BG and finite decomposition complexity, Guentner-Tessera-Yu \[398\] page 334;
• G is a geometrically discrete subgroup of a volume preserving diffeomorphism of any smooth compact manifold, see \[932\].

A Banach version of the strong Novikov conjecture is proved in \[313\] for groups having polynomially bounded higher-order combinatorial functions. This includes all automatic groups. If the group G is of type F_{∞}, is polynomially contractible, and has property (RD), it satisfies the strong Novikov Conjecture \[13.26\].

More information about the Novikov Conjecture and its status can be found for instance in \[938\].

15.8 Review of and Status Report for Some Classes of Groups

15.8.1 Hyperbolic Groups

The definition and the basic properties of the notion of a hyperbolic group can be found for instance in \[143, 264, 381, 592\]. Examples are free groups and fundamental groups of closed Riemannian manifolds with negative sectional curvature.

Almost all conjectures in this book about groups are satisfied for hyperbolic groups, since they satisfy both the Full Farrell-Jones Conjecture \[12.23\] see Theorem \[15.1\] (ia), and the Baum-Connes Conjecture \[13.1\] with coefficients, see Theorem \[15.7\] (id).

15.8.2 Lacunary Hyperbolic Groups

A finitely generated group is a lacunary hyperbolic group if one of its asymptotic cones is an \mathbb{R}-tree, see Olshanskii-Osin-Sapir \[700\]. Since they are directed colimits of hyperbolic groups, see \[700\] Theorem 1.1, they satisfy the Full Farrell-Jones Conjecture \[12.23\] see Theorem \[15.1\] (ia) and (iie). It is not known whether lacunary hyperbolic groups satisfy the Baum-Connes Conjecture \[13.9\].
A lacunary hyperbolic group is finitely presented if and only if it is hyperbolic. This is due to Kapovich-Kleiner, see [700, Theorem 8.1].

There are rather exotic examples of lacunary hyperbolic group. For instance a finitely generated torsionfree non-cyclic group, all whose proper subgroups are cyclic, is constructed by Ol’shanskii [698]. It is a lacunary hyperbolic group. This follows from [700, Theorem 1.1].

Other examples of lacunary hyperbolic groups are constructed in [41]. These finitely generated groups do contain (in a weak sense) an infinite expander. Hence they admit no uniform embedding into a Hilbert space (or into any l^p with $1 \leq p < \infty$) and any infinite dimensional linear representation of these groups has infinite image. Notice that for these group a counterexample to the Baum-Connes Conjecture [13.11 with coefficients is constructed by Higson-Lafforgue-Skandalis [434]. (This lead Baum-Guentner-Willet [99] to reformulate the Baum-Connes Conjecture [13.11 with coefficients by introducing a new crossed product, see also [170, for which no counterexamples are known so far.)

More examples of exotic lacunary hyperbolic groups are discussed in [700] and [803, Section 4].

15.8.3 Relative Hyperbolic Groups

For the definition and basic information about relative hyperbolic groups we refer for instance to [139, 154, 317, 392, 704, 857, 858].

The following result is taken from Bartels [68, Remark 4.7], where the notion of a relative hyperbolic groups following Bowditch [139] is used.

Theorem 15.21 (The Full Farrell-Jones Conjecture and relatively hyperbolic groups). Let G be a countable group which is relatively hyperbolic to the subgroups P_1, P_2, \ldots, P_n. If P_1, P_2, \ldots, P_n satisfy the Full Farrell-Jones Conjecture [12.23], then G satisfies the Full Farrell-Jones Conjecture [12.23].

15.8.4 Systolic Groups

Let G be a group which acts cocompactly and properly on a systolic complex with the Isolated Flats Property by simplicial automorphisms. Then G is relatively hyperbolic to the family of virtually abelian groups by Elsner [307, Theorem B]. Hence Theorem 15.21 implies that G satisfies the Full Farrell-Jones Conjecture [12.23].
15.8.5 Finite dimensional CAT(0) Groups

A CAT(0)-group is a group admitting a cocompact proper isometric action on a CAT(0)-space X. We call it a finite dimensional CAT(0)-group if we can additionally arrange that X has finite topological dimension. Basic properties of this notion of a can be found for instance in [143, 592]. Examples for finite dimensional CAT(0)-groups are fundamental groups of closed Riemannian manifolds with non-positive sectional curvature.

A finite dimensional CAT(0)-group satisfies the Full Farrell-Jones Conjecture 12.23, see Theorem 15.1 (ib).

It is not known whether every finite dimensional CAT(0)-group satisfies the Baum-Connes Conjecture 13.11 with coefficients or the Baum-Connes Conjecture 13.9. If G admits a cocompact proper isometric action on a CAT(0)-space with the Isolated Flats Property in the sense of [210, Definition 3.1], then the Baum-Connes Conjecture 13.9 holds for G, see [210, Corollary 0.3 b]. If G is a CAT(0)-cubical groups in the sense of [146], then the Baum-Connes Conjecture 13.9 holds for G, see [146].

15.8.6 Limit Groups

Limit groups as they appear for instance in [822] have been in the focus of geometric group theory for the last years. Expositions about limit groups are for instance [200, 713]. Alibegović-Bestvina [22] have shown that limit groups are CAT(0)-groups. It is not hard to check that their proof shows that a limit group is even a finite dimensional CAT(0)-group. Hence every limit group satisfies the Full Farrell-Jones Conjecture 12.23.

15.8.7 Fundamental Groups of Complete Riemannian Manifolds with Non-Positive Sectional Curvature

Let π be the fundamental group of a complete Riemannian manifold M. Let \sec denote its sectional curvature.

- M closed and $\sec(M) < 0$
 If M is closed and has negative sectional curvature, then π is hyperbolic and hence satisfies both the Full Farrell-Jones Conjecture 12.23 see Theorem 15.1 (ia), and the Baum-Connes Conjecture 13.11 with coefficients, see Theorem 15.7 (id).

- M closed and $\sec(M) \leq 0$
 If M is closed and has non-positive sectional curvature, then π is a finite dimensional CAT(0)-group and satisfies the Full Farrell-Jones Conjecture 12.23 see Theorem 15.1 (ib). It is not known whether all such π
satisfy the Baum-Connes Conjecture \([13.11]\) with coefficients or the Baum-Connes Conjecture \([13.9]\).

- \(C_1 \leq \sec(M) \leq C_2 < 0\) and finite volume

Let \(M\) be a complete Riemannian manifold, which is pinched negatively curved and has finite volume. Then \(\pi\) satisfies the Full Farrell-Jones Conjecture \([12.23]\) since \(\pi\) is relatively hyperbolic with respect to the family of virtually finitely generated nilpotent groups, see \([139]\), or \([317, \text{Theorem 4.11}]\), and we can apply Theorem \([15.16]\) and Theorem \([15.21]\).

If we additionally assume that the curvature tensor has bounded derivatives, then also the Baum-Connes Conjecture \([13.9]\) holds for \(G\) by Chatterji-Ruan \([210, \text{Corollary 0.3 a}]\). Lattices in rank one Lie groups are examples for \(\pi\).

- \(M\) A-regular and \(\sec(M) \leq 0\)

A complete Riemannian manifold \(M\) is called \(A\)-regular if there exists a sequence of positive real numbers \(A_0, A_1, A_2, \ldots\) such that \(\|\nabla^n K\| \leq A_n\), where \(\|\nabla^n K\|\) is the supremum-norm of the \(n\)-th covariant derivative of the curvature tensor \(K\). Every locally symmetric space is \(A\)-regular since \(\nabla K\) is identically zero.

Let \(M\) be a complete Riemannian manifold with non-positive sectional curvature which is \(A\)-regular. Then \(\pi = \pi_1(M)\) satisfies the \(K\)-theoretic Farrell-Jones Conjecture \([12.1]\) with coefficients in the ring \(\mathbb{Z}\) in degree \(n \leq 1\) and the \(L\)-theoretic Farrell-Jones Conjecture \([12.1]\) with coefficients in the ring with involution \(\mathbb{Z}\), see Farrell-Jones \([336, \text{Proposition 0.10 and Lemma 0.12}]\). Since \(\pi\) is torsionfree, this implies that \(\text{Wh}(\pi), K_0(\mathbb{Z}\pi)\) and \(K_\ast(\mathbb{Z}\pi)\) for \(n \leq -1\) all vanish and Conjecture \([8.11]\) holds for \(R = \mathbb{Z}\).

- \(C_1 \leq \sec(M) \leq C_2 < 0\)

Let \(M\) be a complete Riemannian manifold with pinched negative curvature. Then there is another Riemannian metric for which \(M\) is negatively curved complete and \(A\)-regular. This fact is mentioned in Farrell-Jones \([336, \text{page 216}]\) and attributed there to Abresch \([2]\) and Shi \([828]\). Hence the conclusions above for complete Riemannian manifold \(M\) with non-positive sectional curvature which is \(A\)-regular do also hold for pinched negatively curved complete Riemannian manifolds.

- \(\sec(M) \leq 0\)

If \(M\) is a complete Riemannian manifold with non-positive sectional curvature, we have already stated some injectivity results for \(\pi\) in Theorem \([15.13]\) and Theorem \([15.18]\). In particular \(\pi\) satisfies the Novikov Conjecture \([8.13]\) by Theorem \([12.56]\) or Theorem \([13.29]\).
15.8.8 Lattices

A discrete subgroup G of a locally compact second countable Hausdorff group Γ is called a lattice if the quotient space Γ/G has finite covolume with respect to the Haar measure of Γ.

Every lattice G in Γ satisfies the Full Farrell-Jones Conjecture 12.23 if $\pi_0(\Gamma)$ is discrete and belongs to the class \mathcal{FJ} introduced and analyzed in Theorem 15.1, for instance if Γ is path connected or an almost connected Lie group. This follows from Theorem 15.1 (id).

It is a prominent open problem to decide whether lattices satisfy the Baum-Connes Conjecture 13.11 with coefficients or the Baum-Connes Conjecture 13.9. This is not even known for lattices in almost connected Lie groups. The case $\text{SL}_n(\mathbb{Z})$ is still open for $n \geq 3$. By [210] Corollary 0.3 a) lattices G in rank one Lie groups satisfy the Baum-Connes Conjecture 13.9. Some other lattices satisfying the Baum-Connes Conjecture 13.9 come from Theorem 15.12.

15.8.9 S-Arithmetic Groups

Every S-arithmetic group satisfies the Full Farrell-Jones Conjecture 12.23, see Theorem 15.1 (ig). This is not known for the Baum-Connes Conjecture 13.11 with coefficients or the Baum-Connes Conjecture 13.9. The group $\text{SL}_n(\mathbb{Z})$ for $n \geq 3$ is still an open problem.

15.8.10 Linear Groups

The Full Farrell-Jones Conjecture 12.23 and actually even the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution, are in general open for linear groups, i.e., $\text{GL}_n(F)$ for some field F. The same statement holds for the Baum-Connes Conjecture.

The Novikov-Conjecture holds by Theorem 13.29 and Theorem 15.15 (iii) and Exercise 15.16 for any subgroup of $\text{GL}_n(F)$ for a field F.

15.8.11 Subgroups of Almost Connected Lie Groups

The Full Farrell-Jones Conjecture 12.23 and actually even the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution, are
open for subgroups of almost connected Lie groups in general. The same statement holds for the Baum-Connes Conjecture \[13.9\].

The Novikov-Conjecture holds by Theorem \[13.29\] and Theorem \[15.15\] (iv) and Exercise \[15.16\] for any subgroup of an almost connected Lie group.

15.8.12 Virtually Solvable Groups

Virtually solvable groups satisfy both the Full Farrell-Jones Conjecture \[12.23\], see Theorem \[15.1\] (ic) and the Baum-Connes Conjecture \[13.11\] with coefficients, see Theorem \[15.7\] (ia).

15.8.13 A-T-menable, Amenable and Elementary Amenable Groups

A group \(G\) is called \textit{amenable} if there is a (left) \(G\)-invariant linear operator \(\mu: L^\infty(G, \mathbb{R}) \to \mathbb{R}\) with \(\mu(1) = 1\) which satisfies for all \(f \in L^\infty(G, \mathbb{R})\)

\[
\inf\{ f(g) \mid g \in G \} \leq \mu(f) \leq \sup\{ f(g) \mid g \in G \}.
\]

The latter condition is equivalent to the condition that \(\mu\) is bounded and \(\mu(f) \geq 0\) if \(f(g) \geq 0\) for all \(g \in G\).

The \textit{class of elementary amenable} groups is defined as the smallest class of groups which has the following properties:

(i) It contains all finite and all abelian groups;

(ii) It is closed under taking subgroups;

(iii) It is closed under taking quotient groups;

(iv) It is closed under extensions, i.e., if \(1 \to H \to G \to K \to 1\) is an exact sequence of groups and \(H\) and \(K\) belong to the class, then also \(G\);

(v) It is closed under \textit{directed unions}, i.e., if \(\{G_i \mid i \in I\}\) is a directed system of subgroups such that \(G = \bigcup_{i \in I} G_i\) and each \(G_i\) belongs to the class, then \(G\) belongs to the class.

Since the class of amenable groups has all the properties mentioned above, every elementary amenable group is amenable. The converse is not true. For more information about amenable and elementary amenable groups we refer for instance to \[335, Section 6.4.1\] or \[711\].

A group \(G\) is \textit{a-T-menable}, or, equivalently, has the \textit{Haagerup property}, if \(G\) admits a metrically proper isometric action on some affine Hilbert space. \textit{Metrically proper} means that for any bounded subset \(B\) the set \(\{g \in G \mid gB \cap B \neq \emptyset\}\) is finite.

An extensive treatment of such groups is presented in \[215, 376\]. Any a-T-menable group is countable. The class of a-T-menable groups is closed
under taking subgroups, under extensions with finite quotients and under finite products. It is not closed under semi-direct products. Examples of a-T-menable groups are countable amenable groups, countable free groups, discrete subgroups of $SO(n, 1)$ and $SU(n, 1)$, Coxeter groups, countable groups acting properly on trees, products of trees, or simply connected CAT(0) cubical complexes. A group G has Kazhdan’s property (T) if, whenever it acts isometrically on some affine Hilbert space, it has a fixed point. An infinite a-T-menable group does not have property (T). Since $SL(n, \mathbb{Z})$ for $n \geq 3$ has property (T), it cannot be a-T-menable.

Every a-T-menable, every amenable, and every elementary-amenable group satisfies the Baum-Connes Conjecture 13.11 with coefficients. This follows from Theorem 15.7 (ia) in the a-T-menable case. Since every group is the directed union of its finitely generated subgroups, every finitely generated group is countable, and every countable amenable group is a-T-menable, the claim follows for amenable groups and hence also for elementary amenable groups from Theorem 15.7 (ib).

The Full Farrell-Jones Conjecture 12.23, and actually even the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution, are open for elementary amenable groups. The main problem in the Farrell-Jones setting is that one has to deal with virtually cyclic subgroups in its formulation and for the inheritance property under extensions, see Theorem 15.7 (iec), whereas in the Baum-Connes setting finite subgroups suffice. This also explains that elementary amenable groups satisfy the Farrell-Jones Conjecture 14.77 for homotopy K-theory with coefficients in additive G-categories with finite wreath products, see Theorem 15.5 (i).

The L-theoretic Farrell-Jones Conjecture 12.8 with coefficients in rings with involution after inverting 2 holds for elementary amenable groups by \cite[Proposition 5.2.1]{ref}.

15.8.14 Three-Manifold Groups

Let M be a (not necessarily compact) manifold (possibly with boundary) of dimension ≤ 3. Then $\pi_1(M)$ satisfies the Full Farrell-Jones Conjecture 12.23 see Theorem 15.1 (ie).

If we additionally assume that M is compact, $\pi_1(M)$ satisfies the Baum-Connes Conjecture 13.11 with coefficients, see Theorem 15.7 (if).

The reason why in the Farrell-Jones setting we do not need compact, is the inheritance property under directed colimits of directed systems of subgroups, see Theorem 15.1 (iec), which is not available in the Baum-Connes setting, where we need that all structure maps are injective, see Theorem 15.7 (iid).

Exercise 15.22. Let G be the fundamental group of a knot complement.
Show for any regular ring R that the projection $pr: G \to G/[G,G] \cong \mathbb{Z}$ induces for every ring R an isomorphism $K_n(RG) \to K_n(R[G/G,G])$ and we get an isomorphism $K_n(RG) \cong K_n(R) \oplus K_{n-1}(R)$.

Show for any ring R with involution $L_n^{(-\infty)}(RG) \cong L_n^{(-\infty)}(R) \oplus L_{n-1}^{(-\infty)}(R)$.

15.8.15 One-Relator Groups

The Baum-Connes Conjecture [13.11] with coefficients holds for one-relator groups by Theorem 15.7 (ie).

A consequence of Newman’s spelling theorem, see [680], is that a one-relator group, which is not torsionfree, is hyperbolic and hence satisfies the Full Farrell-Jones Conjecture 12.23 by Theorem 15.1 (ia).

The Full Farrell-Jones Conjecture 12.23 and actually even the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution, are open for torsionfree one-relator groups. Note that not all one-relator groups are solvable, hyperbolic or finite dimensional CAT(0)-groups, so that we cannot apply Theorem 15.1 in general.

Nevertheless the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring R is known if R is regular and G is a subgroup of a torsionfree one-relator group by Waldhausen [888, Theorem 19.4 on page 249] in the connective case and by Bartels-Lück [75, Theorem 0.11] for the non-connective version. Recall that in this special case Conjecture 12.1 boils down to Conjecture 6.44.

The L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in any ring with involution R holds after inverting two for torsionfree one-relator groups by Cappell [181, Corollary 8].

All Baumslag-Solitar groups satisfy the Full Farrell-Jones Conjecture 12.23, see Farrell-Wu [341] for the version without “finite wreath products” and Gandini-Meinert-Rüping [373, Corollary 1.1].

15.8.16 Selfsimilar Groups

We use the notion of selfsimilar group as presented in [88, Section 3] which is slightly more general than the classical notion defined for instance in [89, 679]. Selfsimilar groups are groups acting in a recursive manner on a regular rooted tree RT_d. If the recursion of every element involves only a linearly growing subtree of T_d, the group is said to be bounded.

The Full Farrell-Jones Conjecture 12.23 is proved by Bartholdi [88, Theorem A] for bounded selfsimilar groups since these are subgroups of finite
464 15 Status
dimensional CAT(0)-groups and hence Theorem 15.1 (ib) and (iia) applies. Using Theorem 15.1 (ib) and (iib) Bartholdi [88, Theorem C] proves the Full Farrell-Jones Conjecture [22] for Aleshin-Grigorchuk groups, Gupta-Sidki groups, and generalized Grigorchuk groups, whose definition and intriguing properties are reviewed in [88, Section 4].

15.8.17 Strongly Poly-Surface Groups

Definition 15.23 (Strongly poly-surface group). Let G be a group with a finite filtration \(\{1\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_d = G \).

We call G strongly poly-surface if the filtration satisfies the following conditions:

(i) G_i is normal in G for $i = 0, 1, 2, \ldots, d$;
(ii) For every $i \in \{1, 2, \ldots, d\}$ and $g \in G$, there is a (not necessarily compact) surface S (possibly with boundary) with torsionfree $\pi_1(S)$, a diffeomorphism $f : S \rightarrow S$, and an isomorphism $\alpha : G_i/G_{i-1} \cong \pi_1(S)$ such that the following diagram commutes

\[
\begin{array}{ccc}
G_i/G_{i-1} & \xrightarrow{c_g} & G_i/G_{i-1} \\
\alpha \downarrow & & \downarrow \alpha \\
\pi_1(S) & \xrightarrow{\pi_1(f)} & \pi_1(S)
\end{array}
\]

where c_g is induced by conjugation with $g \in G$.

Note that condition (ii) is automatically satisfied if S is a closed surface.

Theorem 15.24 (The Full Farrell-Jones Conjecture for strongly poly-surface groups). A strongly poly surface group G satisfies the Full Farrell-Jones Conjecture [22].

Proof. Fix a filtration $\{1\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_d = G$ as it occurs in Definition 15.23. We show by induction over $i = 0, 1, 2, \ldots, d$ that G/G_{d-i} satisfies the Full Farrell-Jones Conjecture [22]. The induction beginning $i = 0$ is trivial, the induction step from $(i - 1)$ to i done as follows.

Consider the exact sequence $1 \rightarrow G_{d-i+1}/G_{d-i} \rightarrow G/G_{d-i} \xrightarrow{p} G/G_{d-i+1} \rightarrow 1$. By induction hypothesis G/G_{d-i+1} satisfies the Full Farrell-Jones Conjecture [22]. Since $G_{d-i+1}/G_{d-i} \cong \pi_1(S)$, the group G_{d-i+1}/G_{d-i} satisfies the Full Farrell-Jones Conjecture [22] by Theorem 15.1 (ib). Consider any infinite cyclic subgroup $C \subseteq G/G_{d-i+1}$. Choose $g \in G$ such that the image of g under $p : G/G_{d-i} \rightarrow G/G_{d-i+1}$ sends g to a generator of C. Hence $p^{-1}(C)$ is isomorphic to $G_{d-i+1}/G_{d-i} \cong \mathbb{Z}$. From the assumptions about G, we get a diffeomorphism $f : S \rightarrow S$ of a surface S such that $p^{-1}(C)$ is isomorphic
to \(\pi_1(T_f) \). Since \(T_f \) is a 3-manifold, \(\pi_1(T_f) \) satisfies the Full Farrell-Jones Conjecture [12.23] by Theorem 15.1 [ic]. We conclude from Theorem 15.1 [ic] that \(G/G_{d-i} \) satisfies the Full Farrell-Jones Conjecture [12.23].

Exercise 15.25. Let \(G \) be a group with a filtration \(\{1\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_d = G \) such that \(G_{i-1} \) is normal in \(G_i \) and \(G_i/G_{i-1} \) is torsionfree and isomorphic to the fundamental group of a compact manifold of dimension \(\leq 3 \) (possibly with boundary) for all \(i \). Show that the Baum-Connes Conjecture [13.11] with coefficients holds for \(G \).

15.8.18 Normally Poly-Free Groups

A group \(G \) is called poly-free if there is a finite filtration \(\{1\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_d = G \) such that \(G_{i-1} \subseteq G_i \) is normal and \(G_i/G_{i-1} \) is free (of possibly infinite rank) for \(i = 1, 2, \ldots, d \). The Baum-Connes Conjecture [13.11] with coefficients holds for poly-free groups \(G \) by Theorem 15.7 [iic], [iid], and [iie].

The Full Farrell-Jones Conjecture [12.23] is not known for all poly-free groups.

We call a group a normally poly-free group if there is a finite filtration \(\{1\} = G_0 \subseteq G_1 \subseteq \ldots \subseteq G_d = G \) such that \(G_{i-1} \subseteq G_i \) is normal and \(G_i/G_{i-1} \) is free (of possibly infinite rank) for \(i = 1, 2, \ldots, d \).

Theorem 15.26 (The Full Farrell-Jones Conjecture for normally poly-free groups). A normally poly-free group satisfies the Full Farrell-Jones Conjecture [12.23].

Proof. This is proved by Brück-Kielak-Wu [151] using the proof for the case of a finitely generated free group extended by \(\mathbb{Z} \) due to Bestvina-Fujiwara-Wigglesworth [120]. \(\Box \)

Exercise 15.27. Let \(1 \to K \to G \to Q \to 1 \) be an extension of groups such that \(K \) is the fundamental group of a (possibly non-compact) connected manifold (possibly with boundary) of dimension \(\leq 2 \).

Show that \(G \) satisfies the Full Farrell-Jones Conjecture [12.23] if \(Q \) does.

15.8.19 Virtually torsionfree hyperbolic by infinite cyclic groups

If \(H \) is a virtually torsionfree hyperbolic group and \(\phi: H \to H \) is an automorphism, then \(G = H \rtimes \phi \mathbb{Z} \) satisfies the Full Farrell-Jones Conjecture [12.23]. This follows from [121, Proposition 2.2 and Theorem 2.3] using [70, Remark 9.4].
Note that this implies the more general assertion (iii) appearing in Theorem 15.1.
There is no counterexample to the conjecture that every hyperbolic group is virtually torsionfree.

15.8.20 Coxeter Groups

For the definition of and information about Coxeter groups we refer to [260]. Every Coxeter group satisfies the Full Farrell-Jones Conjecture 12.23 by Theorem 15.1 (ii) and the Baum-Connes Conjecture 13.11 with coefficients by Theorem 15.7 (ii).

15.8.21 Right-Angled Artin groups

Every right-angled Artin group can be embedded into a right-angled Coxeter groups as a subgroup of finite index, see [263]. Hence every right-angled Artin group satisfies the Full Farrell-Jones Conjecture 12.23 by Theorem 15.1 (ii) and (iia) and Baum-Connes Conjecture 13.11 with coefficients by Theorem 15.7 (ii) and (iia).
For more information about Right-Angled Artin groups for refer for instance to [205].

15.8.22 Artin groups

The Full Farrell-Jones Conjecture 12.23 and the Baum-Connes Conjecture 13.11 are open for Artin groups, only some partial result are known.
It is an open problem whether every Artin groups admits a cocompact proper isometric action on a complete CAT(0)-space. This is known in some cases, see for instance Haettel [402, 403]. It seems to be also an open question whether Artin groups are A-T-menable.
Even Artin groups of type FC satisfy the Full Farrell-Jones Conjecture 12.23 by Huang-Osajda [452, Corollary], see also [151, Corollary B] and [929]. In [452, Corollary] the Full Farrell-Jones Conjecture 12.23 is also proved for weak Garside groups of finite type.
The Baum-Connes Conjecture 13.11 with coefficients is proved for some Artin groups by Haettel [403 Corollary C].
15.8.23 Braid Groups

Artin’s full braid groups P_n satisfy both the Full Farrell-Jones Conjecture \[12.23\] see Theorem 15.1 (ik) and the Baum-Connes Conjecture \[13.11\] with coefficients, see Theorem 15.7 (ig).

15.8.24 Mapping Class Groups

Let $F_{g,r,s}$ be the orientable compact surface of genus g with r boundary components and s punctures, where s punctures means the choice of s pairwise distinct points. Let $\text{Diff}(F_{g,r,s}, \text{rel})$ be the group of orientation preserving diffeomorphisms $F_{g,r,s} \to F_{g,r,s}$ which leave the boundary and the punctures pointwise fixed. Then the mapping class group $\Gamma_{g,r,s}$ is defined to be $\pi_0(\text{Diff}(F_{g,r,s}, \text{rel}))$, the group of isotopy classes of such diffeomorphisms. We abbreviate $\Gamma_g := \Gamma_{g,0,0}$.

We have stated in Theorem 15.1 (ih) that the Full Farrell-Jones Conjecture \[12.23\] holds for $\Gamma_{g,r,s}$ for all $g,r,s \geq 0$. The hard part of the proof is done by Bartels-Bestvina \[70, \text{Remark } 9.4\] who show that $\Gamma_{g,r,s}$ satisfies the Full Farrell-Jones Conjecture \[12.23\] provided that $r = 0$ and $6g + 2s - 6 \geq 0$ holds.

The next result explains why this is enough to prove the general case.

Lemma 15.28. Suppose that the Full Farrell-Jones Conjecture \[12.23\] holds for Γ_g for every $g \geq 2$.

Then the Full Farrell-Jones Conjecture \[12.23\] holds for $\Gamma_{g,r,s}$ for every $g,r,s \geq 0$.

Proof. For $g,r,s \geq 0$ satisfying $2g + r + s \geq 3$, there are exact sequences, called Birman exact sequences,

\[1 \to \pi_1(F_{g,r,s}) \to \Gamma_{g,r,s} \to \Gamma_{g,r,s+1} \to 1,\]

and, for $g,r,s \geq 0$ satisfying $2g + 2r + s \geq 2$, there are exact sequences

\[1 \to Z \to \Gamma_{g,r,s} \to \Gamma_{g,r,s+1} \to 1,\]

see for example Mislin \[665, \text{page } 266\].

Fix $g,r \geq 0$. Next we show for every $s \geq 0$ that the Full Farrell-Jones Conjecture \[12.23\] holds for $\Gamma_{g,r,s+1}$ if it does for $\Gamma_{g,r,s}$, provided that $2g + r + s \geq 3$.

This follows from Exercise 15.27 applied to the exact sequence (15.29).

Analogously we prove using the exact sequence (15.30) and Exercise 15.27 that for $s \geq 0$ the group $\Gamma_{g,r,s+1}$ satisfies the Full Farrell-Jones Conjecture \[12.23\] if $\Gamma_{g,r,s}$ does, provided that $2g + 2r + s \geq 2$.

The group $\Gamma_{0,0,0}$ is trivial for $s \leq 3$. The group $\Gamma_{0,1,0}$ for $s \leq 1$ is trivial.

The group $\Gamma_{1,0,0}$ is isomorphic to $\text{SL}_2(Z)$ for $s \leq 1$. Hence the groups $\Gamma_{0,0}$
for $s \leq 3$, $I_{s,1}^0$ for $s \leq 1$ and $I_{s,0}^1$ for $s \leq 1$ satisfy the Full Farrell-Jones Conjecture \([12.23]\) because of Theorem \([15.1]\).

Now one fixes $g \geq 0$ and then one uses induction over r,s to prove Lemma \([15.28]\). We begin with $g = 0$. In the first step one shows that the claim holds for $I_{0,0}^s$ for all $s \geq 0$ using \([15.29]\). Then one obtains the claim for $I_{0,1}^s$ for all $s \geq 2$ from \([15.30]\). Hence we know the claim for $I_{0,1}^s$ for all $s \geq 0$. By induction over r one can now show using \([15.30]\) that Full Farrell-Jones Conjecture \([12.23]\) holds for $I_{0,r}^s$ for every $r,s \geq 0$.

Next we treat $g = 1$. In the first step one shows that the claim holds for $I_{1,0}^s$ for all $s \geq 0$ using \([15.29]\). Now one shows by induction over r using \([15.30]\) that the Full Farrell-Jones Conjecture \([12.23]\) holds for $I_{1,r}^s$ for every $r,s \geq 0$.

Finally one treats $g \geq 2$ analogously taking into account that $2g+r+s \geq 3$ and $2g+2r+s \geq 2$ holds for all $r,s \geq 0$ and $I_{g,0}^0$ satisfies the Full Farrell-Jones Conjecture \([12.23]\) by assumption.

15.8.25 Out(F_n)

The Full Farrell-Jones Conjecture \([12.23]\) and actually even the K-theoretic Farrell-Jones Conjecture \([12.2]\) with coefficients in rings and the L-theoretic Farrell-Jones Conjecture \([12.7]\) with coefficients in rings with involution, are open for Out(F_n) for $n \geq 3$. The same statement holds for the Baum-Connes Conjecture.

The group Out(F_n) is boundary amenable by a result of Bestvina-Guiard-Horbez \([671]\). Hence the assembly map appearing in the Baum-Connes Conjecture \([13.1]\) with coefficients is rationally injective, see Remark \([15.17]\) and therefore also the Novikov Conjecture holds for any subgroup of Out(F_n), see Section \([13.8]\). Actually, in \([671]\) also other groups than F_n, for instance torsionfree hyperbolic groups, and right-angled Artin groups, are treated.

At least the rational injectivity of the K-theoretic Farrell-Jones assembly map with coefficients in \mathbb{Z} (disregarding some K_{-1}-term contribution) follows from \([607]\) for Out(F_n).

15.8.26 Thompson’s Groups

Thompson defined the groups F, T, and V in some handwritten notes from 1965. Thompson’s group V is the group of right-continuous automorphisms f of $[0,1]$ that map dyadic rational numbers to dyadic rational numbers, that are differentiable except at finitely many dyadic rational numbers, and such that, on each interval on which f is differentiable, f is affine with derivative a power of 2. The group F is the subgroup of V consisting of homeomorphisms. The group T is the subgroup of V consisting of those elements which
induce homeomorphisms of the circle, where the circle is regarded as $[0, 1]$ with 0 and 1 identified. These groups have some unusual properties. It is an open question, whether F is amenable. It is known that F is not elementary amenable.

Farley [319] has shown that F, T, and V are a-T-menable and hence satisfy the Baum-Connes Conjecture 13.11 with coefficients, see Theorem 15.7 [ia].

The Full Farrell-Jones Conjecture 12.23 and actually even the K-theoretic Farrell-Jones Conjecture 12.2 with coefficients in rings and the L-theoretic Farrell-Jones Conjecture 12.7 with coefficients in rings with involution, are open for F, T, and V.

At least the rational injectivity of the K-theoretic Farrell-Jones assembly map with coefficients in \mathbb{Z} (disregarding some K_{-1}-term contribution) follows from [607] for T using [377].

15.8.27 Groups Satisfying Homological Finiteness Conditions

So far the groups for which we were able to prove the Farrell-Jones Conjecture or the Baum-Connes Conjecture satisfy some geometric conditions, often a reminiscence of non-positive sectional curvature. At least for the K-theoretic Farrell-Jones Conjecture there are results, where no geometric conditions but some finiteness conditions are required. The celebrated prototype of such a result is the following theorem due to Boekstedt-Hsiang-Madsen [131].

Theorem 15.31 (Bökstedt-Hsiang-Madsen Theorem). Let G be a group such that $H_i(G; \mathbb{Z})$ is finitely generated for all $i \geq 0$. Then G satisfies the K-theoretic Novikov Conjecture 12.54, i.e., the assembly map

$$H_n(BG; K(\mathbb{Z})) \to K_n(\mathbb{Z}G)$$

is rationally injective for all $n \in \mathbb{Z}$.

This raises the question under which finiteness conditions one can show that the assembly map appearing in the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \mathbb{Z} is rationally injective. Recall from Theorem 12.43 [v] that for a group G and a regular ring R the map

$$(15.32) \quad H^G_n(\iota_{\mathcal{F}L^N \subseteq \mathcal{V}C\mathcal{Y}}; K_R) : H^G_n(E_{\mathcal{F}L^N}(G); K_R) \xrightarrow{\cong} H^G_n(E_{\mathcal{V}C\mathcal{Y}}(G); K_R)$$

is bijective for all $n \in \mathbb{Z}$ after applying $\mathbb{Q} \otimes \mathbb{Z} -$.

The source of the map (15.32) has already been computed rationally using equivariant Chern characters in Theorem 11.71.
By the isomorphisms (15.32) and (15.33) the assembly map appearing in the Farrell-Jones Conjecture [12.1] with coefficients in the regular ring R becomes rationally a map
\[
\bigoplus_{p+q=n} \bigoplus_{(C) \in J} H_p(C_G C; \mathbb{Q}) \otimes_{\mathbb{Q}[W_G C]} \Theta_C \cdot \left(\mathbb{Q} \otimes_R K_q(RC) \right) \rightarrow \mathbb{Q} \otimes_R K_n(RG).
\]

So the question above is equivalent to the question whether the map (15.34) is rationally injective.

From now on we consider the special case $R = \mathbb{Z}$. The restriction of the map (15.34) to the summand corresponding to $C = \{1\}$ is rationally the same as the map appearing in in Theorem [15.31]. Hence a positive answer to the question above implies Theorem [15.31].

The main result of [607] says that under certain finiteness assumptions, which are for instance satisfied if there is a model for $E_{FIN}(G)$ of finite type, and certain number theoretic conditions which are implied by the Leopoldt-Schneider Conjecture, the assembly map (15.34) is rational injective if we ignore the summands for $q = -1$. This summand cannot be detected since topological cyclic homology does not see K_{-1}. Note that Theorem [15.33] just detects the summand for $C = \{1\}$ and does not see the ones for non-trivial C.

Nevertheless, the methods and proofs of [607] are based on the ideas of [131].

As an illustration we mention two easy to formulate consequences of the results of [607, Main Theorem 1.13], where the necessary input from number theory is known to be true and therefore does not appear in the assumptions, similar to the situation in Theorem [15.31].

Theorem 15.35 (Rationally injectivity of the colimit map for finite subgroups for the Whitehead group). Let G be a group. Assume that for every finite cyclic subgroup C of G the abelian groups $H_1(BG C; \mathbb{Z})$ and $H_2(BG C; \mathbb{Z})$ associated to their centralizers $C_G C$ are finitely generated.

Then the canonical map
\[
\text{colim}_{H \in \text{Sub}(G)} \mathbb{Q} \otimes \text{Wh}(H) \rightarrow \mathbb{Q} \otimes \text{Wh}(G)
\]
is injective.

Theorem 15.36 (Eventual injectivity of the rational K-theoretic assembly map for $R = \mathbb{Z}$). Let G be a group. Assume that there is a finite G-CW-model for $E_{FIN}(G)$.

Then there exists an integer $L > 0$ such that the rationalized Farrell-Jones assembly map (15.34) is injective for all $n \geq L$. The bound L only depends
on the dimension of $E_{\mathcal{T}_N}(G)$ and on the orders of the finite cyclic subgroups of G.

15.9 Open Cases

Here is a list of interesting groups for which the Full Farrell-Jones Conjecture 12.23 is open in general:

- elementary amenable, amenable, a-T-menable groups;
- $\text{Out}(F_n)$;
- Artin groups;
- Thompson’s groups F, V, and T;
- Torsionfree one-relator groups;
- Linear groups;
- Subgroups of almost connected Lie groups;
- Residual finite groups;
- (Bi-)Automatic groups

Here is a list of interesting groups for which the Baum-Connes Conjecture 13.11 with coefficients is open in general:

- Finite dimensional $\text{CAT}(0)$-groups.
- Fundamental groups of closed Riemannian manifolds with non-positive sectional curvature;
- Lattices in almost connected Lie groups, for instance $\text{SL}_n(\mathbb{Z})$ for $n \geq 3$;
- S-arithmetic groups;
- $\text{Out}(F_n)$ for $n \geq 3$;
- Mapping class groups (of higher genus);
- Linear groups;
- Subgroups of almost connected Lie groups;
- Residual finite groups;
- (Bi-)Automatic groups

15.10 How Can We Find Counterexamples?

We are not aware of any group for which the Full Farrell-Jones Conjecture 12.23 is known to be false. The same statement holds for the Baum-Connes Conjecture 13.9 without coefficients and the Novikov Conjecture 8.134.
15.10.1 Is the Full Farrell-Jones Conjecture true for all groups?

It is hard to believe that the Full Farrell-Jones Conjecture \[12.23\] is true for all groups, since there have been so many prominent conjectures about groups, which were open for some time and for which finally counterexamples were found. On the other hand the conjecture is known for so many groups so that we currently have no strategy to find counterexamples, as we will illustrate below.

We have already mentioned that the groups which come from the construction of Arzhantseva-Delzant \[41\] and yield counterexamples to the Baum-Connes Conjecture \[13.11\] with coefficients by Higson-Lafforgue-Skandalis \[434\], are colimits of hyperbolic groups and hence satisfy the Full Farrell-Jones Conjecture \[12.23\] by Theorem \[15.1\] (ia) and (iic).

Baum-Guentner-Willet \[99\] give a reformulation of the Baum-Connes Conjecture \[13.11\] with coefficients by introducing a new crossed product, see also \[170\], for which no counterexamples are known so far.

We have already discussed the problem about the Baum-Connes Conjecture \[13.9\] which does not occur for the Full Farrell-Jones Conjecture \[12.23\] that the left hand side of the Baum-Connes Conjecture is functorial under group homomorphism and there is no reason why the right hand side should have this property, see Remark \[13.12\]. The new version of Baum-Guentner-Willet \[99\] still faces this problem. This sheds additional doubts on the Baum-Connes Conjecture.

15.10.2 Exotic Groups

One does not know of a property of a group for which one may expect that groups with this property are automatically counterexamples to the Full Farrell-Jones Conjecture \[12.23\] or to the Baum-Connes Conjecture \[13.9\]. Next we list some groups with an exotic property for which the Full Farrell-Jones Conjecture \[12.23\] is known to be true at least for some groups with this exotic property.

- Finitely generated infinite torsion p-groups
 Given a large enough prime p, there exists an infinite finitely generated group all of whose proper subgroups are finite cyclic groups of order p, see \[169\]. These groups are lacunary hyperbolic groups and hence satisfy the Full Farrell-Jones Conjecture \[12.23\] see Subsection \[15.8.2\].
 Other examples of finitely generated infinite torsion p-groups are mentioned in Subsection \[15.8.16\].

- Groups with expanders
 There exists a group G which is a colimit of hyperbolic groups and con-
tains appropriate expanders, see \[41\]. It satisfies the Full Farrell-Jones Conjecture \[12.23\] by Theorem \[15.1\] (ia) and (iic).

- **Selfsimilar groups**
 See Subsection \[15.8.16\].

- **Infinite torsionfree simple groups**
 There exists finitely presented torsionfree simple CAT(0)-groups, see \[165, Corollary 5.4 and Theorem 5.5\]. They satisfy the Full Farrell-Jones Conjecture \[12.23\] by Theorem \[15.1\] (ib).

- **Groups which do not possess a finite-dimensional model or a model of finite type for \(BG\) or \(B\)**
 Examples of such groups satisfying the Full Farrell-Jones Conjecture \[12.23\] can easily be constructed using Theorem \[15.1\] (ii).

- **Groups with property (T)**
 There are hyperbolic groups which have property (T). They satisfy the Full Farrell-Jones Conjecture \[12.23\] by Theorem \[15.1\] (ia).

- **Groups for which certain decision problems are unsolvable.**
 A lot of groups, for which the Full Farrell-Jones Conjecture \[12.23\] is known and some decision problems such as the isomorphism problem, conjugacy problem and membership problem are unsolvable, can be found in Bridson \[142\].

 Also the results about groups with some homological finiteness conditions of Subsection \[15.8.26\] indicate that the search for counterexamples for the Farrell-Jones Conjecture is not easy.

 In order to find counterexamples one seems to need completely new ideas, maybe from random groups or logic. It is unlikely that the counterexample is a concrete group, but rather a group with certain strange properties, for which existence can be shown by abstract methods but not by a concrete construction.

 It is probably easier to find counterexamples to surjectivity than to injectivity.

15.10.3 Infinite Direct Products

Nothing is known about infinite products. It would be very interesting if one can show that for family of groups \(\{G_i \mid i \in I\}\) (with infinite \(I\)) the Full Farrell-Jones Conjecture \[12.23\] is true for the direct product \(\prod_{i \in I} G_i\) if it holds for each \(G_i\). (Note that the corresponding statement is true for the direct sum \(\bigoplus_{i \in I} G_i\) by Theorem \[15.1\] (ib) and (iic).) In view of Theorem \[15.1\] (iia) this would imply that the Full Farrell-Jones Conjecture \[12.23\] is stable under inverse limits over directed systems of groups. This would have the immediate consequence that the Full Farrell-Jones Conjecture \[12.23\] is true for all residually finite groups. On the other hand it may be worthwhile to look at infinite direct products in order to find a counterexample.
15.10.4 Exotic Aspherical Closed Manifolds

One may look also for counterexamples to one of the conjecture which follow from the Full Farrell-Jones Conjecture [12.23] for instance to the Borel Conjecture [8.155]. There are indeed aspherical closed manifolds with unusual properties, but the fundamental groups of some of them do satisfy the Full Farrell-Jones Conjecture [12.23] and hence the Borel Conjecture.

Davis constructed for every \(n \geq 4 \) aspherical closed manifolds of dimension \(n \) whose universal cover is not homeomorphic to Euclidean space [259, Corollary 15.8]. In particular, these manifolds do not support metrics of non-positive sectional curvature. The fundamental groups of these examples are finite index subgroups of Coxeter groups \(W \). Thus they satisfy the Full Farrell-Jones Conjecture [12.23] by Theorem [15.1 (i) and (ii)]. In particular these manifolds are indeed topologically rigid, provided that \(n \geq 5 \).

Davis and Januszkiewicz [262, Theorem 5b.1] used Gromov’s hyperbolization technique to construct for every \(n \geq 5 \) an aspherical closed \(n \)-dimensional manifold \(M \) such that the universal covering \(\tilde{M} \) is a finite dimensional \(\text{CAT}(0) \)-space whose fundamental group at infinite is non-trivial. In particular, these universal covers are not homeomorphic to Euclidean space. Because these examples are in addition non-positively curved polyhedron, their fundamental groups are finite dimensional \(\text{CAT}(0) \)-groups. There is a variation of this construction that uses the strict hyperbolization of Charney-Davis [207] and produces an aspherical closed manifold \(M \) whose universal cover is not homeomorphic to Euclidean space and whose fundamental group is hyperbolic. The fundamental groups of these manifolds \(M \) satisfy the Full Farrell-Jones Conjecture [12.23] by Theorem [15.1 (ia) and (ib)]. In particular these manifolds \(M \) are topologically rigid.

Davis-Januszkiewicz [262, Theorem 5a.1 and Corollary 5a.4] construct a \(4 \)-manifold \(N \) such that \(\pi_1(N) \) is a finite dimensional \(\text{CAT}(0) \)-group and \(N \times T^k \) for \(k \geq 1 \) is not homotopy equivalent to a PL-manifold. Since \(\pi_1(N \times T^k) \) is a finite dimensional \(\text{CAT}(0) \)-group and \(\dim(N \times T^k) \geq 5 \) for \(k \geq 1 \), the manifolds \(N \times T^k \) for \(k \geq 1 \) are topologically rigid by Theorem [15.1 (ib)].

Belegradek [106, Corollary 5.1], and Weinberger, see [258, Section 13], have shown that for every \(n \geq 4 \) there is an aspherical closed manifold of dimension \(n \) whose fundamental group has an unsolvable word problem. Note that a finitely presented group with unsolvable word problem is not a \(\text{CAT}(0) \) -group, not hyperbolic, not automatic, not asynchronously automatic, not residually finite and not linear over any commutative ring, see [106, Remark 5.2]. So we do not know whether it satisfies the Full Farrell-Jones Conjecture [12.23] or the Borel Conjecture [8.155].
15.10 How Can We Find Counterexamples?

The proofs of the results above are based on the reflection group trick as it appears for instance in [258, Sections 8,10 and 13]. It can be summarized as follows.

Theorem 15.37 (Reflection group trick). Let G be a group which possesses a finite model for BG. Then there is an aspherical closed manifold M and a map $i: BG \to M$ and $r: M \to BG$ such that $r \circ i = id_{BG}$.

An interesting immediate consequence of the reflection group trick is that many well-known conjectures about groups hold for every group which possesses a finite model for BG if and only if it holds for the fundamental group of every aspherical closed manifold, see also [258, Sections 11].

Exercise 15.38. Suppose that Farrell-Jones Conjecture 6.44 for torsionfree groups and regular rings holds for the fundamental group of any aspherical closed manifold. Show that it then holds for all groups G with a finite model for BG.

Prove the analogous statement for the L-theoretic Farrell-Jones Conjecture 8.111 for torsionfree groups.

15.10.5 Some Results Which Hold for All Groups

Here is a result which holds for all (discrete) groups, is non-trivial and related to the Farrell-Jones Conjecture. Let $i: H \to G$ be the inclusion of a normal subgroup $H \subseteq G$. It induces a homomorphism $i_0: \text{Wh}(H) \to \text{Wh}(G)$. The conjugation actions of G on H and on G induce G-actions on $\text{Wh}(H)$ and on $\text{Wh}(G)$ which turns out to be trivial on $\text{Wh}(G)$. Hence i_0 induces homomorphisms

\begin{equation}
15.39 \quad i_1: \mathbb{Z} \otimes_{\mathbb{Z}G} \text{Wh}(H) \to \text{Wh}(G);
\end{equation}

\begin{equation}
15.40 \quad i_2: \text{Wh}(H)^G \to \text{Wh}(G).
\end{equation}

Theorem 15.41 (Rational injectivity of $\mathbb{Z} \otimes_{\mathbb{Z}G} \text{Wh}(H) \to \text{Wh}(G)$ for normal finite $H \subseteq G$). Let $i: H \to G$ be the inclusion of a normal finite subgroup H into an arbitrary group G. Then the maps i_1 and i_2 defined in (15.39) and (15.40) have finite kernel.

Proof. See [585, Theorem 9.38 on page 354].

We omit the details of the proof that the result of Theorem 15.41 can be also deduced from the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \mathbb{Z}.

Exercise 15.42. Let G be a group with vanishing Whitehead group. Show that each element in the center has order order 1, 2, 3, 4 or 6.

Another non-trivial consequence of the Farrell-Jones Conjecture which holds for all groups has been discussed in Remark 2.84.

Furthermore, Yu [937, Theorem 1.1], see also Cortinas-Tartaglia [232], proves that the \mathcal{K}-theoretic assembly map $H^n_{\mathcal{K}}(E_{VCY}(G); K_S) \to K^n(SG)$ appearing in the \mathcal{K}-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring R is rationally injective for every group G, provided that R is the ring S of Schatten class operators of an infinite dimensional separable Hilbert space.

15.11 Notes

Theorem 15.43 (Status of the Farrell-Jones Conjecture for A-theory with coefficients finite wreath products). The current status of the Farrell-Jones Conjecture for A-theory with coefficients, see Conjecture 14.59, where one can additionally allow finite wreath products, is the same as the one as described in Theorem 15.1.

Proof. This is follows from [316] and [516].

Injectivity results about the A-theoretic assembly map $H_n(BG; A(\{\bullet\})) \to A(BG)$ for certain groups possessing nice compactifications of EG can be found in [191, Theorem A].

Comment 16: Maybe we shall add results about injectivity by Bunke-Kasprowski-Winges here.

There are groups for which the Full Farrell-Jones Conjecture 12.23 is not known to be true but weaker versions of it have been proved. For example, the \mathcal{K}-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring R is known if R is regular and G belongs to the class \mathcal{C}' described in [75, Definition 0.10]. The class \mathcal{C}' contains for instance all torsionfree 1-relator groups.

The class of groups, for which the L-theoretic Farrell-Jones Conjecture 12.8 with coefficients in rings with involution after inverting 2 the L-theoretic Farrell-Jones Conjecture 12.4 with coefficients in any ring with involution R holds after inverting two, is analyzed in [424, Proposition 5.2.2 and Lemma 5.2.3]. It contains for instance all elementary amenable groups. The result and its proof is analogous to Theorem 15.5.

A proof of the Full Farrell-Jones Conjecture 12.23 for CAT(0)-groups has been extended to a larger class of group which also contains all hyperbolic groups by Kasprowski-Rüping [514].

The bijectivity of the algebraic \mathcal{K}-theoretic assembly map for certain coefficients coming from C^\ast-algebras is proved by Cortinas-Tartaglia [230, Corol-
lary 1.5] for a-T-menable groups G by reducing it to the Baum-Connes Conjecture.
Chapter 16
Guide for Computations

16.1 Introduction

One major goal is to compute K- and L-groups such as $K_n(RG)$, $L_n^{(−∞)}(RG)$, and $K_n(C^*_r(G))$. Assuming that the K-theoretic Farrell-Jones Conjecture\footnote{Theorem 12.1} with coefficients in the ring R, the L-theoretic Farrell-Jones Conjecture\footnote{Theorem 12.4} with coefficients in the ring with involution R, or the Baum-Connes Conjecture\footnote{Theorem 13.9} hold for G, this reduces to the computation of the left hand side of the corresponding assembly maps, namely, of $H^G_n(E_{\text{FIN}}(G); K_R)$, $H^G_n(E_{\text{FIN}}(G); L_{R}^{(−∞)})$, or $H^G_n(E_{\text{FIN}}(G); K_{\text{top}}) = K^G_n(E_{\text{FIN}}(G))$. This is much easier since here we can use standard methods from algebraic topology. The main general tools are the equivariant Atiyah-Hirzebruch spectral sequence, see Theorem 11.45, the p-chain spectral sequence, see Theorem 11.47, and equivariant Chern characters, see Theorem 11.54. Nevertheless such computations can be pretty hard. Roughly speaking, one can obtain a general reasonable answer after rationalization, but integral computations have only been done case by case and there seems to be no general pattern. Often the key is a good understanding of how one can built $E_{\text{FIN}}(G)$ from E_G and how one can built $E_{\text{VCY}}(G)$ from $E_{\text{FIN}}(G)$. These passages have already been studied in Theorems 10.32 and 10.36.

16.2 K- and L-Groups for Finite Groups

For the computations of $H^G_n(E_{\text{FIN}}(G); K_R)$, $H^G_n(E_{\text{FIN}}(G); L_{R}^{(−∞)})$, and $H^G_n(E_{\text{FIN}}(G); K_{\text{top}}) = K^G_n(E_{\text{FIN}}(G))$, one needs to understand $K_n(RH)$, $L_n^{(−∞)}(RH)$, and $K_n(C^*_r(H))$ for finite groups H, since these are the values of $H^G_n(G/H; K_R)$, $H^G_n(G/H; L_{R}^{(−∞)})$, and $H^G_n(G/H; K_{\text{top}}) = K^G_n(G/H)$ for homogeneous spaces G/H for finite subgroups $H \subseteq G$.

For a finite group G we have given information about $K_0(ZG)$ in Section 2.11, about $K_1(ZG)$ and Wh(G) in Section 3.12, about $K_n(ZG)$ for $n \leq 1$ in Example 4.11, Section 4.5 and Example 5.14, about $K_2(ZG)$ and Wh$_2$(G) in Section 5.8, about $L_n^{(j)}(ZG)$ in Section 8.22, and about $K_n(C^*_r G)$ and $KO_n(C_r^*(G; R))$ in Section 9.9.

Let us summarize. There is a complete formula for $K_{−1}(ZG)$ and $K_n(ZG) = 0$ for $n \leq −2$. One has a good understanding of Wh(G). A complete computation of $K_0(\mathbb{Z}[\mathbb{Z}/p])$ for arbitrary primes p is out of reach. A complete
computation of $K_n(\mathbb{Z})$ is not known for all $n \in \mathbb{Z}$. We have already mentioned Borel’s formula for $K_n(\mathbb{Z}) \otimes_\mathbb{Z} \mathbb{Q}$ for all $n \in \mathbb{Z}$ in Theorem 6.24. The L-groups of $\mathbb{Z}G$ are pretty well understood for finite groups G. The values of $K_n(C^*_r(G))$ and $K_n(C^*_r(G; \mathbb{R}))$ are explicitly known for finite groups G and are in the complex case in contrast to the real case always torsionfree.

16.3 The Passage from \mathcal{FIN}' to \mathcal{VCY}

In the Baum-Connes setting it is enough to consider the family \mathcal{FIN}'. In the Farrell-Jones Conjecture we have to pass from \mathcal{FIN}' to \mathcal{VCY}. This passage has been discussed in detail already in Section 12.7. We get splittings

$$H^G_n(E_{\mathcal{VCY}}(G); K_R) \cong H^G_n(E_{\mathcal{FIN}'}(G); K_R) \oplus H^G_n(E_{\mathcal{FIN}'}(G) \to E_{\mathcal{VCY}}(G); K_A),$$

and under mild K-theoretic assumptions

$$H^G_n(E_{\mathcal{VCY}}(G); L^{(-\infty)}_R) \cong H^G_n(E_{\mathcal{FIN}'}(G); L^{(-\infty)}_R) \oplus H^G_n(E_{\mathcal{FIN}'}(G) \to E_{\mathcal{VCY}}(G); L^{(-\infty)}_R).$$

We have also explained in Theorem 12.39 that in K-theory it suffices to replace \mathcal{VCY} by \mathcal{VCY}_I and in Theorem 12.51 that in L-theory there is no difference between \mathcal{FIN}' and \mathcal{VCY}_I.

If we are only interested in rational information there is no difference between \mathcal{FIN}' and \mathcal{VCY}_I, when we are dealing with the algebraic K-theory of groups rings RG for regular rings R, see Theorem 12.43 (v) and when we are dealing with L-theory, see Theorem 12.53 (v).

For L-theory the Tate cohomology of the K-theory is important when one is comparing different decoration, see Subsection 8.10.4. Therefore the next result is sometimes useful.

In [617, Definition 8.5] the condition is formulated that the infinite virtually cyclic subgroups of type I of G are orientable. This condition is automatically satisfied if one of the following conditions is satisfied, see [617, Lemma 8.7 and Lemma 8.8], [340, Theorem 9.1].

- Let G is hyperbolic and all infinite virtually cyclic subgroups of G are of type I;
- G is a torsionfree hyperbolic group;
- G is a CAT(0)-group, which does not contain the Klein bottle group $\mathbb{Z} \rtimes \mathbb{Z}$ as subgroup and all of whose infinite virtually cyclic subgroups of G are of type I;
- G is a torsionfree CAT(0)-group, which does not contain the Klein bottle group $\mathbb{Z} \rtimes \mathbb{Z}$ as subgroup.
Lemma 16.1. Let \(R \) be a ring with involution. Suppose that the infinite virtually cyclic subgroups of type I of \(G \) are orientable.

Then for all \(j, n \in \mathbb{Z} \) the obvious map between the Tate cohomology groups

\[
\hat{H}^n(\mathbb{Z}/2; H^i_G(\mathcal{F}_{\mathcal{FIN}}(G); K_R)) \cong \hat{H}^n(\mathbb{Z}/2; H^i_G(\mathcal{F}_{\mathcal{VCY}}(G); K_R))
\]

is an isomorphism.

Proof. It suffices to show

\[
\hat{H}^n(\mathbb{Z}/2; H^i_G(\mathcal{F}_{\mathcal{FIN}}(G) \to \mathcal{F}_{\mathcal{VCY}}(G); K_R)) = 0.
\]

This is a direct consequence of \([617, \text{Theorem 0.1 and Theorem 0.2}]\). \(\square\)

16.4 Mayer-Vietoris sequences and Wang sequences

We have explained in Section 14.7 how an action of \(G \) on a tree \(T \) yields a long exact sequence involving the isotropy groups. In particular we get for an amalgamated free product a Mayer-Vietoris sequence and for a semi-direct product with \(\mathbb{Z} \), or, more generally, for HNN-extension, a long exact Wang sequence.

We want to illustrate this in the case \(G = \text{SL}_2(\mathbb{Z}) \). We have already explained in Subsection 10.6.11 that \(\text{SL}_2(\mathbb{Z}) \) is the free amalgamated product \(\mathbb{Z}/4 \ast \mathbb{Z}/2 \ast \mathbb{Z}/6 \). Since the inclusion \(\mathbb{Z}/2 \to \mathbb{Z}/6 \) is split injective, we obtain from the long exact sequence appearing in Theorem 14.27 (ii) for every equivariant homology theory \(H^\ast \) an isomorphism

\[
\mathcal{H}^\mathbb{Z}/4_n({\bullet}) \oplus \text{coker}(\mathcal{H}^\mathbb{Z}/2_n({\bullet}) \to \mathcal{H}^\mathbb{Z}/6_n({\bullet})) \cong \mathcal{H}^\text{SL}_2(\mathbb{Z})_n(E\text{SL}_2(\mathbb{Z})).
\]

This yields isomorphisms

\[
K_n(C^\ast_r(\mathbb{Z}/4; \mathbb{C})) \oplus \text{coker}(K_n(C^\ast_r(\mathbb{Z}/2; \mathbb{C})) \to K_n(C^\ast_r(\mathbb{Z}/6; \mathbb{C}))) \cong K_n(C^\ast_r(\text{SL}_2(\mathbb{Z}); \mathbb{C}));
\]

\[
KO_n(C^\ast_r(\mathbb{Z}/4; \mathbb{R})) \oplus \text{coker}(KO_n(C^\ast_r(\mathbb{Z}/2; \mathbb{R})) \to KO_n(C^\ast_r(\mathbb{Z}/6; \mathbb{R}))) \cong KO_n(C^\ast_r(\text{SL}_2(\mathbb{Z}); \mathbb{R}));
\]

\[
L_n^{(-\infty)}(\mathbb{R}[\mathbb{Z}/4])[1/2] \oplus \text{coker}(L_n^{(-\infty)}(\mathbb{R}[\mathbb{Z}/2])[1/2] \to L_n^{(-\infty)}(\mathbb{R}[\mathbb{Z}/6])[1/2]) \cong L_n^{(-\infty)}(\mathbb{R}[\text{SL}_2(\mathbb{Z})])[1/2];
\]
\[L_n^{(-\infty)}(R[Z/4]) \oplus \ker(L_n^{(-\infty)}(R[Z/2]) \to L_n^{(-\infty)}(R[Z/6])) \]
\[\cong H_n^{SL_2(Z)}(E SL_2(Z); \mathbb{L}_R^{(-\infty)}); \]
\[K_n(R[Z/4]) \oplus \ker(K_n(R[Z/2]) \to K_n(R[Z/6])) \cong H_n^{SL_2(Z)}(E SL_2(Z); K_R). \]
Since \(SL_2(Z) \) is hyperbolic, we get from Theorem 10.36, Theorem 12.39 and Theorem 12.51 isomorphisms
\[H_n^{SL_2(Z)}(E SL_2(Z); \mathbb{L}_R^{(-\infty)}) \oplus \bigoplus_V H_n^V(\mathbb{E} V \to \{\bullet\}; \mathbb{L}_R^{(-\infty)}) \cong L_n^{(-\infty)}(R[SL_2(Z)]); \]
\[H_n^{SL_2(Z)}(E SL_2(Z); K_R) \oplus \bigoplus_V H_n^V(\mathbb{E} V \to \{\bullet\}; K_R), \cong K_n(R[SL_2(Z)]). \]

where \(V \) runs through a complete system of representatives of infinite virtually cyclic subgroups of type II in the \(L \)-theory case and through a complete system of representatives of infinite virtually cyclic subgroups of type I in the \(K \)-theory case.

Since every infinite cyclic subgroup of type I of \(SL_2(Z) \) is isomorphic to \(\mathbb{Z} \) or \(\mathbb{Z} \times \mathbb{Z}/2, \) we conclude from Theorem 4.2, and Theorem 6.21 that \(H_n^V(\mathbb{E} V \to \{\bullet\}; K_R) \) vanishes for \(n \leq 1 \) for any infinite virtually cyclic subgroup of type I of \(SL_2(Z). \) Hence we get for \(n \leq 1 \) an isomorphism
\[K_n(Z[Z/4]) \oplus \ker(K_n(Z[Z/2]) \to K_n(Z[Z/6])) \cong K_n(Z[SL_2(Z)]). \]

We conclude from Theorem 2.97 (i), Theorem 3.112, Theorem 3.113 (iv), Example 4.9, Theorem 4.21 (i) and (v) that \(Wh(SL_2(Z)), \tilde{K}_0(Z[SL_2(Z)]), \) and \(K_n(Z[SL_2(Z)]) \) for \(n \leq -2 \) vanish and the inclusion \(\mathbb{Z}/6 \to SL_2(Z) \) induces an isomorphism \(K_{-1}(\mathbb{Z}/6) \cong \mathbb{Z} \to K_{-1}(Z[SL_2(Z)]). \)

Exercise 16.2. Prove
\[K_n(C^*_r(SL_2(Z); \mathbb{C}) \cong \begin{cases} \mathbb{Z}^8 & n \text{ even}; \\ \{0\} & n \text{ odd}, \end{cases} \]
and
\[KO_n(C^*_r(SL_2(Z); \mathbb{R})) \cong \begin{cases} \mathbb{Z}^5 & n \equiv 0 \mod (8); \\ (\mathbb{Z}/2)^2 & n \equiv 1 \mod (8); \\ (\mathbb{Z}/2)^2 \oplus \mathbb{Z}^3 & n \equiv 2 \mod (8); \\ \{0\} & n \equiv 3 \mod (8); \\ \mathbb{Z}^5 & n \equiv 4 \mod (8); \\ \{0\} & n \equiv 5 \mod (8); \\ \mathbb{Z}^3 & n \equiv 6 \mod (8); \\ \{0\} & n \equiv 7 \mod (8). \end{cases} \]
Exercise 16.3. Let D_8 be the dihedral group of order eight and C be its center which is a group of order two. Let G be the group $D_8 \ast C D_8$. Prove

$$K_0(CG) \cong \mathbb{Z}^8 \oplus \mathbb{Z}/2;$$

$$K_n(C^*_r(G)) \cong \begin{cases} \mathbb{Z}^8 \oplus \mathbb{Z}/2 & \text{if } n \text{ is even;} \\ \{0\} & \text{if } n \text{ is odd.} \end{cases}$$

16.5 Rational Computations for Infinite Groups

Next we state what is known rationally about the K- and L-groups of an infinite (discrete) group, provided the Farrell-Jones Conjectures 12.1 or 12.4 or the Baum-Connes Conjecture 13.9 holds.

16.5.1 Rationalized Algebraic K-Theory

The next result follows from Theorem 11.71 and Theorem 12.43 (v). For $R = \mathbb{Z}$ see also Grunewald [396, Corollary on page 165].

Theorem 16.4 (Rational computations of $K_n(RG)$ for regular R).

Let R be regular ring, e.g., R is \mathbb{Z}. Suppose that the group G satisfies the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring R.

Then we have for all $n \in \mathbb{Z}$ a natural isomorphism

$$\bigoplus_{p+q=n} \bigoplus_{C \in J} H_p(C_C; \mathbb{Q}) \otimes_{\mathbb{Q}[\text{aut}(C)]} \Theta_C \cdot (\mathbb{Q} \otimes_{\mathbb{Z}} K_q^{\text{c}}(RC)) \xrightarrow{\sim} \mathbb{Q} \otimes_{\mathbb{Z}} K_n(RG)$$

where we use the notation from Theorem 11.71.

Computations of $K_q^{\text{c}}(RC)$ as $\mathbb{Z}[\text{aut}(C)]$-module for finite cyclic groups C and $R = \mathbb{Z}$ or R a field of characteristic zero can be found in [712].

Exercise 16.5. If in Theorem 16.4 we drop the condition that R is regular, show that then we still know that the map appearing there is split injective.

Example 16.6 (A Formula for $K_0(RG) \otimes_{\mathbb{Z}} \mathbb{Q}$ for R the ring of integers in an algebraic number field). Let R be the ring of integers in an algebraic number field, e.g., $R = \mathbb{Z}$. Note that then R is regular by Theorems 2.21 and 2.23. Suppose that the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring R is true for G. Then Conjecture 4.19 is true by
Theorem 12.56. Hence we obtain from Theorem 2.89, Theorem 4.21 (i), and Theorem 16.4 an isomorphism

\[\tilde{K}_0(RG) \otimes \mathbb{Q} \cong \bigoplus_{(C) \in \mathcal{FCY}} H_1(BC_G C; \mathbb{Q}) \otimes_{Q[W_G C]} \theta_C \cdot K_{-1}(RC) \otimes \mathbb{Q}. \]

Note that \(\tilde{K}_0(RG) \otimes \mathbb{Q} \) contains only contributions from \(K_{-1}(RC) \otimes \mathbb{Q} \) for finite cyclic subgroups \(C \subseteq G \).

Exercise 16.7. Suppose that the \(K \)-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \(\mathbb{Z} \) is true for \(G \) and that any element of finite order has prime power order. Show that then \(\tilde{K}_0(\mathbb{Z}G) \otimes \mathbb{Q} \) vanishes.

16.5.2 Rationalized Algebraic \(L \)-Theory

The next result follows from Theorem 8.104, Theorem 11.71, and Theorem 12.53 (i).

Theorem 16.8 (Rational computation of algebraic \(L \)-theory). Suppose that the \(L \)-theoretic Farrell-Jones Conjecture 12.8 with coefficients in rings with involution after inverting 2.

Then we get for all \(j \in \mathbb{Z}, j \leq 2 \) and \(n \in \mathbb{Z} \) an isomorphism

\[\bigoplus_{p+q=n} \bigoplus_{(C) \in \mathcal{J}} H_p(C_G C; Q) \otimes_{Q[W_G C]} \theta_C \cdot (Q \otimes \mathbb{Z} L_1^{(j)}(RC)) \cong Q \otimes \mathbb{Z} L_n^{(j)}(RG). \]

where we use the \(L \)-theoretic version of the notation of Theorem 11.71.

Exercise 16.9. Let \(F \) be a finite group of odd order. Put \(G = F \rtimes \mathbb{Z} \). Show for all decorations \(j \in \mathbb{Z}, j \leq 2 \)

\[Q \otimes \mathbb{Z} L_n^{(j)}(\mathbb{Z}G) \cong \begin{cases} Q & n \equiv 1 \mod 4; \\ \{0\} & n \equiv 3 \mod 4. \end{cases} \]

16.5.3 Rationalized Topological \(K \)-Theory

The next result is taken from [586, Theorem 0.7]. Let \(A^G \) be the ring \(\mathbb{Z} \subseteq A^G \subseteq \mathbb{Q} \) which is obtained from \(\mathbb{Z} \) by inverting the orders of the finite subgroups of \(G \).
Theorem 16.10 (Rational computation of topological K-theory).
Suppose that the group G satisfies the Baum-Connes Conjecture [13.9].
Then there is an isomorphism
\[
\bigoplus_{p+q=n} K_p(BC_GC) \otimes_{\mathbb{Z}[W_GC]} \theta_C \cdot K_q(C^*_r(C)) \otimes_{\mathbb{Z}} \Lambda^G \xrightarrow{\cong} K_n(C^*_r(G)) \otimes_{\mathbb{Z}} \Lambda^G,
\]
where we use the notation of Theorem [11.71].
If we tensor with \mathbb{Q}, we get an isomorphism
\[
\bigoplus_{p+q=n} H_p(BC_G; \mathbb{Q}) \otimes_{\mathbb{Q}[W_GC]} \theta_C \cdot K_q(C^*_r(C)) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} K_n(C^*_r(G)) \otimes_{\mathbb{Z}} \mathbb{Q}.
\]

16.5.4 The Complexified Comparison Map from Algebraic to Topological K-theory

If we consider $R = \mathbb{C}$ as coefficient ring and apply $- \otimes_{\mathbb{Z}} \mathbb{C}$ instead of $- \otimes_{\mathbb{Z}} \mathbb{Q}$, the formulas simplify. Suppose that G satisfies the Baum-Connes Conjecture [13.9] and K-theoretic Farrell-Jones Conjecture [12.1] with coefficients in the ring \mathbb{C}. Recall that $\text{con}(G)_f$ is the set of conjugacy classes (g) of elements $g \in G$ of finite order. We denote for $g \in G$ by $\langle g \rangle$ the cyclic subgroup generated by g.

Then we get the following commutative square, whose horizontal maps are isomorphisms and whose vertical maps are induced by the obvious change of theory homomorphisms, see [584, Theorem 0.5],
\[
\bigoplus_{p+q=n} \bigoplus_{(g) \in \text{con}(G)_f} H_p(C_G(g); \mathbb{C}) \otimes_{\mathbb{Z}} K_q(\mathbb{C}) \xrightarrow{\cong} K_n(C_G) \otimes_{\mathbb{Z}} \mathbb{C}
\]
\[
\bigoplus_{p+q=n} \bigoplus_{(g) \in \text{con}(G)_f} H_p(C^*_r(g); \mathbb{C}) \otimes_{\mathbb{Z}} K^\text{top}_q(\mathbb{C}) \xrightarrow{\cong} K_n(C^*_r(G)) \otimes_{\mathbb{Z}} \mathbb{C}
\]

Suslin [843, Theorem 4.9] has proved that the algebraic K-theory of \mathbb{C} in dimensions $2n$ for $n \geq 1$ a unique divisible group and hence admits no non-trivial map to \mathbb{Z}. This implies that the canonical map from the algebraic K-theory of \mathbb{C} to the topological K-theory of \mathbb{C} is trivial in all dimensions except dimension zero where it is a bijection. Thus rationally we understand by the diagram above the comparison map from algebraic K-theory of the complex group ring to the topological K-theory of the group C^*-algebra.
provided that G satisfies the Baum-Connes Conjecture and K-theoretic Farrell-Jones Conjecture with coefficients in the ring \mathbb{C}.

Remark 16.11 (Separation of Variables). In Theorems 16.4, 16.8, 16.10 and in Subsection 16.5.4 we see a principle which we call *separation of variables*:

There is a group homology part which is independent of the coefficient ring R and the K- or L-theory under consideration and a part depending only on the values of the theory under consideration on RC or $C^*_r(C)$ for all finite cyclic subgroups $C \subseteq G$.

16.6 Integral Computations for Infinite Groups

As mentioned above, no general pattern for integral calculations is known or expected. We give some examples, where computations are possible and which shall illustrate the techniques.

16.6.1 Groups satisfying conditions (M) and (NM)

We mention at least one situation where a certain class of groups can be treated systematically. Let \mathcal{MF}_N be the subset of \mathcal{FL}_N consisting of elements in \mathcal{FL}_N which are maximal in \mathcal{FL}_N.

Consider the following assertions concerning G:

- **(M)** Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
- **(NM)** $M \in \mathcal{MF}_N, M \neq \{1\} \implies N_G M = M$.

Denote by $\tilde{K}_n(C^*_r(G))$ the cokernel of $K_n(C^*_r(\{1\})) \to K_n(C^*_r(G))$, by $\tilde{KO}_n(C^*_r(G;\mathbb{R}))$ the cokernel of $KO_n(C^*_r(\{1\};\mathbb{R})) \to KO_n(C^*_r(G;\mathbb{R}))$, and by $\tilde{L}_n^{(j)}(RG)$ the cokernel of $L_n^{(j)}(R) \to L_n^{(j)}(RG)$. This coincides with $\tilde{L}_n^{(j)}(R)$, which is defined for any ring R with involution to be the cokernel of $L_n^{(j)}(\mathbb{Z}) \to L_n^{(j)}(R)$, if $R = \mathbb{Z}G$, but not in general if we replace \mathbb{Z} by other coefficients. Recall that $Wh_n(G)$ is the $(n - 1)$-th homotopy group of the homotopy fiber of the assembly map $BG_+ \land K(R) \to K(RG)$. The next result is taken from [253 Theorem 5.1], except for assertion (ii). It is a direct consequence of the existence of a nice model for $E_{\mathcal{FL}_N}(G)$, see Theorem 10.32, the long exact sequence (11.77) and Lemma 11.78. Recall that we abbreviate $\overline{EG} = E_{\mathcal{FL}_N}(G)$ and $\overline{BG} = G \backslash E_{\mathcal{FL}_N}(G)$.

Theorem 16.12 (Fundamental exact sequences for groups satisfying conditions (M) and (NM)). Let $\mathbb{Z} \subseteq A \subseteq \mathbb{Q}$ be a ring such that the order of any finite subgroup of G is invertible in A. Suppose that the group...
16.6 Integral Computations for Infinite Groups

G satisfies conditions (M) and (NM). Let \(\{ M_i \mid i \in I \} \) be a complete set of representatives for the conjugacy classes of maximal finite subgroups of G. Then:

(i) If G satisfies the Baum-Connes Conjecture [13.9] then there is a short exact sequence of topological K-groups

$$0 \to \bigoplus_{i \in I} \tilde{K}_n(C^*_r(M_i)) \to K_n(C^*_r(G)) \to K_n(BG) \to 0,$$

where the maps $\tilde{K}_n(C^*_r(M_i)) \to K_n(C^*_r(G))$ are induced by the inclusions $H \to G$.

It splits after applying $- \otimes \Lambda$.

(ii) If G satisfies the Baum-Connes Conjecture [13.9] then there is a long exact sequence of topological K-groups

$$\cdots \to KO_{n+1}(BG) \to \bigoplus_{i \in I} \tilde{KO}_n(C^*_r(M_i; \mathbb{R})) \to KO_n(C^*_r(G; \mathbb{R}))$$

$$\to KO_n(BG) \to \bigoplus_{i \in I} \tilde{KO}_{n-1}(C^*_r(M_i; \mathbb{R})) \to \cdots$$

where the maps $\tilde{KO}_n(C^*_r(H; \mathbb{R})) \to KO_n(C^*_r(G; \mathbb{R}))$ are induced by the inclusions $H \to G$.

It splits after applying $- \otimes \Lambda$, more precisely the Λ-homomorphism $KO_n(C^*_r(G; \mathbb{R})) \otimes \mathbb{Z} \Lambda \to KO_n(BG) \otimes \mathbb{Z} \Lambda$ is split surjective.

(iii) Suppose that every infinite virtually cyclic subgroup of G is of type I, and G satisfies the L-theoretic Farrell-Jones Conjecture [12.4] with coefficients in the ring with involution R.

Then for all $n \in \mathbb{Z}$ there is an exact sequence

$$\cdots \to H_{n+1}(BG; \mathcal{L}^{(-\infty)}(R)) \to \bigoplus_{i \in I} \mathcal{L}_{n}^{(-\infty)}(RM_i)$$

$$\to L_n^{(-\infty)}(RG) \to H_n(BG; \mathcal{L}^{(-\infty)}(R)) \to \cdots$$

where the maps $\mathcal{L}_{n}^{(-\infty)}(RH) \to L_n^{(-\infty)}(RG)$ are induced by the inclusions $H \to G$.

It splits after applying $- \otimes \Lambda$, more precisely

$$L_n^{(-\infty)}(RG) \otimes \mathbb{Z} \Lambda \to H_n(BG; \mathcal{L}^{(-\infty)}(R)) \otimes \mathbb{Z} \Lambda$$

is a split-surjective map of Λ-modules.

(iv) If G satisfies the K-theoretic Farrell-Jones Conjecture [12.1] with coefficients in the ring R, then there is for $n \in \mathbb{Z}$ an isomorphism
where the maps $\text{Wh}_n^R(H) \to \text{Wh}_n^R(G)$ are induced by the inclusions $H \to G$. \textbf{Comment 17:} Explain that for regular R the term $H_n(E_{\text{FIN}}(G) \to E_{\text{VCY}}(G); K_R)$ vanishes since all virtually cyclic subgroups of type I of G are infinite cyclic, see the proof of [253, Theorem 5.1 (d)].

\textbf{Remark 16.13 (Role of BG).} Theorem 16.12 illustrates that for such computations a good understanding of the geometry of the orbit space BG is necessary. This can be hard to figure out, even for on the first glance nice groups with pleasant geometric properties such as crystallographic groups. In general BG can be very complicated, see Theorem 10.62.

\textbf{Remark 16.14.} In [253] it is explained that the following classes of groups do satisfy the assumption appearing in Theorem 16.12 and what the conclusions are in the case $R = \mathbb{Z}$.

- Extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ for finite F such that the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$;
- Fuchsian groups F;
- One-relator groups G.

Theorem 16.12 is generalized in [589], in order to treat for instance the semi-direct product of the discrete three-dimensional Heisenberg group by $\mathbb{Z}/4$. For this group BG is S^3.

\textbf{Exercise 16.15.} Let G be a group satisfying conditions (M) and (NM) appearing in Subsection 10.7.1. Show that then we obtain for any ring R an isomorphism

$$\bigoplus_{(V)} H_n^V(E_{\text{FIN}}(V) \to \{\bullet\}; K_R) \cong H_n^G(E_{\text{FIN}}(G) \to E_{\text{VCY}}(G); K_R),$$

where (V) runs through the conjugacy classes of maximal infinite virtual cyclic subgroups.

In general the L-theoretic Farrell-Jones assembly map is not an isomorphism if one replace the decoration $(-\infty)$ by the decoration p, h, or s, see Remark 12.9. This can be very unpleasant since for applications one needs the decorations s or h. The situation is better when G is torsionfree, as explained in Theorem 8.104. Here is a situation, where the situation is still optimal although G is not torsionfree. \textbf{Comment 18:} Note that the only virtually cyclic subgroup of type II is the dihedral group, see the proof of [253, Theorem 5.1 (d)]. Therefore one can improve the result below taking UNIL into account.
Theorem 16.16. Consider a group G with an orientation character $w: G \to \{±1\}$ satisfying the following conditions:

- Conditions (M) and (NM) are satisfied;
- All virtually cyclic subgroups are of type I;
- The infinite virtually cyclic subgroups of type I of G are orientable in the sense of [617, Definition 8.5];

Then:

(i) The assembly maps

\[H^G_n(\text{E}_\text{FIN}(G); L^{(j)}_{\mathbb{Z}}) \to L^{(j)}_n(\mathbb{Z}G, w) \]

are bijective for all $n \in \mathbb{Z}$ and $j \in \{2, 1, 0, -1, \ldots\} \cup \{-\infty\}$;

(ii) Let $\mathcal{M} = \{M_i \mid i \in I\}$ be a complete set of representative of the conjugacy classes of maximal finite subgroups of G. There are canonical isomorphisms for $n \in \mathbb{Z}$ and $j \in \{2, 1, 0, -1, \ldots\} \cup \{-\infty\}$

\[\bigoplus_{i \in I} H^M_i(EM_i \to M_i/M_i; L^{(j)}_{\mathbb{Z}}) \cong H^G_n(EG \to G/G; L^{(j)}_{\mathbb{Z}}) \]

Proof. In the sequel of this proof we omit the orientation characters from the notation.

We conclude from the L-theoretic Farrell-Jones Conjecture [12.4] and Theorem [12.51] that the assembly map

\[H^G_n(\text{E}_\text{FIN}(G); L^{-\infty}_{\mathbb{Z}}) \to L^{-\infty}_n(\mathbb{Z}G) \]

is bijective.

Consider $j \in \{-2, -3, \ldots\}$. There is a commutative diagram

\[\begin{array}{ccc}
H^G_n(\text{E}_\text{FIN}(G); L^{(j+1)}_{\mathbb{Z}}) & \to & L^{(j+1)}_n(\mathbb{Z}G) \\
\cong & & \cong \\
H^G_n(\text{E}_\text{FIN}(G); L^{(j)}_{\mathbb{Z}}) & \to & L^{(j)}_n(\mathbb{Z}G)
\end{array} \]

where the vertical maps are change of decoration maps, which can be implemented on the level of spectra, and the horizontal arrows are the assembly maps. Since $\tilde{K}_j(\mathbb{Z}H) = 0$ holds for finite groups and $j \leq -2$ by Theorem [4.21], we conclude from the Rothenberg sequences of Subsection [8.10.4] that the map $L^{(j+1)}_n(\mathbb{Z}H) \cong L^{(j)}_n(\mathbb{Z}H)$ is bijective for $j \leq -2$ and $n \in \mathbb{Z}$. By the equivariant Atiyah-Hirzebruch spectral sequence, see Theorem [11.43], the left vertical arrow is bijective. We conclude from the K-theoretic Farrell-Jones...
Conjectures 12.1 that $\tilde{K}_j(ZG) = 0$ holds for $j \leq -2$, see Conjecture 4.19 and Theorem 12.56 (vi). The Rothenberg sequence (8.101) implies that the right vertical arrow is bijective.

There is by construction a commutative diagram

$$
\begin{array}{c}
\colim_{j \to -\infty} H_n^G(E_{FIN}(G); L_Z^{(j)}) \\
\cong \\
\cong \\
\Rightarrow
\end{array}
\begin{array}{c}
\colim_{j \to -\infty} L_n^{(j)}(ZG) \\
H_n^G(E_{FIN}(G); L_Z^{(-\infty)}) \\
\Rightarrow
\end{array}
\begin{array}{c}
L_n^{(-\infty)}(ZG)
\end{array}
$$

with bijective vertical arrows. This implies that

$$H_n^G(E_{FIN}(G); L_H^{(j)}) \to L_n^{(j)}(RG)$$

is bijective for all $n \in \mathbb{Z}$ and $j \in \{-1, -2, \ldots\} \sqcup \{-\infty\}$.

It remains to show for $j \in \{1, 0, -1\}$ that the map above is bijective for j and all $n \in \mathbb{Z}$ if it is bijective for $j - 1$ and all $n \in \mathbb{Z}$.

The Tate spectra constructions of [913] imply that there is a covariant GROUPOIDS-spectrum $T_Z^{(j)}$ such that there is a cofibration sequence of covariant GROUPOIDS-spectra $L_Z^{(j+1)} \to L_Z^{(j)} \to T_Z^{(j)}$ such that for every group G and subgroup $H \subseteq G$ the associated long exact sequence

$$
\cdots \to H_n^G(G/H; L_Z^{(j+1)}) \to H_n^G(G/H; L_Z^{(j)}) \to H_n^G(G/H; T_Z^{(j)})
H_{n-1}^G(G/H; L_Z^{(j+1)}) \to H_{n-1}^G(G/H, L_Z^{(j)}) \to \cdots
$$

can be identified with the Rothenberg sequence of (8.101)

$$
\cdots \to L_n^{(j+1)}(ZH) \to L_n^{(j)}(ZH) \to \hat{H}^n(Z/2; \text{Wh}_j^Z(H))
\to L_{n-1}^{(j+1)}(ZH) \to L_{n-1}^{(j)}(ZH) \to \cdots.
$$

Next we consider the commutative diagram
where the horizontal maps are the assembly maps, the left long exact column comes from the cofibration sequence of GROUPOIDS-spectra above and the right column is the long exact Rothenberg sequence of (8.101). By the Five-Lemma it suffices to show that the map induced by $E_{FIN}(G) \to G/G$

$$H^G_n(E_{FIN}(G); T_Z^{(j)}) \to H^G_n(G/G; T_Z^{(j)}) = \hat{H}^n(Z/2; Wh_j^Z(G))$$

is bijective for $j \leq 1$ and $n \in \mathbb{Z}$. This will follow from the following commutative diagram
as soon as we have shown that all arrows except the upper horizontal one are bijective. The bijectivity of these arrows come from the following observations. Since Wh\(_j\)\(_Z\)({1}) and hence \(\pi_0(G/\{1\}) = H^2(\mathbb{Z}/2; \text{Wh}_j\mathbb{Z})\) vanishes for \(j \leq 1\) and \(n \in \mathbb{Z}\), the groups \(H^n_G(EG; T^{(j)}_Z)\) and \(H^n_M(EM_i; T^{(j)}_Z)\) vanish and one can consider the long exact sequences associated to \(EG \to E \text{FIN}(G)\) and \(EM_i \to M_i/M_i\). One can apply excision to the \(G\)-pushout appearing in Theorem 10.32. The map

\[
H^G_j(EG \to E \text{VCY}(G); K\mathbb{Z}) \cong H^G_j(EG \to G/G; K\mathbb{Z}) = \text{Wh}_j^G(G)
\]

is bijective since \(G\) satisfies the \(K\)-theoretic Farrell-Jones-Conjecture. The map

\[
\tilde{H}^n(\mathbb{Z}/2, H^G_j(EG \to E \text{FIN}(G); K\mathbb{Z})) \cong \tilde{H}^n(\mathbb{Z}/2, H^G_j(EG \to E \text{VCY}(G); K\mathbb{Z}))
\]

is bijective by Lemma 16.1.

This follows from assertion (i) and excision applied to \(G\)-pushout appearing and excision applied to the Theorem 10.32. This finishes the proof of Theorem 16.16.

More information about \(H^G_n(E \text{FIN}(V) \to \{\bullet\}; K\mathbb{R})\) can be found in Theorem 12.29 or in [617], where also identifications with twisted Nil-categories are discussed.

Many of the following results are based on Theorem 16.12.
16.6.2 Torsionfree One-Relator Groups

Let \(G = \langle s_i, i \in I \mid r \rangle \) be the presentation of a one-relator group \(G \). Denote by \(F \) the free group on the set of generators \(\{s_i \mid i \in I\} \). Note that \(r \) is an element in \(F \). The group \(G \) is torsionfree if and only for any element \(s \in F \) and natural number \(m \) satisfying \(r = s^m \) we get \(m = 1 \), see [497] or [623, Proposition 5.17 on page 107]. Throughout this section we will assume that \(G \) is torsionfree.

We begin with the following lemma.

Lemma 16.18. Let \(X \) be the 2-dimensional CW-complex given by the pushout

\[
\begin{array}{ccc}
S^1 & \xrightarrow{q} & \bigvee_{i \in I} S^1 \\
\downarrow & & \downarrow \iota \\
D^2 & \xrightarrow{Q} & X.
\end{array}
\]

Let \(d_i \in \mathbb{Z} \) be the degree of the composition \(S^1 \xrightarrow{q} \bigvee_{i \in I} S^1 \xrightarrow{pr_i} S^1 \), where \(pr_i \) is the projection onto the \(i \)-th summand. Let \(\mathcal{H}_* \) be any (non-equivariant) generalized homology theory satisfying the disjoint union axiom.

(i) Suppose that \(d_i = 0 \) holds for all \(i \in I \). Then we get for \(n \in \mathbb{Z} \) an isomorphism

\[
\mathcal{H}_n(X) \cong \mathcal{H}_n(\{\bullet\}) \oplus \bigoplus_{i \in I} \mathcal{H}_{n-1}(\{\bullet\}) \oplus \mathcal{H}_{n-2}(\{\bullet\});
\]

(ii) Suppose that there is one \(i \in I \) with \(d_i \neq 0 \). Then we have an isomorphism

\[
\mathcal{H}_n(X) \cong \mathcal{H}_n(X, \{\bullet\}) \oplus \mathcal{H}_n(\{\bullet\}),
\]

and a short exact sequence

\[
0 \to H_1(X) \otimes_{\mathbb{Z}} \mathcal{H}_{n-1}(\{\bullet\}) \to \mathcal{H}_n(X, \{\bullet\}) \to \text{Tor}_1^\mathbb{Z}(H_1(X), \mathcal{H}_{n-2}(\{\bullet\})) \to 0;
\]
(iii) Let d be the common greatest divisor of the finite set \{\(|d_i| \mid i \in I, d_i \neq 0\}\), provided that \{\(|d_i| \mid i \in I, d_i \neq 0\}\} is non-empty.

Then $H_1(X) \cong \bigoplus_{i \in I} \mathbb{Z}$ if \{\(|d_i| \mid i \in I, d_i \neq 0\}\} is empty or if $d = 1$. If $d \geq 2$, then $H_1(X) \cong \mathbb{Z}/d \bigoplus_{i \in I} \mathbb{Z}$, where the set $|J|$ has cardinality $|I| - 1$, if $|I|$ is finite, and the same cardinality as $|I|$ if I is infinite.

Proof. We can assume without loss of generality that the pushout (16.19) above consists of base point preserving maps, otherwise change q up to homotopy to be base point preserving. From the Mayer-Vietoris sequence of the pair $(X, \{\bullet\})$ and the projection $X \to \{\bullet\}$ we obtain an isomorphism

$$H_n(X) \xrightarrow{\cong} H_n(X, \{\bullet\}) \oplus H_n(\{\bullet\}).$$

If we apply $S^1 \wedge -$ to (16.19), we obtain a pushout of pointed spaces

$$
\begin{array}{ccc}
S^2 & \xrightarrow{q} & \bigvee_{i \in I} S^2 \\
\downarrow i & & \downarrow i \\
D^3 & \xrightarrow{p} & S^1 \wedge X
\end{array}
$$

Since S^2 is simply connected, one obtains using the Hurewicz Theorem an isomorphism $\bigoplus_{i \in I} H_2(S^2) \cong \pi_2(\bigvee_{i \in I} S^2)$. We conclude that $id_{S^1 \wedge q}$ is pointed nullhomotopic. Hence we obtain a pointed homotopy equivalence $S^1 \wedge X \xrightarrow{\cong} S^3 \vee \bigvee_{i \in I} S^2$. Now assertion $[1]$ from the suspension isomorphism.

$[1]$ Since S^1 is compact, only finitely many of the numbers d_i are different from zero. We get for any abelian group A a group homomorphism

$$D(A): A \to \bigoplus_{i \in I} A, \quad a \mapsto (d_i \cdot a)_{i \in I}.$$

The long exact sequence

$$(16.20) \quad \cdots \to H_{n-1}(\{\bullet\}) \xrightarrow{D(H_{n-1}(\{\bullet\}))} \bigoplus_{i \in I} H_{n-1}(\{\bullet\}) \to H_n(X, \{\bullet\})$$

$$\to H_{n-2}(\{\bullet\}) \xrightarrow{D(H_{n-2}(\{\bullet\}))} \bigoplus_{i \in I} H_{n-2}(\{\bullet\}) \to \cdots$$

comes from the long Mayer-Vietoris sequence of the pushout of pointed spaces (16.19) above and with the identification derived from the disjoint union axiom and the suspension isomorphism

$$\bigoplus_{i \in I} H_{n-1}(\{\bullet\}) \xrightarrow{\cong} H_n \left(\bigvee_{i \in I} S^1, \{\bullet\} \right).$$
If we take H_\ast to be singular homology with integer coefficients, we see that $D(A)$ is obtained from $D(Z)$ by $D(A) = D(Z) \otimes_A \text{id}_A$ and there is a short exact sequence $0 \to Z \xrightarrow{D(Z)} \bigoplus_{i \in I} Z \to H_1(X) \to 0$. This implies
\[
coker(D(A)) = H_1(X) \otimes_Z A; \\
ker(D(A)) = \text{Tor}_1^Z(H_1(X), A).
\]

This follows from the short exact sequence $Z \xrightarrow{D(Z)} \bigoplus_{i \in I} Z \to H_1(X) \to 0$. This implies $coker(D(A)) = H_1(X) \otimes_Z A$; $\ker(D(A)) = \text{Tor}_1^Z(H_1(X), A)$.

We denote by $H_n(Y; A)$ the singular homology of a space Y with coefficients in the abelian group A and abbreviate $H_n(Y) := H_n(Y; Z)$. Note that the group homology $H_n(G)$ is $H_n(BG)$ and $H_1(G) = G/[G, G]$.

Lemma 16.21. Suppose that the one-relation-group G is torsionfree. Let \mathcal{H}_\ast be any (non-equivariant) generalized homology theory.

(i) If r lies in $[F, F]$, we get isomorphisms
\[
\mathcal{H}_n(BG) \cong \mathcal{H}_n({\bullet}) \oplus \bigoplus_{i \in I} \mathcal{H}_{n-1}({\bullet}) \oplus \mathcal{H}_{n-2}({\bullet});
\]

(ii) If r does not lie in $[F, F]$, then we get isomorphisms
\[
\mathcal{H}_n(BG) \cong \mathcal{H}_n({\bullet}) \oplus \mathcal{H}_n(BG, {\bullet}),
\]

and a short exact sequence
\[
0 \to H_1(BG) \otimes_Z H_{n-1}({\bullet}) \to H_n(BG, {\bullet}) \\
\to \text{Tor}_1^Z(H_1(BG); \mathcal{H}_{n-2}({\bullet})) \to 0;
\]

(iii)
\[
H_n(BG; A) \cong \begin{cases} \\
A & n = 0; \\
\bigoplus_{i \in I} A & n = 1 \text{ and } r \in [F, F]; \\
H_1(X) \otimes_Z A & n = 1 \text{ and } r \notin [F, F]; \\
A & n = 2 \text{ and } r \in [F, F]; \\
\text{Tor}_1^Z(H_1(X); A) & n = 2 \text{ and } r \notin [F, F]; \\
0 & n \geq 3.
\end{cases}
\]

Proof. Consider the pushout
where the upper vertical arrow is given by the word \(r \in \ast_{i \in I} \mathbb{Z} = \pi_1 \left(\bigvee_{i \in I} S^1 \right) \). Then \(Z \) is a model for \(BG \), see [623, Chapter III §§ 9 -11].

(i) This follows from Lemma 16.18 (i).

(ii) This follows from Lemma 16.18 (ii).

(iii) This follows from assertions (i) and (ii) applied to the special case that \(H \) is singular homology with coefficients in the abelian group \(A \).

Recall that the Baum-Connes-Conjecture 9.44 for torsionfree groups holds for every torsionfree one-relator group \(G \) predicting isomorphisms

\[
asmb^{G,C}(BG)_n : K_n(BG) \to K_n(C^*_r(G; \mathbb{C}));
\]
\[
asmb^{G,R}(BG)_n : KO_n(BG) \to KO_n(C^*_r(G; \mathbb{R})).
\]

Hence we get from Lemma 16.21 (i) in the case that \(r \) belongs to \([F,F]\]

\[
K_n(C^*_r(G; \mathbb{C})) \cong K_n(\{ \bullet \}) \oplus \bigoplus_{i \in I} K_{n-1}(\{ \bullet \}) \oplus K_{n-2}(\{ \bullet \}) \cong \begin{cases}
\bigoplus_{i \in \mathbb{Z}} \mathbb{Z} & \text{n even;} \\
\mathbb{Z}^2 & \text{n odd,}
\end{cases}
\]

and

\[
KO_n(C^*_r(G; \mathbb{R})) \cong KO_n(\{ \bullet \}) \oplus \bigoplus_{i \in I} KO_{n-1}(\{ \bullet \}) \oplus KO_{n-2}(\{ \bullet \}).
\]

If \(r \) does not belong to \([F,F]\), then get from Lemma 16.21 (ii)

\[
K_n(C^*_r(G; \mathbb{C})) \cong \begin{cases}
\mathbb{Z} & \text{n even;} \\
H_1(G) & \text{n odd,}
\end{cases}
\]
\[
KO_n(C^*_r(G; \mathbb{R})) \cong KO_n(\{ \bullet \}) \oplus KO_n(BG, \{ \bullet \}),
\]

and a short exact sequence

\[
0 \to H_1(G) \otimes \mathbb{Z} KO_{n-1}(\{ \bullet \}) \to KO_n(BG, \{ \bullet \}) \to \text{Tor}_1^\mathbb{Z}(H_1(G), KO_{n-2}(\{ \bullet \})) \to 0.
\]

The computation for \(K_*(C^*_r(G)) \) agrees with the one in [105].

Recall that Farrell-Jones Conjecture 6.44 for torsionfree groups and regular rings for \(K \)-theory holds for torsionfree one-relator groups predicting for a regular ring \(R \) an isomorphism \(H_n(BG; \mathbb{K}(R)) \to K_n(RG) \) for \(n \in \mathbb{Z} \).
and one can apply Lemma \[\text{16.21}\] to $H_n(BG; K(R))$. Moreover, the Farrell-Jones Conjecture \[8.111\] for torsionfree groups for L-theory predicts that the assembly map $H_n(BG; L^{(-\infty)}(R)) \to L_n^{(-\infty)}(RG)$ is bijective for $n \in \mathbb{Z}$, and is known for torsionfree one-relator groups to be true after inverting 2. So Lemma \[16.21\] can also be used to compute $K_n(RG)$ and $L^{(-\infty)}_n(RG)[1/2]$ if one understands $K_n(R)$ and $L^{(-\infty)}_n(R)[1/2]$.

Exercise 16.22. Let $G = \langle s_1, s_2, \ldots, s_n \mid r \rangle$ be a finitely generated (not necessarily torsionfree) one-relator group, where r is given by the word $s_{i_1}^{m_1}s_{i_2}^{m_2}\cdots s_{i_l}^{m_l}$ for $i_j \in \{1, 2, \ldots, n\}$ and $m_j \in \mathbb{Z}$. Define for $j = 1, 2, \ldots, n$

$$d_j = \sum_{k \in \{1, 2, \ldots, n\} : i_k = j} m_k.$$

Show that $H_1(G) \cong \mathbb{Z}^n$ if all the numbers d_j are trivial, and $H_1(G) \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z}/d$ if not all the numbers d_j are zero and d is the common greatest divisor of $\{|d_j| : j = 1, 2, \ldots, l, d_j \neq 0\}$.

Exercise 16.23. Consider the 1-relator group $G = \langle s_1, s_2 \mid s_1s_2s_1^{-1}s_2^{-2} \rangle$. Compute the algebraic K-groups $K_n(C[\mathbb{Z} \times G])$ for $n \leq 1$ and any natural number m.

Exercise 16.24. Let G be the non-trivial semi-direct product $\mathbb{Z} \rtimes \mathbb{Z}$. Compute $L^s_n(\mathbb{Z}[G])$ for $n \in \mathbb{Z}$.

16.6.3 One-Relator Groups with Torsion

Let $G = \langle s_i, i \in I \mid r \rangle$ be the presentation of a one-relator group G. For the remainder of this subsection we assume that G is not torsionfree.

Then there exists a maximal non-trivial finite subgroup $C \subseteq G$, unique up to conjugation. It is cyclic. Let $m \geq 2$ be its order. Denote by F the free group on the set of generators $\{s_i \mid i \in I\}$. Note that then r is an element in F. The natural number m can be characterized as the largest natural number for which there exists a word $s \in F$ with $r = s^m$. Note that for such s the cyclic group C of order m is generated by the class \bar{s} in G represented by s and every torsion element in G is conjugated to some power of \bar{s}. This was proved by Karras-Magnus-Solitar, see \[497\] or \[623\] Proposition 5.17 on page 107.

Let $p: BG \to B\bar{G}$ be the up to homotopy unique canonical map and let $i: C \to A$ be the inclusion. The Mayer-Vietoris sequence of the G-quotient of the G-pushout appearing in Theorem \[10.32\] yields the long exact sequence
(16.25) $\cdots \to \mathcal{H}_n(BC, \{\bullet\}) \xrightarrow{\mathcal{H}_n(Bi)} \mathcal{H}_n(BG, \{\bullet\}) \xrightarrow{\mathcal{H}_n(p)} \mathcal{H}_n(BG, \{\bullet\}) \to \cdots$

$\to \mathcal{H}_{n-1}(BC, \{\bullet\}) \xrightarrow{\mathcal{H}_{n-1}(Bi)} \mathcal{H}_{n-1}(BG, \{\bullet\}) \xrightarrow{\mathcal{H}_{n-1}(p)} \mathcal{H}_{n-1}(BG, \{\bullet\}) \to \cdots$

for any (non-equivariant) generalized homology theory \mathcal{H}. Let $\mathbb{Z} \subseteq \Lambda \subseteq \mathbb{Q}$ be a ring such that the order of any finite subgroup of G is invertible in Λ. Then sequence (16.25) splits into short split exact sequences after applying $- \otimes_{\mathbb{Z}} \Lambda$, more precisely, the Λ-map $\mathcal{H}_n(BG, \{\bullet\}) \otimes_{\mathbb{Z}} \Lambda \to \mathcal{H}_n(BG, \{\bullet\}) \otimes_{\mathbb{Z}} \Lambda$ is split surjective for every $n \in \mathbb{Z}$, see Lemma 11.78.

By inspecting the model for EG of Subsection 10.6.13 and dividing out the G-action, we obtain a pushout

\[
\begin{array}{ccc}
S^1 & \xrightarrow{q} & \bigvee_{i \in I} S^1 \\
\downarrow & & \downarrow \\
D^2 & \xrightarrow{q} & BG.
\end{array}
\]

where the attaching map q is given by the element s. Note that we can apply Lemma 16.21 and get information about $\mathcal{H}_n(BG)$ for any (non-equivariant) generalized homology theory \mathcal{H}. As an illustration we compute the singular homology $H_n(BG; A)$ with coefficients in the abelian group A.

Lemma 16.27. (i) The inclusion $C \to G$ induces isomorphisms

$H_n(Bi; A): H_n(BC; A) \xrightarrow{\approx} H_n(BG; A)$

for $n \geq 3$;

(ii) We obtain an exact sequence

\[
0 \to H_2(BC; A) \xrightarrow{H_2(Bi; A)} H_2(BG; A) \xrightarrow{H_2(p; A)} H_2(BG; A) \to H_1(BC; A) \xrightarrow{H_1(Bi; A)} H_1(BG; A) \xrightarrow{H_1(p; A)} H_1(BG; A) \to 0.
\]

We have

$H_n(BC, A) \cong \begin{cases}
\ker (m \cdot \text{id}: A \to A) & n \geq 2, n \text{ even}; \\
\coker (m \cdot \text{id}: A \to A) & n \geq 1, n \text{ odd},
\end{cases}$

and

$H_n(BG; A) \cong \begin{cases}
A & n = 2 \text{ and } s \in [F, F]; \\
\text{Tor}_1^I(C, A) & n = 2 \text{ and } s \notin [F, F]; \\
\{0\} & n \geq 3;
\end{cases}$

(iii) If $A = \mathbb{Z}$ and $s \in [F, F]$, we get a short exact sequence
0 \rightarrow H_2(BG) \xrightarrow{H_2(p; A)} H_2(BG) \rightarrow C \rightarrow 0,

the groups $H_2(BG)$ and $H_2(BG)$ are infinite cyclic, and the homomorphisms $H_1(p): H_1(BG) \xrightarrow{\sim} H_1(BG)$ is bijective.

If $A = \mathbb{Z}$ and $s / \in [F, F]$, we get a short exact sequence

\[0 \rightarrow C = H_1(BC) \xrightarrow{H_1(B)} H_1(BG) \xrightarrow{H_2(p)} H_1(BG) \rightarrow 0, \]

and the groups $H_2(BG)$ and $H_2(BG)$ are trivial.

Proof. (i) and (ii) These follow from the long exact sequence (16.25), and the fact that dim(BG) is two, and Lemma 16.21 applied to the pushout (16.26).

(iii) This follows from assertions (i) and (ii) using the fact that the class $s \in G$ represented by s is a generator of the finite cyclic group C.

Recall that the Baum-Connes Conjecture [13.11] with coefficients holds for one-relator groups. Hence the assembly maps

\[K_n^G(E_G) \rightarrow K_n(C^*_r(G; \mathbb{C})); \]
\[KO_n^G(E_G) \rightarrow KO_n(C^*_r(G; \mathbb{R})), \]

are bijective for all $n \in \mathbb{Z}$.

Recall that the Full Farrell-Jones Conjecture [12.23] holds for one-relator groups with torsion. If R is a regular ring with $\mathbb{Q} \subseteq R$ then we obtain an isomorphism for every $n \in \mathbb{Z}$, see Theorem 12.43 (iv)

\[H_n^G(E_G; K_R) \xrightarrow{\sim} K_n(RG). \]

If m is odd, any virtually cyclic subgroup of G is of type I, and we obtain for any ring with involution and $n \in \mathbb{Z}$ an isomorphism, see Theorem [12.51]

\[H_n^G(E_G; L_{\mathbb{R}}^{(\infty)}) \xrightarrow{\sim} L_{\mathbb{R}}^{(\infty)}(RG). \]

If m is even, we know at least that this map is bijective after inverting two.

In any cases we want to compute the source of the assembly maps. A far reaching strategy is to use Theorem 16.12 after one has computed $K^G(BG)$, $KO^G(BG)$, $H_n(BG; \mathbb{K}(R))$, or $H_n(BG; L^{(-\infty)}_{\mathbb{R}})$ by applying Lemma 16.18 to (16.26).

Example 16.28 (Topological K-theory in the complex case). We carry this out for $K_n(C^*_r(G))$. Since $K_n(\{\bullet\})$ is \mathbb{Z} for even n and trivial for odd n, we get from Lemma 16.18 applied to (16.26) and Lemma 16.27 (iii).
$K_n(BG) \cong \begin{cases}
 \mathbb{Z}^2 & s \in [F, F] \text{ and } n \text{ even};
 \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} & s \in [F, F] \text{ and } n \text{ odd};
 \mathbb{Z} & s \notin [F, F] \text{ and } n \text{ even};
 H_1(BG) \cong \ker \left(H_1(C) \to H_1(G) \right) & s \notin [F, F] \text{ and } n \text{ odd}.
 \end{cases}$

We get from Theorem 16.12 (i) the short exact sequence

$$0 \to K_n(C^\ast r(G)) \to K_n(C^\ast r(G)) \to K_n(BG) \to 0$$

which splits after inverting m. Since $K_n(C^\ast r(Z/m)) \cong \mathbb{Z}^{m-1}$ for even n and is $\{0\}$ for odd n, we get

$$K_n(C^\ast r(G)) \cong \begin{cases}
 \mathbb{Z}^{m+1} & s \in [F, F] \text{ and } n \text{ even};
 \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} & s \in [F, F] \text{ and } n \text{ odd};
 \mathbb{Z}^m & s \notin [F, F] \text{ and } n \text{ even};
 \ker \left(H_1(\iota): H_1(C) \to H_1(G) \right) & s \notin [F, F] \text{ and } n \text{ odd}.
 \end{cases}$$

This computation for $K_n(C^\ast r(G))$ agrees with the one in [105], since $F/[F, F]$ is torsionfree and hence $r \in [F, F] \iff s \in [F, F]$.

The following example is illuminating since it combines a lot of the material and methods we have presented so far in this book.

Example 16.29. Consider the finitely generated one-relator group

$$G = \langle s_1, s_2, s_3 \mid r \rangle$$

for $r = s_1^6s_2^9s_3^{21}$. Then $r = s^3$. If m is a natural number for which $r = s'^m$ for some word s', then $m = 1, 3$. Hence G has a maximal finite subgroup C generated by the element $s \in G$ represented by s and C is cyclic of order 3. We can compute $H_1(G)$ using the recipe stated in Exercise 16.22 and obtain $H_1(G) \cong \mathbb{Z}^2 \oplus \mathbb{Z}/9$. Since s does not belong to $[F, F]$, we get from Lemma 16.27

$$H_n(G) \cong \begin{cases}
 \mathbb{Z}/3 & n \geq 3 \text{ and } n \text{ odd};
 0 & n \geq 2 \text{ and } n \text{ even};
 \mathbb{Z}^2 \oplus \mathbb{Z}/9 & n = 1;
 \mathbb{Z} & n = 0.
 \end{cases}$$

We get from Example 16.28

$$K_n(C^\ast r(G)) \cong \begin{cases}
 \mathbb{Z}^3 & n \text{ even};
 \mathbb{Z}/3 & n \text{ odd}.
 \end{cases}$$
We conclude from Theorem 9.79 (ii) that $\tilde{KO}_n(C^*(C;\mathbb{R}))$ is \mathbb{Z} for n even and $\{0\}$ for n odd.

We conclude from Lemma 16.18 (ii) in the case $\mathcal{H}_* = KO_*$ applied to the pushout 16.26 an isomorphism

$$KO_n(BG) \cong KO_n(BG, \{\cdot\}) \oplus KO_n(\{\cdot\}),$$

and a short exact sequence

$$0 \to H_1(BG) \otimes \mathbb{Z} KO_{n-1}(\{\cdot\}) \to KO_n(BG, \{\cdot\}) \to \text{Tor}^\mathbb{Z}_1(H_1(BG), KO_{n-2}(\{\cdot\})) \to 0.$$

Since $H_1(BG) \cong \mathbb{Z}^2 \oplus \mathbb{Z}/3$ by Lemma 16.27 (iii), this implies

$$KO_n(BG) \cong KO_n(\{\cdot\}) \oplus KO_{n-1}(\{\cdot\}) \oplus KO_{n-1}(\{\cdot\}) \oplus \mathbb{Z}/3 \otimes \mathbb{Z} KO_{n-1}(\{\cdot\})$$

Since $\tilde{KO}_n(C^*(C;\mathbb{R}))$ is \mathbb{Z} or trivial, we obtain from Theorem 16.12 (ii) for every $n \in \mathbb{Z}$ a short exact sequence

$$0 \to \tilde{KO}_n(C^*(C;\mathbb{R})) \to KO_n(C^*(G;\mathbb{R})) \to KO_n(BG) \to 0$$

which splits after inverting 3.

Next we consider the case, where n is odd. Then $\tilde{KO}_n(C^*(C;\mathbb{R}))$ vanishes and we get an isomorphism $KO_n(C^*(G;\mathbb{R})) \cong KO_n(BG)$. Thus we get

$$KO_n(C^*(G;\mathbb{R})) \cong \begin{cases} \mathbb{Z}/2 \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/3 & n \equiv 1 \mod 8; \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2 & n \equiv 3 \mod 8; \\ \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/3 & n \equiv 5 \mod 8; \\ \{0\} & n \equiv 7 \mod 8. \end{cases}$$

Next we consider the case, where n is even. Then $KO_n(BG)$ contains no 3-torsion and we get

$$KO_n(C^*(G;\mathbb{R})) \cong \tilde{KO}_n(C^*(C;\mathbb{R})) \oplus KO_n(BG) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & n \equiv 0 \mod 8; \\ \mathbb{Z} \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2 & n \equiv 2 \mod 8; \\ \mathbb{Z} \oplus \mathbb{Z} & n \equiv 4 \mod 8; \\ \mathbb{Z} & n \equiv 6 \mod 8. \end{cases}$$

Let $V \subseteq G$ be an infinite virtually cyclic subgroup of type I. Then we can find an exact sequence $1 \to H \to V \to \mathbb{Z} \to 0$. Any finite subgroup of G is subconjugated to C and hence we can find $g \in G$ with $gHg^{-1} \subseteq C$. Since $gVg^{-1} \subseteq NG(gHg^{-1})$ and $NGC = C$, we get $H = \{1\}$ and hence $V \cong \mathbb{Z}$.
Suppose that there exists an infinite virtually cyclic subgroup $V \subseteq G$ be of type II. It contains an infinite cyclic subgroup V' of type I satisfying $[V : V'] = 2$. Since we have already proved that V' is infinite cyclic, V' must be $\mathbb{Z}/2 \times \mathbb{Z}/2$. This contradicts the fact that an finite subgroup of G is subconjugated to $C \cong \mathbb{Z}/3$. Thus we have shown that any infinite virtually cyclic subgroup of G is infinite cyclic.

We conclude from Theorem 6.16 and the Transitivity Principle 14.12 that the assembly map $H_n^G(E_{FIN}(G); K) \to H_n^G(E_{VCY}(G); K)$ is bijective for all $n \in \mathbb{Z}$. We conclude from Theorem 12.51 that the assembly map $H_n^G(E_{FIN}(G); L_{\langle -\infty \rangle}) \to H_n^G(E_{VCY}(G); L_{\langle -\infty \rangle})$ is bijective for all $n \in \mathbb{Z}$.

We conclude from Theorem 16.12 (iv) that the inclusion $C \to M$ induces for all $n \in \mathbb{Z}$ an isomorphism

$$\text{Wh}_{\mathbb{Z}}(C) \cong \text{Wh}_{\mathbb{Z}}(G).$$

Since $\text{Wh}(\mathbb{Z}/3)$ by Theorem 3.112 and Theorem 3.113 (iii), $\tilde{K}_0(\mathbb{Z}/3)$ by Theorem 2.97 (i), and $K_0(\mathbb{Z}/3)$ for $n \leq -1$ by Theorem 4.9 all vanish, also the groups $\text{Wh}(G)$, $\tilde{K}_0(G)$, and $K_n(G)$ for $n \leq -1$ vanish.

We conclude from Theorem 8.104 that the L-groups of $\mathbb{Z}G$ are independent of the decoration, namely, for every $j \in \mathbb{Z}$, $j \leq -1$ and every $n \in \mathbb{Z}$ the forgetful maps induce isomorphisms

$$L_n^j(\mathbb{Z}G) \cong L_n^j(\mathbb{Z}G) \cong L_n^j(\mathbb{Z}G) \cong L_n^j(\mathbb{Z}G).$$

The same statement is true for the L-groups of $\mathbb{Z}C$. We conclude from Theorem 8.189

$$L_n^{(-\infty)}(\mathbb{Z}C) \cong \begin{cases} \mathbb{Z} & n \equiv 0 \mod (4); \\ 0 & n \equiv 1 \mod (4); \\ \mathbb{Z} & n \equiv 2 \mod (4); \\ 0 & n \equiv 3 \mod (4). \end{cases}$$

Hence we get from Theorem 16.12 (iii) for $n \in \mathbb{Z}$ a short exact sequence

$$0 \to L_n^{(-\infty)}(\mathbb{Z}C) \to L_n^{(-\infty)}(\mathbb{Z}G) \to H_n(BG; L^{(-\infty)}(\mathbb{Z})) \to 0$$

which splits after inverting 3.

We obtain from Theorem 16.18 (ii) an isomorphism

$$H_n(BG; L^{(-\infty)}(\mathbb{Z})) \cong H_n(BG, \{\bullet\}; L^{(-\infty)}(\mathbb{Z})) \oplus H_n(\{\bullet\}; L^{(-\infty)}(\mathbb{Z}))$$

and the short exact sequence

$$0 \to H_1(BG) \otimes L_{n-1}^{(-\infty)}(\mathbb{Z}) \to H_n(BG, \{\bullet\}; L^{(-\infty)}(\mathbb{Z}))$$

$$\to \text{Tor}_1^Z(H_1(BG), L_{n-2}^{(-\infty)}(\mathbb{Z})) \to 0.$$
We get from Lemma 16.27 (ii) and (iii)

\[H_n(BG) \cong \begin{cases}
\mathbb{Z} & n = 0; \\
\mathbb{Z}^2 \oplus \mathbb{Z}/3 & n = 1; \\
0 & \text{otherwise}
\end{cases} \]

Hence we get for every decoration \(j \)

\[L_n^{(j)}(\mathbb{Z}G) \cong \begin{cases}
\mathbb{Z} & n \equiv 0 \mod (4); \\
\mathbb{Z}^2 \oplus \mathbb{Z}/3 & n \equiv 1 \mod (4); \\
\mathbb{Z}/2 & n \equiv 2 \mod (4); \\
\mathbb{Z}/2 \oplus \mathbb{Z}/2 & n \equiv 3 \mod (4).
\end{cases} \]

16.6.4 Fuchsian groups

Let \(F \) be a cocompact Fuchsian group with presentation

\[F = \langle a_1, b_1, \ldots, a_g, b_g, c_1, \ldots, c_t \mid \\
c_1^{\gamma_1} = \cdots = c_t^{\gamma_t} = c_1^{-1} \cdots c_t^{-1} [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle \]

for integers \(g, t \geq 0 \) and \(\gamma_i > 1 \). Then \(BF \) is a closed orientable surface of genus \(g \). The following is a consequence of Theorem 16.12 and Remark 16.14, see [615] for details. Lower algebraic \(K \)-theory has also been computed in [112].

Theorem 16.30 (\(K \)-and \(L \)-groups of Fuchsian groups).

(i) There are isomorphisms

\[K_n(C^*_r(F)) \cong \begin{cases}
2 + \sum_{i=1}^t (\gamma_i - 1) & n = 0; \\
(2g) \cdot \mathbb{Z} & n = 1.
\end{cases} \]

(ii) The inclusions of the maximal subgroups \(\mathbb{Z}/\gamma_i = \langle c_i \rangle \) induce an isomorphism

\[\bigoplus_{i=1}^t \text{Wh}_n(\mathbb{Z}/\gamma_i) \xrightarrow{\cong} \text{Wh}_n(F) \]

for \(n \leq 1 \).

(iii) There are isomorphisms
\[L_n(\mathbb{Z}F)[1/2] \cong \begin{cases}
(1 + \sum_{i=1}^t \left\lfloor \frac{\gamma_i}{2} \right\rfloor) \cdot \mathbb{Z}[1/2] & n \equiv 0 \pmod{4}; \\
(2g) \cdot \mathbb{Z}[1/2] & n \equiv 1 \pmod{4}; \\
(1 + \sum_{i=1}^t \left\lfloor \frac{\gamma_i - 1}{2} \right\rfloor) \cdot \mathbb{Z}[1/2] & n \equiv 2 \pmod{4}; \\
0 & n \equiv 3 \pmod{4};
\end{cases} \]

where \(\lfloor r \rfloor \) for \(r \in \mathbb{R} \) denotes the largest integer less than or equal to \(r \).

From now on suppose that each \(\gamma_i \) is odd. Then we get for \(\epsilon = p \) and \(s \)

\[L'_n(\mathbb{Z}F) \cong \begin{cases}
\mathbb{Z}/2 \oplus \left(1 + \sum_{i=1}^t \left\lfloor \frac{\gamma_i}{2} \right\rfloor\right) \cdot \mathbb{Z} & n \equiv 0 \pmod{4}; \\
(2g) \cdot \mathbb{Z} & n \equiv 1 \pmod{4}; \\
\mathbb{Z}/2 \oplus \left(1 + \sum_{i=1}^t \left\lfloor \frac{\gamma_i - 1}{2} \right\rfloor\right) \cdot \mathbb{Z} & q \equiv 2 \pmod{4}; \\
(2g) \cdot \mathbb{Z}/2 & n \equiv 3 \pmod{4}.
\end{cases} \]

For \(\epsilon = h \) we do not know an explicit formula for \(L'_n(\mathbb{Z}F) \). The problem is that no general formula is known for the 2-torsion contained in \(\tilde{L}_2^h(\mathbb{Z}/m) \), for \(m \) odd, since it is given by the term \(\tilde{H}^2(\mathbb{Z}/2; \tilde{K}_0(\mathbb{Z}/m)) \), see [62, Theorem 2].

Exercise 16.31. Let \(F \) be a Fuchsian group as above. Show that its Whitehead group \(\text{Wh}(F) \) is a free abelian group of rank \(\bigoplus_{i=1}^t \lfloor \gamma_i/2 \rfloor + 1 - \delta(\gamma_i) \), where \(\delta(\gamma_i) \) is the number of divisors of \(\gamma_i \).

16.6.5 Torsionfree Hyperbolic Groups

Theorem 16.32 (Farrell-Jones Conjecture for torsionfree hyperbolic groups for \(K \)-theory). Let \(G \) be a non-trivial torsionfree hyperbolic group.

(i) We obtain for all \(n \in \mathbb{Z} \) an isomorphism

\[H_n(BG; K(R)) \oplus \bigoplus_C (NK_n(R) \oplus NK_n(R)) \xrightarrow{\cong} K_n(RG), \]

where \(C \) runs through a complete system of representatives of the conjugacy classes of maximal infinite cyclic subgroups;

(ii) The abelian groups \(\tilde{K}_0(\mathbb{Z}G) \) for \(n \leq -1 \), \(\tilde{K}_0(\mathbb{Z}G) \), and \(\text{Wh}(G) \) vanish;

(iii) We get for every ring \(R \) with involution and \(n \in \mathbb{Z} \) an isomorphism

\[H_n(BG; L([−∞, \infty)(R))] \cong L_n([−∞, \infty)(RG)). \]

For every \(j \in \mathbb{Z}, j \leq 2 \), and \(n \in \mathbb{Z} \), the natural map

\[L^{(j)}_n(\mathbb{Z}G) \cong L_n([−∞, \infty)(\mathbb{Z}G)) \]
is bijective;
(iv) We get for any \(n \in \mathbb{Z} \) isomorphisms
\[
K_n(BG) \xrightarrow{\cong} K_n(C^*_r(G)); \\
KO_n(BG) \xrightarrow{\cong} KO_n(C^*_r(G; \mathbb{R})).
\]

Proof. By [620, Corollary 2.11, Theorem 3.1 and Example 3.6], see also Theorem 10.36 there is a \(G \)-pushout
\[
\begin{array}{ccc}
\coprod C G \times_C EC & \xrightarrow{i} & E_{FIN}(G) \\
\downarrow p & & \downarrow \\
\coprod C G/C & \xrightarrow{\sim} & E_{VCY}(G)
\end{array}
\]
where \(i \) is an inclusion of \(G \)-CW-complexes, \(p \) is the obvious projection. Hence we obtain using Theorem 6.16 an isomorphism
\[
\begin{align*}
H^G_n(E_{FIN}(G) \to E_{VCY}(G); K_R) & \cong \bigoplus_C H^G_n(G \times_C EC \to G/C; K_R) \\
& \cong \bigoplus_C H^G_n(EC \to \{\bullet\}; K_R) \\
& \cong \bigoplus_C (NK_n(R) \oplus NK_n(R)).
\end{align*}
\]

We obtain from Theorem 12.29 an isomorphism
\[
\begin{align*}
H^G_n(E_{VCY}(G); K_R) & \cong H^G_n(EG; K_A) \oplus H^G_n(E_{FIN}(G) \to E_{VCY}(G); K_R) \\
& \cong H_n(BG; K(R)) \oplus \bigoplus_C (NK_n(R) \oplus NK_n(R)).
\end{align*}
\]

Since \(G \) satisfies the Full Farrell-Jones Conjecture [12.23], see Theorem 15.1 [ia], Theorem 12.56 implies that \(G \) satisfies the \(K \)-theoretic Farrell-Jones Conjecture [12.1] with coefficients in the ring \(R \).

(i) Since \(G \) satisfies the Full Farrell-Jones Conjecture [12.23], see Theorem 15.1 [ia] and hence by Theorem 12.56 Conjectures 3.107 and 4.17 assertion (i) follows.

(ii) Since \(G \) satisfies the Full Farrell-Jones Conjecture [12.23], see Theorem 15.1 [ia], Theorem 12.56 implies that \(G \) satisfies Conjecture 8.111. Now assertion (ii) follows from assertion (i) and Theorem 8.104.

(iii) This follows from the fact that \(G \) satisfies the Baum-Connes Conjecture [13.11] with coefficients by Theorem 15.7 [id] and from Remark 13.14 □

Not necessarily torsionfree hyperbolic groups are treated in [611, Theorem 1.1].
16.6.6 \textit{L-theory of Torsionfree Groups}

Throughout this subsection, let G be a torsionfree group satisfying Conjecture 8.111, i.e., we have the isomorphism

$$H_n(BG; L^{(-\infty)}(\mathbb{Z})) \xrightarrow{\cong} L_n^{(-\infty)}(ZG).$$

Thus we obtain from Subsection 14.14.4 an isomorphism

$$(16.33) \quad KO(BG)[1/2] \cong L_n^{(-\infty)}(ZG)[1/2].$$

\textbf{Example 16.34 (p-torsion in L-groups).} Let $n \geq 3$ be an odd natural number. Consider the group automorphism

$$\alpha: \mathbb{Z}^2 \to \mathbb{Z}^2, (a, b) \mapsto (a + nb, b).$$

Let G be the semi-direct product $\mathbb{Z}^2 \rtimes \mathbb{Z}$. Obviously there is an orientable aspherical closed smooth 3-manifold M which is the total space in a locally trivial fiber bundle $T^2 \to M \to S^1$ whose fundamental group is G, namely, the mapping torus of the selfdiffeomorphism $S^1 \times S^1 \to S^1 \times S^1$ sending (z_1, z_2) to $(z_1 z_2^n, z_2)$. The group G satisfies the Full Farrell-Jones Conjecture and hence Conjecture 8.111. One easily computes

$$H_k(M; \mathbb{Z}) \cong H_1(G) \begin{cases} \mathbb{Z} & k = 0, 2, 3; \\ \mathbb{Z} \oplus \mathbb{Z}/n & k = 1; \\ 0 & \text{otherwise} \end{cases}$$

An elementary spectral sequence argument shows

$$L_n^{(-\infty)}(ZG)[1/2] \cong KO_k(M; \mathbb{Z})[1/2] \cong \begin{cases} \mathbb{Z}[1/2] & k = 0, 2, 3 \mod 4; \\ \mathbb{Z}[1/2] \oplus \mathbb{Z}/n & k = 1 \mod 4; \\ 0 & \text{otherwise}. \end{cases}$$

Hence $L_n^{(-\infty)}(ZG)$ can contain p-torsion for any odd prime p. Recall that for finite groups G only 2-torsion occurs in $L_n^{(-\infty)}(ZG)$ by Theorem 8.189 (ii).

\textbf{Exercise 16.35.} Let p be a prime. Show for any $n \geq 6$ and any decoration $j \in \{2, 1, 0, -1, \ldots\}$ II $\{(-\infty)\}$ II $\{(-\infty)\}$ that there is an orientable aspherical closed smooth manifold M of dimension n such that $L_k^{(j)}(Z\pi_1(M))$ contains non-trivial p-torsion for every $k \in \mathbb{Z}$.

Since we have the decomposition of spectra after localization at 2

$$L^{(-\infty)}(\mathbb{Z})_{(2)} = \prod_{k \in \mathbb{Z}} K(\mathbb{Z}_{(2)}, 4k) \times \prod_{k \in \mathbb{Z}} K(\mathbb{Z}/2, 4k - 2),$$
see Remark 8.130 in the connective case and [859, Theorem A (2) on page 178] in the periodic case, we obtain for any torsionfree group G satisfying Conjecture 8.111

(16.36) $L_n^{(-∞)}(ZG)(2) \cong \prod_{k \in \mathbb{Z}} H_{n+4k}(BG; \mathbb{Z}(2)) \times \prod_{k \in \mathbb{Z}} H_{n+4k-2}(BG; \mathbb{Z}/2)$.

16.6.7 Cocompact NEC-Groups

A calculation of $W_h(G)$, $L_n^{(-∞)}(ZG)$ and $K_n(C^*_r(G))$ for 2-dimensional crystallographic groups G and more general cocompact NEC-groups G is presented in [615], see also [714]. For these groups the orbit spaces BG are compact surfaces possibly with boundary.

16.6.8 Crystallographic Groups

A crystallographic group of dimension n is a discrete group which acts cocompactly, properly and isometrically on the Euclidean space \mathbb{R}^n for some $n \geq 0$. One does not have a complete calculation of K-and L-groups of integral group rings or reduced group C^*-algebras of crystallographic groups except in dimension two as mentioned above in Subsection 16.6.7. Computations of the lower and middle algebraic K-theory of the integral group ring of split three-dimensional crystallographic groups are carried out by Farley-Ortiz [320], see also [24].

As an illustration we mention the following result taken from [558, Theorem 0.1].

Theorem 16.37 (Computation of the topological K-theory of $\mathbb{Z}^n \rtimes \mathbb{Z}/m$ for free conjugation action). Consider the extension of groups $1 \to \mathbb{Z}^n \to G \to \mathbb{Z}/m \to 1$ such that the conjugation action of \mathbb{Z}/m on \mathbb{Z}^n is free outside the origin $0 \in \mathbb{Z}^n$. Let \mathcal{M} be the set of conjugacy classes of maximal finite subgroups of G.

(i) We obtain an isomorphism

$$\omega_1 : K_1(C^*_r(G)) \xrightarrow{\cong} K_1(BG).$$

Restriction with the inclusion $k : \mathbb{Z}^n \to G$ induces an isomorphism

$$k^* : K_1(C^*_r(G)) \xrightarrow{\cong} K_1(C^*_r(\mathbb{Z}^n))^{\mathbb{Z}/m}.$$

Induction with the inclusion k yields a homomorphism
\(\kappa : \mathbb{Z} \otimes_{\mathbb{Z}/m} K_1(C^*_r(\mathbb{Z}^n)) \to K_1(C^*_r(G)) \).

It fits into an exact sequence

\[0 \to \hat{H}^{-1}(\mathbb{Z}/m, K_1(C^*_r(\mathbb{Z}^n))) \to \mathbb{Z} \otimes_{\mathbb{Z}/m} K_1(C^*_r(\mathbb{Z}^n)) \xrightarrow{\kappa} K_1(C^*_r(G)) \to 0, \]

where \(\hat{H}^*(\mathbb{Z}/m; M) \) denotes the Tate cohomology of \(\mathbb{Z}/m \) with coefficients in a \(\mathbb{Z}[\mathbb{Z}/m] \)-module \(M \). In particular, \(\kappa \) is surjective and its kernel is annihilated by multiplication with \(m \);

(ii) There is an exact sequence

\[0 \to \bigoplus_{(M) \in \mathcal{M}} \bar{R}_C(M) \xrightarrow{\bigoplus_{(M) \in \mathcal{M}} i_M} K_0(C^*_r(G)) \xrightarrow{\omega} K_0(BG) \to 0, \]

where \(\bar{R}_C(M) \) is the kernel of the map \(R_C(M) \to \mathbb{Z} \) sending the class \([V]\) of a complex \(M \)-representation \(V \) to \(\dim C \otimes C M V \) and the map \(i_M \) comes from the inclusion \(M \to G \) and the identification \(R_C(M) = K_0(C^*_r(M)) \).

We obtain a homomorphism

\[\kappa \oplus \bigoplus_{(M) \in \mathcal{M}} i_M : \mathbb{Z} \otimes_{\mathbb{Z}/m} K_0(C^*_r(\mathbb{Z}^n)) \oplus \bigoplus_{(M) \in \mathcal{M}} \bar{R}_C(M) \to K_0(C^*_r(G)). \]

It is injective. It is bijective after inverting \(m \);

(iii) We have

\[K_i(C^*_r(G)) \cong \mathbb{Z}^{s_i} \]

where

\[s_i = \begin{cases} (\sum_{(M) \in \mathcal{M}} (|M| - 1)) + \sum_{l \in \mathbb{Z}} \text{rk}_Z((A^{2l+1}\mathbb{Z}/m)^n/m) & \text{if } i \text{ even;} \\ \sum_{l \in \mathbb{Z}} \text{rk}_Z((A^{2l+1}\mathbb{Z}/m)^n/m) & \text{if } i \text{ odd;} \end{cases} \]

(iv) If \(m \) is even, then \(s_1 = 0 \) and

\[K_1(C^*_r(G)) \cong \{0\}. \]

The numbers \(s_i \) can be made more explicit, see [558]. For instance, if \(m = p \) for a prime number \(p \), then there exists a natural number \(k \) which is determined by the property \(n = (p - 1) \cdot k \), and we get:

\[s_i = \begin{cases} p^k \cdot (p - 1) + \frac{2^n + p - 1}{2^p} & p \not= 2 \text{ and } i \text{ even;} \\ \frac{2^n + p - 1}{2^p} - \frac{p^k - 1}{2} & p \not= 2 \text{ and } i \text{ odd;} \\ 3 \cdot 2^k - 1 & p = 2 \text{ and } i \text{ even;} \\ 0 & p = 2 \text{ and } i \text{ odd.} \end{cases} \]
Exercise 16.39. Consider the automorphism $\phi: \mathbb{Z}^2 \to \mathbb{Z}^2, (a, b) \mapsto (b, -a - b)$. Then $\phi^3 = \text{id}$. Show

$$K_i(C^*_r(\mathbb{Z}^2 \rtimes_\phi \mathbb{Z}/3)) \cong \begin{cases} \mathbb{Z}^8 & i \text{ even;} \\ \{0\} & i \text{ odd.} \end{cases}$$

Theorem 16.37 in the special case, where m is a prime number, is treated in [254].

The groups appearing in Theorem 16.37 are crystallographic groups, see [558, Lemma 3.1].

The proof of Theorem 16.37 is surprisingly complicated. It is based on computations of the group homology of $\mathbb{Z}^n \rtimes \mathbb{Z}/m$ by Langer-Lück [557, Theorem 0.5]. They prove a conjecture of Adem-Ge-Pan-Petrosyan [17, Conjecture 5.2], which says that the associated Lyndon-Hochschild-Serre spectral sequence collapses in the strongest sense, in the special case that the conjugation action of \mathbb{Z}/m of \mathbb{Z}^n is free outside the origin $0 \in \mathbb{Z}^n$. Moreover, it uses generalizations of the Atiyah-Segal Completion Theorem for finite groups to infinite groups, see Lück-Oliver [602, 603]. Interestingly the conjecture of Adem-Ge-Pan-Petrosyan is disproved in general by Langer-Lück [557, Theorem 0.6].

16.6.9 Virtually Finitely Generated Free Abelian Groups

One does not have a complete calculation of the K-groups and L-groups of integral group rings or group C^*-algebras of crystallographic groups and hence not of virtually finitely generated abelian groups. The favorite situation is the one occurring in Remark 16.14 when one considers groups G occurring in an extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ for finite F such that the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$. Then the computation can be found in [611, Theorem 1.7].

16.6.10 SL$_3(\mathbb{Z})$

Since SL$_3(\mathbb{Z})$ satisfies the Full Farrell-Jones Conjecture 12.23, see Theorem 15.14, id. Theorem 12.56 implies that G satisfies the K-theoretic Farrell-Jones Conjecture 12.1 with coefficients in \mathbb{Z}. Using this fact the following result is proved in [838] and [873].

Theorem 16.40 (Lower and middle K-theory of the integral group ring of SL$_3(\mathbb{Z})$). The groups $K_n(\mathbb{Z}[\text{SL}_3(\mathbb{Z})])$ for $n \leq -2$, $K_0(\mathbb{Z}[\text{SL}_3(\mathbb{Z})])$, and $\text{Wh}(\text{SL}_3(\mathbb{Z}))$ are trivial. For an appropriate subgroup $C_0 \subseteq \text{SL}_3(\mathbb{Z})$ which
is cyclic of order six, the inclusion $C_6 \to \text{SL}_3(\mathbb{Z})$ induces an isomorphism
\[\mathbb{Z} \cong K_{-1}(\mathbb{Z}[C_6]) \xrightarrow{\sim} K_{-1}(\mathbb{Z}[\text{SL}_3(\mathbb{Z})]). \]

The following result is taken from [800, Corollary 2] in the complex case and from [454, Theorem 1.3] in the real case.

Theorem 16.41 (Topological equivariant K-theory of $\mathcal{E}_{\text{FIN}}(\text{SL}_3(\mathbb{Z}))$).

(i) The abelian group $K_n^{\text{SL}_3(\mathbb{Z})}(\mathcal{E}_{\text{FIN}}(\text{SL}_3(\mathbb{Z})))$ is \mathbb{Z}^8 for even n and vanishes for odd n;
(ii) We have for $n = 0, 1, 2, \ldots, 7$
\[KO_n^{\text{SL}_3(\mathbb{Z})}(\mathcal{E}_{\text{FIN}}(\text{SL}_3(\mathbb{Z}))) = \mathbb{Z}^8, \mathbb{Z}/2^8, \mathbb{Z}/2^8, \{0\}, \mathbb{Z}^8, \{0\}, \{0\}, \{0\} \]
and the remaining groups are given by 8-fold Bott periodicity.

The groups $K_n^{\text{GL}_3(\mathbb{Z})}(\mathcal{E}_{\text{FIN}}(\text{GL}_3(\mathbb{Z})))$ are determined in [800, Corollary 4], and the groups $KO_n^{\text{SL}_3(\mathbb{Z})}(\mathcal{E}_{\text{FIN}}(\text{GL}_3(\mathbb{Z})))$ are determined in [454, Corollary 1.4].

Recall that the Baum-Connes Conjecture is not known to be true for $\text{SL}_3(\mathbb{Z})$. So it would be interesting to compute $K_n(\mathcal{C}^*_r(\text{SL}_3(\mathbb{Z}); \mathbb{C}))$ and $KO_n(\mathcal{C}^*_r(\text{SL}_3(\mathbb{Z}); \mathbb{R}))$ directly and to compare the result with the computations of Theorem 16.41.

16.6.11 Right angled Artin groups

The group homology, the algebraic K- and L-groups, and the topological K-groups of right-angled Artin groups, and, more generally, of graph products is computed in [513, Section 6], where more generally graph products are handled.

Let X be a finite simplicial graph on the vertex set V and suppose that we are given a collection of groups $W = \{ W_v \mid v \in V \}$. Then the graph product $W(X, W)$ is defined as the quotient of the free product $\ast_{v \in V} W_v$ of the collection of groups W by introducing the relations
\[\{ [g, g'] = 1 \mid v, v' \in V, \text{ there is an edge joining } v \text{ and } v', g \in W_v, g' \in W_{v'} \}. \]

In other words, elements of subgroups W_v and $W_{v'}$ commute if there is an edge joining v and v'. This notion is due to Green [390].

A right-angled Artin group is a graph product $W = W(X, W)$ for which each of the groups W_v is infinite cyclic. For general information about right-angled Artin groups we refer for instance to Charney [205]. Denote by Σ be flag complex associated to the finite simplicial graph X. Let \mathcal{P} be the poset
of simplices of Σ, both ordered by inclusion, where the empty subcomplex and the empty simplex are allowed and the dimension of the empty simplex is defined to be -1. Note that W is torsionfree. In the sequel we denote by r_k the number of k-simplices in P.

Let K_* be any generalized non-equivariant homology theory with values in A-modules. Then
\[
\bigoplus_{\sigma \in P} K_{n-\dim(\sigma)-1}({\bullet}) \xrightarrow{\cong} K_n(BW).
\]

If we take for K_* singular homology $H_*(-;A)$ with coefficients in A, this boils down to the well-known isomorphism of A-modules
\[(16.42) \quad \Lambda^n \cong H_n(BW;A).
\]

In particular we get the following relation for the Euler characteristics
\[\chi(BW) = 1 - \chi(\Sigma)\]

Theorem 16.43 (The algebraic K-theory and L-theory of right-angled Artin groups).

(i) Let R be a regular ring. Then there is an explicit isomorphism of abelian groups
\[
\bigoplus_{\sigma \in P} K_{n-\dim(\sigma)-1}(R) \xrightarrow{\cong} K_n(RW).
\]

In particular we get $K_n(RW) = 0$ for $n \leq -1$.

If we take $R = \mathbb{Z}$, we conclude that $K_n(ZW)$ for $n \leq -1$, $\tilde{K}_0(ZW)$, and $\text{Wh}(W)$ vanish.

(ii) Let R be a ring with involution. Then there is an explicit isomorphism of abelian groups
\[
\bigoplus_{\sigma \in P} L_{n-\dim(\sigma)-1}(R) \xrightarrow{\cong} L_n^{(-\infty)}(RW).
\]

Theorem 16.44 (The topological K-theory of right-angled Artin groups). There are explicit isomorphisms of abelian groups
\[
\bigoplus_{\sigma \in P} K_{n-\dim(\sigma)-1}(\mathbb{C}) \xrightarrow{\cong} K_n(C_m^*(W)) \cong K_n(C_r^*(W));
\]
\[
\bigoplus_{\sigma \in P} K_{n-\dim(\sigma)-1}(\mathbb{R}) \xrightarrow{\cong} K_n(C_m^*(W;\mathbb{R})) \cong K_n(C_r^*(W;\mathbb{R})).
\]

In particular we get an isomorphism of abelian groups
\[K_n(C_m^*(W)) \cong K_n(C_r^*(W)) \cong \mathbb{Z}^n,\]
if we put \(t_n = \sum_{k \in \{-1,0,1,2,\ldots,\dim(\Sigma)\}} r_k \).

Exercise 16.45. Let \(G \) be \(\mathbb{Z}^2 \ast_{\mathbb{Z}} \mathbb{Z}^2 \), where we consider \(\mathbb{Z} \) as a subgroup of \(\mathbb{Z}^2 \) by sending \(n \) to \((n,0)\). Compute \(H_*(G) \), \(K_r(C^*_r(G;\mathbb{C})) \) and \(KO_r(C^*_r(G;\mathbb{R})) \).

16.6.12 Right angled Coxeter groups

Recall that a *right-angled Coxeter group* is a graph product \(W = W(X,W) \) for which each of the groups \(W_v \) is cyclic of order two. The group homology, the algebraic \(K \)- and \(L \)-groups, and the topological \(K \)-groups of right-angled Coxeter groups, and, more generally, of graph products is computed in [513, Section 7]. The result are nearly as explicite as in the case of right-angled Artin groups which we have presented in Subsection 16.6.11.

For instance, the integral group homology \(H_n(W;\mathbb{Z}) \) is in degree \(n \geq 1 \) an explicite \(\mathbb{F}_2 \)-vector space, \(K_n(\mathbb{Z}W) = 0 \) for \(n \leq -1 \), \(\hat{K}_0(\mathbb{Z}W) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2] = 0 \), and \(\hat{K}_1(\mathbb{Z}W) \otimes_{\mathbb{Z}} \mathbb{Z}[1/2] = 0 \). Next we state the result for the topological \(K \)-theory.

Theorem 16.46 (The topological \(K \)-theory of right-angled Coxeter groups). There are for every \(n \in \mathbb{Z} \) isomorphisms

\[
\bigoplus_{\sigma \in P} K_n(C) \cong K_n(C^*_m(W)) \cong K_n(C^*_r(W));
\]

\[
\bigoplus_{\sigma \in P} KO_n(\mathbb{R}) \cong KO_n(C^*_m(W;\mathbb{R})) \cong KO_n(C^*_r(W;\mathbb{R})).
\]

In particular there are isomorphisms of abelian groups

\[
K_n(C^*_m(W)) \cong K_n(C^*_r(W)) \cong \begin{cases} \mathbb{Z}^r & \text{if } n \text{ is even;} \\ \{0\} & \text{otherwise;} \end{cases}
\]

\[
KO_n(C^*_m(W;\mathbb{R})) \cong KO_n(C^*_r(W;\mathbb{R})) \cong \begin{cases} \mathbb{Z}^r & \text{if } n \equiv 0 \ mod \ 4; \\ (\mathbb{Z}/2)^r & \text{if } n \equiv 1,2 \ mod \ 8; \\ \{0\} & \text{otherwise}, \end{cases}
\]

where \(r \) is the number of simplices (including the empty simplex) in \(P \).

The computation of the topological \(K \)-theory of the complex reduced group \(C^* \)-algebra of a right-angled Coxeter group is also done by Sanchez-Garcia [801] using the Davis complex as a model for \(EW \). The real case is treated by Fuentes-Rumi [369].
Exercise 16.47. Let G be a group which is isomorphic to some amalgamated free product of the form $(\mathbb{Z}/2)^3 \ast_{\mathbb{Z}/2} (\mathbb{Z}/2)^2$. Compute $K_n(C^*_r(G; \mathbb{C}))$ and $KO_n(C^*_r(G; \mathbb{R}))$ for $n \in \mathbb{Z}$.

16.6.13 Fundamental groups of 3-manifolds

The algebraic K-theory $K_n(R[\pi_1(M)])$ has been computed for a compact connected 3-manifold M in [179] based on Theorem 15.1 (ie) and 539 modulo Nil-terms of the ring R. We at least present the computation for an already interesting special case, also including the algebraic L-theory.

Theorem 16.48 (K-and L-groups of 3-manifolds). Let M be a compact connected orientable 3-manifold with fundamental group π and prime decomposition $M \cong M_1 \# M_2 \# \cdots \# M_r$.

(i) Suppose that R is a regular ring. Then we get for $n \in \mathbb{Z}$

\[
K_n(R\pi) \cong \bigoplus_{i=1}^{n} K_n(R[\pi_1(M_i)]);
\]

\[
K_n(R\pi) \cong 0 \quad \text{if } n \leq -1,
\]

where $K_n(RG)$ is the cokernel of the split injective map $K_n(R) \to K_n(RG)$. If π is torsionfree, then there is an isomorphism

\[
H_n(B\pi; K_R) \cong K_n(R\pi);
\]

(ii) Let R be a ring with involution. Suppose that π contains no 2-torsion. We get for $n \in \mathbb{Z}$

\[
L_{n}^{(-\infty)}(R\pi) \cong \bigoplus_{i=1}^{n} L_{n}^{(-\infty)}(R[\pi_1(M_i)]),
\]

where $L_{n}^{(-\infty)}(RG)$ is the cokernel of the split injective map $L_n^{(-\infty)}(R) \to L_n^{(-\infty)}(RG)$. If π is torsionfree, then there is an isomorphism

\[
H_n(B\pi; L_{R}^{(-\infty)}) \cong L_{n}^{(-\infty)}(R\pi).
\]

Proof. We conclude from Theorem 15.1 (ie) that π satisfies the Full Farrell-Jones Conjecture [1223].

Note that $\pi \cong \ast_{i=1}^{r} \pi_1(M_i)$. The Kurosh Subgroup Theorem, see [623] Theorem 1.10 on page 178, says for a subgroup $H \subseteq \pi$ that $H \cong (\ast_{j \in J} H_j)^* F$, where F is a free group.

where each H_j is the intersection of H with some conjugate of $\pi_1(M_i)$ and F is a free group. Note that $\pi_1(M_i)$ is either finite or torsionfree, since every irreducible 3-manifold with infinite fundamental group is aspherical by the Sphere Theorem, see [425, 4.3 on page 40], and a prime 3-manifold, which is not irreducible is a S^3 bundle over S^1, see [425, Lemma 3.13 on page 28]. Every torsionfree virtually cyclic group is isomorphic to \mathbb{Z}. A virtually cyclic group V is isomorphic to a non-trivial free product $L_1 \ast L_2$ if and only if V is isomorphic to $\mathbb{Z}/2 \ast \mathbb{Z}/2$. Hence any virtually cyclic subgroup V of π is isomorphic to \mathbb{Z} or $\mathbb{Z}/2 \ast \mathbb{Z}/2$.

Since R is regular, we conclude from Lemma 12.45 and Lemma 12.46 that the assembly map

$$H_\pi^n(E\pi; K_R) \to K_n(\pi)$$

is an isomorphism for $n \in \mathbb{Z}$. We conclude from Example 14.30 that the obvious map $\bigoplus_{i=1}^n K_n(R[\pi_1(M_i)]) \to K_n(\pi)$ is bijective. The claim in the special case that π is torsionfree follows from Conjecture 6.44, which holds for π by Theorem 12.56 (xii).

The assembly map

$$H_\pi^n(E\pi; L_{\pi}^{(-\infty)}) \to L_n^{(-\infty)}(\pi)$$

is an isomorphism by Theorem 12.51 since every virtually cyclic subgroup of π is isomorphic to \mathbb{Z}. We conclude from Example 14.30 that the obvious map $\bigoplus_{i=1}^n L_n^{(-\infty)}(R[\pi_1(M_i)]) \to L_n^{(-\infty)}(\pi)$ is bijective. The claim in the special case that π is torsionfree follows from Conjecture 8.111, which holds for π by Theorem 12.56 (xii). □

Exercise 16.49. Let M be a connected orientable irreducible closed 3-manifold with infinite fundamental group π. Show that $L_n^{(i)}(\mathbb{Z}\pi)$ is independent of the decoration and that we have isomorphisms

- $L_0(\mathbb{Z}\pi) \cong \mathbb{Z} \oplus \text{hom}_\mathbb{Z}(\pi, \mathbb{Z}/2)$;
- $L_1(\mathbb{Z}\pi) \cong \pi/[\pi, \pi] \oplus \mathbb{Z}/2$;
- $L_2(\mathbb{Z}\pi) \cong \mathbb{Z}/2 \oplus \text{hom}_\mathbb{Z}(\pi, \mathbb{Z})$;
- $L_3(\mathbb{Z}\pi) \cong \mathbb{Z} \oplus (\pi/[\pi, \pi] \otimes_\mathbb{Z} \mathbb{Z}/2)$.

16.7 Applications of Some Computations

16.7.1 Classification of some C^*-algebras

Theorem 16.37 is an important input in the classification of certain C^*-algebras associated to number fields by Li-Lück [566]. Here the key point is the rather surprising result that the topological K-groups are all torsion-free what is not the case for the group homology. Actually, it is intriguing that the topological complex K-groups are finitely generated free abelian groups in many of the examples presented in Subsection 16.6.

Another application of the computation of the topological K-theory of group C^*-algebras can be found in [296], namely, to the structure of crossed products of irrational rotation algebras by finite subgroups of SL$_2(\mathbb{Z})$.

16.7.2 Unstable Gromov-Lawson Rosenberg Conjecture

We have already discussed in Subsection 13.8.2 that Schick [809] constructed counterexamples to the unstable version of the Gromov-Lawson-Rosenberg Conjecture with fundamental group $\pi \cong \mathbb{Z}^4 \times \mathbb{Z}/3$. However for appropriate $\rho: \mathbb{Z}/3 \to \text{aut}(\mathbb{Z}^4)$ the unstable version does hold for $\pi \cong \mathbb{Z}^4 \rtimes_\rho \mathbb{Z}/3$ and $\dim(M) \geq 5$. This is proved by Davis-Lück [254, Theorem 0.7 and Remark 0.9] based on explicite calculations of the topological K-theory of the reduced real group C^*-algebra of $\mathbb{Z}^4 \rtimes_\rho \mathbb{Z}/3$. More infinite groups, for which the unstable version holds, are presented in [454, Theorem 1.7].

16.7.3 Classification of Certain Manifolds with Infinite Not Torsionfree Fundamental Groups

Manifolds homotopy equivalent to the total space of certain fiber bundles over lens spaces with tori as fiber are classified by Davis-Lück [255]. Here the key input is the calculation of algebraic K-and L-groups of integral group rings of groups of the shape $\pi = \mathbb{Z} \rtimes_\rho \mathbb{Z}/p$ for odd primes p, where the conjugation action of \mathbb{Z}/p on \mathbb{Z}^n is free outside the origine. Note that π is infinite and not torsionfree. This is one of the few classification result about a class of closed manifolds, whose fundamental group is not obtained from torsionfree and finite groups using amalgamated free products and HNN-extensions.
16.8 Notes

The lower and middle algebraic K-theory of integral group rings of certain reflection groups has been computed by Lafont-Ortiz [547] and by Lafont-Margurn-Ortiz [546], of $\Gamma_3 := O^+(3,1) \cap \text{GL}_4(\mathbb{Z})$ by Ortiz [701] [702], of Bianchi groups by Berkove-Farrell-Pineda-Pearson [110], and of pure braid groups by Aravinda-Farrell-Roushon [39]. The lower and middle algebraic K-theory of integral group rings or mapping class group of genus 1 is computed in [111]. The topological K-theory of the complex group C^*-algebra of cocompact 3-dimensional hyperbolic reflection group is computed by by Lafont-Ortiz-Rahm-Sanchez-Gracia [549].
Chapter 17
Assembly Maps

17.1 Introduction

In this chapter we discuss assembly maps and the assembly principle in general.

We recall the homological approach in Section 17.2 which we have used in this book.

We give the version in terms of spectra in Section 17.3. Actually, in all concrete situations, such as in the Farrell-Jones Conjecture for \(K\)-and \(L\)-theory and pseudoisotopy or the Baum-Connes Conjecture, the assembly map can be implemented in terms of spectra. This can easily be identified with the elementary approach in terms of homotopy colimits, which nicely illustrates the name assembly, but works only, if we confine ourselves to classifying spaces of families of subgroups, see Section 17.4. The approach in terms of homotopy colimits is the quickest and most natural approach for a homotopy theorist.

The universal property of assembly is explained in Section 17.5. Roughly speaking, it says that the assembly map is the best approximation of a weakly homotopy invariant functor \(E : G\text{-CW-COMPLEXES} \to \text{SPECTRA}\) from the left by a weakly excisive functor \(G\text{-CW-COMPLEXES} \to \text{SPECTRA}\), where weakly excisive essentially means that after taking homotopy groups the functor yields a \(G\)-homology theory. This is very helpful to identify the various versions of the assembly maps appearing in the literature with our homological approach since the constructions of the assembly maps can be very complicated and is much easier to use the universal property to establish the desired identifications than to go through the actual definitions. The universal property will be exploited to identify the various assembly maps in Section 17.6.

This universal approach explains the philosophical background of assembly and presents a uniform approach to the assembly map in all cases, such as the Farrell-Jones Conjecture or the Baum-Conjecture. It is important to have also the other more geometric or operator-theoretic definitions of assembly maps in terms of surgery theory or index theory at hand in order to apply the Farrell-Jones Conjecture and the Baum-Connes Conjecture to geometric problems, such as the topological rigidity of closed aspherical manifolds or the existence of a Riemannian metric with positive sectional curvature.

The homological or homotopy theoretic approach to assembly maps is best suited for computations based on the Isomorphism Conjectures, but
not necessarily for their proofs, where the approach using index theory or controlled topology come into play.

17.2 Homological Approach

The homological version of assembly is manifested in the Meta-Isomorphism Conjecture\[14.2\]. Recall that it predicts for a group \(G\), a family \(\mathcal{F}\) of subgroups of \(G\), and a \(G\)-homology theory \(H^*_G\) in the sense of Definition\[11.1\] that the map induced by the projection \(pr: E_\mathcal{F}(G) \to G/G\) for \(E_\mathcal{F}(G)\) the classifying space of the family \(\mathcal{F}\) in the sense of Definition\[10.18\]:

\[
(17.1) \quad H_n(pr): H^*_G(E_\mathcal{F}(G)) \to H^*_G(G/G)
\]

is bijective for all \(n \in \mathbb{Z}\). The various conjectures due to Baum-Connes and Farrell-Jones are special cases, where one specifies \(\mathcal{F}\) and \(H^*_G\).

17.3 Extension from Homogenous Spaces to \(G\)-CW-Complexes

Let \(E\) be a covariant \(\text{Or}(G)\)-spectrum, i.e., a covariant functor \(E: \text{Or}(G) \to \text{SPECTRA}\). We get an extension of \(E\) to the category \(G\)-CW-COMPLEXES of \(G\)-CW-complexes by

\[
(17.2) \quad E_G: \text{G-CW-COMPLEXES} \to \text{SPECTRA}, \quad X \mapsto \text{map}_G(-,X)_+ \wedge_{\text{Or}(G)} E,
\]

where \(\text{map}_G(-,X)\) and \(\wedge_{\text{Or}(G)}\) have been defined in Example\[11.21\] and in\[11.22\]. The projection \(pr: E_\mathcal{F}(G) \to G/G\) for \(E_\mathcal{F}(G)\) induces a map of spectra

\[
(17.3) \quad E_G(pr): E_G(E_\mathcal{F}(G)) \to E_G(G/G).
\]

After taking homotopy groups we get for all \(n \in \mathbb{Z}\) a homomorphism

\[
(17.4) \quad \pi_n(E_G(pr)): \pi_n(E_G(E_\mathcal{F}(G))) \to \pi_n(E_G(G/G)).
\]

We have constructed a \(G\)-homology theory \(H^*_G(-;E)\) with the property that \(H^*_G(G/H;E) \cong \pi_n(E(G/H))\) holds for all \(n \in \mathbb{Z}\) and subgroups \(H \subseteq G\) in Theorem\[11.24\]. The \(G\)-homology theories relevant for the Baum-Connes and the Farrell-Jones Conjecture are given by specifying such covariant functors \(E\). It follows essentially from the definitions that the map \(17.1\) for \(H^*_G = H^*_G(-;E)\) agrees with the map \(17.4\).
17.4 Homotopy Colimit Approach

Consider a covariant functor $E: \text{Or}(G) \to \text{SPECTRA}$. Recall that $\text{Or}_F(G)$ denotes the F-restricted orbit category, see Definition 2.54. If the G-homology theory H^G_* is given by $H^G_*(-; E)$, one can identify the assembly map (17.4) with the map

$$\pi_n(\mathbf{p}): \pi_n(\text{hocolim}_{\text{Or}_F(G)} E) \to \pi_n(E(G/G))$$

where the map of spectra

$$\mathbf{p}: \text{hocolim}_{\text{Or}_F(G)} E \to \text{hocolim}_{\text{Or}(G)} E = E(G/G)$$

comes from the inclusion of categories $\text{Or}_F(G) \to \text{Or}(G)$ and the fact that G/G is a terminal object in $\text{Or}(G)$. For more information about homotopy colimits and the identification of the maps (17.1), (17.4), and (17.5) we refer to [252, Sections 3 and 5].

This interpretation is one explanation for the name assembly. If the assembly map (17.5) is bijective for all $n \in \mathbb{Z}$, or, equivalently, the map \mathbf{p} above is a weak homotopy equivalence, we have a recipe to assemble $E(G/G)$ from its values $E(G/H)$, where H runs through F. The idea is that F consists of well-understood subgroups, for which one knows the values $E(G/H)$ for $H \subseteq G$ and hence $\text{hocolim}_{\text{Or}_F(G)} E$, whereas $E(G/G)$ is the object, which one wants to understand and is very hard to access.

17.5 Universal Property

In this section we characterize assembly maps by a universal property. This is useful for identifying different constructions of assembly maps.

Lemma 17.6. Let E be a covariant $\text{Or}(G)$-spectrum. Then:

(i) The canonical map

$$E_\mathbb{S}((X) \cup_{E_\mathbb{S}(f)} E_\mathbb{S}(Y)) \to E_\mathbb{S}(X \cup f Y)$$

is an isomorphism of spectra, where (X, A) is a G-CW-pair and $f: A \to Y$ is a cellular G-map;

(ii) The canonical map

$$\text{colim}_{i \in I} E_\mathbb{S}(X_i) \to E_\mathbb{S}(X)$$

is an isomorphism of spectra, where $\{X_i | i \in I\}$ is a directed system of G-CW-subcomplexes of the G-CW-complex X directed by inclusion and satisfying $X = \bigcup_{i \in I} X_i$;
(iii) The canonical map

$$Z_+ \wedge E_{\mathfrak{g}}(X) \to E_{\mathfrak{g}}(Z \times X)$$

is an isomorphism of spectra, where Z is a CW-complex (with trivial G-action) and X is a G-CW-complex;

(iv) The canonical map

$$E_{\mathfrak{g}}(G/H) \to E(G/H)$$

is an isomorphism of spectra for all $H \in \mathcal{F}$.

Proof. One easily checks that the H-fixed point set functor $\text{map}_G(G/H, -)$ commutes with attaching a G-space to a G-space along a G-map and with directed unions of G-CW-subcomplexes. Assertions [iii] and [iv] follow from the fact that $- \wedge_{\text{Or}(G)} E$ commutes with colimits, since it has a right adjoint, see [252, Lemma 1.5]. Assertions [iii] and [iv] follow by inspecting the definition of $E_{\mathfrak{g}}$. \square

Lemma 17.7. Let E be a covariant $\text{Or}(G)$-spectrum. Then the extension $E \mapsto E_{\mathfrak{g}}$ is uniquely determined up to isomorphism of G-CW-COMPLEXES-spectra by the properties of Lemma [17.6].

Proof. Let $E \mapsto E_{\mathfrak{g}}$ be another such extension. There is a (a priori not necessarily continuous) set-theoretic natural transformation

$$T(X) : E_{\mathfrak{g}}(X) = X_+ \wedge_{\text{Or}(G)} E \to E_{\mathfrak{g}}(X)$$

which sends an element represented by $(x : G/H \to X, e)$ in $\text{map}_G(G/H, X) \times E(G/H)$ to $E_{\mathfrak{g}}(x)(e)$. Since any G-CW-complex is constructed from orbits G/H with $H \in \mathcal{F}$ via products with disks and disjoint unions, attaching a G-space to a G-space along a G-map, and is the directed union over its skeletons, and $T(G/H)$ is an isomorphism of spectra for $H \subseteq G$, $T(X)$ is an isomorphism of spectra for all G-CW-complexes X. \square

Lemma 17.7 is a characterization of $E \mapsto E_{\mathfrak{g}}$ up to isomorphism. Next we give a homotopy theoretic characterization.

Definition 17.8 ((Weakly) excisive). We call a covariant functor

$$E : G\text{-CW-COMPLEXES} \to \text{SPECTRA}$$

(weakly) homotopy invariant if it sends G-homotopy equivalences to (weak) homotopy equivalences of spectra.

The functor E is (weakly) excisive if it has the following four properties:

- It is (weakly) homotopy invariant;
- The spectrum $E(\emptyset)$ is (weakly) contractible;
• It respects homotopy pushouts up to (weak) homotopy equivalence, i.e., if the G-CW-complex X is the union of G-CW-subcomplexes X_1 and X_2 with intersection X_0, then the canonical map from the homotopy pushout of $E(X_2) \leftarrow E(X_0) \rightarrow E(X_2)$ to $E(X)$ is a (weak) homotopy equivalence of spectra;

• It respects disjoint unions up to (weak) homotopy, i.e., the natural map $\bigvee_{i \in I} E(X_i) \rightarrow E(\bigsqcup_{i \in I} X_i)$ is a (weak) homotopy equivalence for all index sets I.

Notation 17.9. If $E: G$-CW-COMPLEXES \rightarrow SPECTRA is a covariant functor, we denote $(E|_{\text{Or}(G)})_\%$ by $E_\%$ again, where $E|_{\text{Or}(G)}$ is the composite of E with the obvious inclusion $\text{Or}(G) \rightarrow G$-CW-COMPLEXES.

The following result has been proved for $G = \{1\}$ in Weiss-Williams [911].

Theorem 17.10 (Universal Property of assembly).

(i) Suppose $E: \text{Or}(G) \rightarrow$ SPECTRA is a covariant functor. Then $E_\%$ is excisive;

(ii) Suppose $E: \text{Or}(G) \rightarrow$ SPECTRA is a covariant functor. Then we obtain a G-homology theory $H_n^G(_; E)$ in the sense of Definition 11.1 from Theorem [11.23] and we get for every pair (X, A) of G-CW-complexes (X, A) a natural isomorphism

$$H_n^G(X, A; E) \cong \text{coker}(\pi_n(E_\%(\emptyset_A)) \rightarrow \pi_n(E_\%(X/A))).$$

If $A = \emptyset$, this becomes an isomorphism

$$H_n^G(X; E) \cong \pi_n(E_\%(X));$$

(iii) Let $T: E \rightarrow F$ be a transformation of (weakly) excisive functors E and F from G-CW-COMPLEXES to SPECTRA so that $T(G/H)$ is a (weak) homotopy equivalence of spectra for all $H \subseteq G$.

Then $T(X)$ is a (weak) homotopy equivalence of spectra for all G-CW-complexes X;

(iv) For any (weakly) homotopy invariant functor E from G-CW-COMPLEXES to SPECTRA, there is a (weakly) excisive functor

$$E_\%: G$-CW-COMPLEXES \rightarrow SPECTRA

and natural transformations

$$A_E: E_\% \rightarrow E;$$

$$B_E: E_\% \rightarrow E_\%;$$

which induce (weak) homotopy equivalences of spectra $A_{E}(G/H)$ for all $H \subseteq G$ and (weak) homotopy equivalences of spectra $B_{E}(X)$ for all G-CW-complexes X.

The constructions \(\mathbf{E}_\emptyset, \mathbf{E}^\circ, \mathbf{A}_\mathbf{E} \) and \(\mathbf{B}_\mathbf{E} \) are natural in \(\mathbf{E} \).

Moreover, \(\mathbf{E} \) is (weakly) excisive if and only if \(\mathbf{A}_\mathbf{E}(X) \) is a (weak) homotopy equivalence of spectra for all \(G \)-CW-complexes \(X \).

Proof. (i) follows from Lemma 17.6 after one has shown that in the situation of Lemma 17.6 (i) the canonical map from the homotopy pushout of spectra to the pushout of spectra is a weak homotopy equivalence. This follows from the fact that the inclusion of \(\mathbf{E}^\circ(\emptyset) \to \mathbf{E}^\circ(X) \) is on each level a cofibration of spaces.

There is an obvious \(G \)-homotopy equivalence of pointed \(G \)-CW-complexes \(X_+ \cup A_+ \text{cone}(A_+) \to X/A \). Hence we get from the definitions

\[
H_n^G(X, A; \mathbf{E}) = \pi_n(\mathbf{map}_G(-, X/A) \wedge \Omega_{\tau(G)} \mathbf{E}).
\]

Now the assertion follows from the cofibration sequence of spectra

\[
\mathbf{E}^\circ(\emptyset) = \mathbf{map}_G(-, \emptyset_+ \wedge \Omega_{\tau(G)} \mathbf{E})
\to \mathbf{E}^\circ(X/A) = \mathbf{map}_G(-, X/A)_+ \wedge \Omega_{\tau(G)} \mathbf{E} \to \mathbf{map}_G(-, X/A) \wedge \Omega_{\tau(G)} \mathbf{E}.
\]

Use the fact that a (weak) homotopy colimit of homotopy equivalences of spectra is again a (weak) homotopy equivalence of spectra.

See [252, Theorem 6.3]. \(\square \)

Exercise 17.11. Show that a covariant functor \(\mathbf{E} : G \text{-CW-COMPLEXES} \to \text{SPECTRA} \) is weakly excisive if and only if the assignment sending a pair \((X, A)\) of \(G \)-CW-complexes to \(\text{coker}(\pi_n(\mathbf{E}(\emptyset_+)) \to \pi_n(\mathbf{E}(X/A))) \) defines a \(G \)-homology in the sense of Definition 11.1.

Definition 17.12 (Homotopy theoretic assembly transformation).

Given a covariant functor \(\mathbf{E} : G \text{-CW-COMPLEXES} \to \text{SPECTRA} \), we call the transformation appearing in Theorem 17.10 (iv)

\[
\mathbf{A}_\mathbf{E} : \mathbf{E}^\circ \to \mathbf{E}
\]

the homotopy theoretic assembly transformation.

Remark 17.13 (No continuity condition \(\mathbf{E} \)). One may be tempted to define a natural transformation \(\mathbf{S} : \mathbf{E}^\circ \to \mathbf{E} \) as indicated in the proof of Lemma 17.7. Then \(\mathbf{S}(X) \) is a well-defined bijection of sets but is not necessarily continuous because we do not want to assume that \(\mathbf{E} \) is continuous, i.e., that the induced map from \(\text{hom}_C(X, Y) \) to \(\text{hom}_C(\mathbf{E}(X), \mathbf{E}(Y)) \) is continuous for all \(G \)-CW-complexes \(X \) and \(Y \). This is the reason why we have to pass to the more complicated construction of \(\mathbf{E}^\circ \) and only obtain a zigzag

\[
\mathbf{E}^\circ \xrightarrow{\mathbf{B}_\mathbf{E}} \mathbf{E}^\circ \xrightarrow{\mathbf{A}_\mathbf{E}} \mathbf{E},
\]
which suffices for all our purposes. The construction of this zigzag uses the (weak) homotopy invariance of E and does not require any continuity condition for E.

Theorem 17.10 implies

Corollary 17.14. Let $E: G$-CW-COMPLEXES \to SPECTRA be a weakly excisive functor. Denote by $E|_{\text{Or}(G)}$ its restriction to a covariant functor $\text{Or}(G) \to$ SPECTRA.

Then we obtain for all $n \in \mathbb{Z}$ and G-CW-complex X an isomorphism, natural in X,

$$\pi_n(E(X)) \cong H^G_n(X; E|_{\text{Or}(G)}).$$

In particular we get for every family of subgroups \mathcal{F} and $n \in \mathbb{Z}$ a commutative diagram with isomorphisms as vertical arrows

\[
\begin{array}{ccc}
\pi_n(E(E_{\mathcal{F}}(G))) & \cong & \pi_n(E(G/G)) \\
\downarrow & & \downarrow \\
H^G_n(E_{\mathcal{F}}(G); E|_{\text{Or}(G)}) & \cong & H^G_n(G/G; E|_{\text{Or}(G)}).
\end{array}
\]

Remark 17.15 (Universal property of the homotopy theoretic assembly transformation). Next we explain why Theorem 17.10 characterizes the homotopy theoretic assembly map

$$A_E: E^\% \longrightarrow E$$

in the sense that it is the universal approximation from the left by a (weakly) excisive functor of a (weakly) homotopy invariant functor E from G-CW-COMPLEXES to SPECTRA up to (weak) homotopy equivalence. Namely, let $T: F \to E$ be a transformation of covariant functors from G-CW-COMPLEXES to SPECTRA such that F is (weakly) excisive and $T(G/H)$ is a (weak) homotopy equivalence for all $H \subseteq G$. Then for any G-CW-complex X the following diagram commutes

\[
\begin{array}{ccc}
E^\%(X) & \xrightarrow{A_E(X)} & E(X) \\
\downarrow T^\% & & \downarrow T(X) \\
F^\%(X) & \xrightarrow{A_F(X)} & F(X)
\end{array}
\]

and $A_F(X)$ and $T^\%(X)$ are (weak) homotopy equivalences. Hence one may say that $T(X)$ factorizes over $A_E(X)$ up to (weak) homotopy equivalence.

In particular we obtain for every G-CW-complex X a commutative diagram with an isomorphism as vertical arrow
17.6 Identifying assembly maps

In this section we explain and summarize that we can identify all the various assembly maps we have studied so far.

We recall that we have the following versions of assembly maps.

- The Meta-Isomorphism Conjecture \[14.2\] with respect to the \(G\)-homology theory \(H^G_*\) and the family \(\mathcal{F}\) of subgroups of \(G\), where the assembly map

\[
\mathcal{H}_n(pr): H^G_n(E_{\mathcal{F}}(G)) \to H^G_n(G/G)
\]

comes from the projection \(pr: E_{\mathcal{F}}(G) \to G/G\);

- The Meta-Isomorphism Conjecture \[14.2\], where the equivariant homology theory comes from a functor \(\text{GROUPOIDS} \to \text{SPECTRA}\) respecting equivalences, see Theorem \[11.27\] and Section \[11.5\];

- The Meta-Isomorphism Conjecture \[14.36\] for functors from spaces to spectra;

- The homotopy theoretic assembly transformation in the sense of Definition \[17.12\];

- For the \(L\)-theoretic Farrell-Jones Conjecture and \(G\) the fundamental group of an aspherical closed manifold, the assembly map given by taking surgery obstructions, see the sketch of the proof of Theorem \[8.163\] in Subsection \[8.15.3\];

- For the Baum-Connes Conjecture in terms of index theory, see Section \[13.2\].

Remark 17.16 (The homotopy theoretic assembly transformation and the Meta-Isomorphism Conjecture \[14.39\] for functors from spaces to spectra with coefficients). Consider a functor \(S: \text{SPACES} \to \text{SPECTRA}\) which respects weak equivalences and disjoint unions. Given a group \(G\) and a free \(G\)-\(CW\)-complex \(Z\), we get a functor functor

\[S^G_Z: G\text{-}\text{CW}\text{-COMPLEXES} \to \text{SPECTRA}, \quad X \mapsto S(X \times_G Z)\]

whose restriction to \(\text{Or}(G)\) is denoted in the same way and has already been introduced in \[14.38\]. The Meta-Isomorphism Conjecture \[14.39\] for functors
from spaces to spectra with coefficients predicts for a family \(\mathcal{F} \) of subgroups of \(G \) that the map

\[
H_n^G(\text{pr}; \mathbf{S}_Z) : H_n^G(E_{\mathcal{F}}(G); \mathbf{S}_Z) \to \mathcal{H}_n^G(G/G; \mathbf{S}_Z)
\]

induced by the projection \(\text{pr}: E_{\mathcal{F}}(G) \to G/G \) is bijective for all \(n \in \mathbb{Z} \). This map can be identified with the corresponding map for the homotopy theoretic assembly map

\[
\pi_n \left(\mathbf{A}_{\mathbf{S}_Z}(E_{\mathcal{F}}(G)) \right) : \pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(E_{\mathcal{F}}(G)) \right) \to \pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(G/G) \right)
\]

by the following argument. Because of Theorem 17.10 (ii) the map (17.17) can be identified with the map induced by the projection \(\text{pr}: E_{\mathcal{F}}(G) \to G/G \)

\[
\pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(\text{pr}) \right) : \pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(E_{\mathcal{F}}(G)) \right) \to \pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(G/G) \right),
\]

and hence by Theorem 17.10 (iv) with the map

\[
\pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(\text{pr}) \right) : \pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(E_{\mathcal{F}}(G)) \right) \to \pi_n \left(\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(G/G) \right).
\]

We have the following commutative diagram

\[
\begin{array}{ccc}
\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(E_{\mathcal{F}}(G)) & \xrightarrow{\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(\text{pr})} & \left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(G/G) \\
\mathbf{A}_{\mathbf{S}_Z}(E_{\mathcal{F}}(G)) & \downarrow & \mathbf{A}_{\mathbf{S}_Z}(G/G) \\
\mathbf{S}_Z^G(E_{\mathcal{F}}(G)) & \xrightarrow{\left(\mathbf{S}_Z \right)^G_{\mathcal{F}}(\text{pr})} & \mathbf{S}_Z^G(G/G).
\end{array}
\]

The right vertical arrow is a weak homotopy equivalence by Theorem 17.10 (iv).

Since \(Z \) is a free \(G \)-CW-complex and \(E_{\mathcal{F}}(G) \) is contractible (after forgetting the group action), the map \(\text{id} \times G \text{ pr}: Z \times G E_{\mathcal{F}}(G) \to Z \times G G/G \) is a homotopy equivalence and hence the lower horizontal arrow is a weak homotopy equivalence. Hence we get an identification of the maps (17.18) and (17.19). Thus we have identified the maps (17.17) and (17.18).

Example 17.20 (The Farrell-Jones Conjecture and the Baum-Connes Conjecture in the setting of the homotopy theoretic assembly transformation). In the sequel \(\Pi(X) \) denotes the fundamental groupoid of a space \(X \). If we take in Remark 17.16 the covariant functor \(\mathbf{S} : \text{SPACES} \to \text{SPECTRA} \) to be the one, which sends a space \(X \) to \(K(R\Pi(X)) \) or \(L^{-\infty}(\Pi(X)) \) respectively, see Theorem 11.40 then we conclude from Example 14.37 and Remark 17.16 that the assembly map appearing in the \(K \)-theoretic Farrell-Jones Conjecture 12.1 with coefficients in the ring \(R \)

\[
H_n^G(\text{pr}) : H_n^G(E_{\mathcal{F}}(G); K_R) \to H_n^G(G/G; K_R) = K_n(RG)
\]
or the assembly map appearing in the L-theoretic Farrell-Jones Conjecture \cite{2.4} with coefficients in the ring with involution R

$$H^G_n(\text{pr}): H^G_n(E_{VCY}(G); L^\langle -\infty \rangle_R) \rightarrow H^G_n(G/G; L^\langle -\infty \rangle_R) = L^\langle -\infty \rangle(RG)$$

respectively can be identified with the map induced on homotopy groups by the homotopy theoretic assembly map

$$\pi_n(S^G_{EG}(E_{VCY}(G)))^{\%}(\text{pr}): \pi_n((S^G_{EG}(E_{VCY}(G)))) \rightarrow \pi_n((S^G_{EG})^{\%}(E_{VCY}(G))).$$

In the Baum-Connes setting we get an identification of the assembly map

$$H^G_n(\text{pr}; K^{\text{top}}): H^G_n(E_{FIN}(G); K^{\text{top}}) \rightarrow H^G_n(G/G; K^{\text{top}}) = K_n(C^{*}_r(G))$$

with the map

$$\pi_n(S^G_{EG}(E_{FIN}(G)))^{\%}(\text{pr}): \pi_n((S^G_{EG})^{\%}(E_{FIN}(G))) \rightarrow \pi_n((S^G_{EG})^{\%}(E_{FIN}(G))),$$

if we take $S = K^{\text{top}}(II(X))$, see Theorem \cite{11.40} and analogously in the real case.

We have explained in Remark \cite{14.42} the identification of the original formulation of the fibered Farrell-Jones Conjecture for covariant functors from \textsc{Spaces} to \textsc{Spectra}, e.g., for pseudoisotopy, K-theory and L-theory, due to Farrell-Jones \cite[Section 1.7 on page 262]{332} with the setting we are using in the Meta-Isomorphism Conjecture \cite{14.39} for functors from spaces to spectra with coefficients.

We have discussed the various Baum-Connes assembly maps and their relations already in Sections \cite{13.2} and \cite{13.3}.

We have explained the relationship between the L-theoretic assembly map in terms of spectra, which we are using here, and the surgery obstruction map appearing in the geometric surgery exact sequence the sketch of the proof of Theorem \cite{8.163} in Subsection \cite{8.15.3}.

17.7 Notes

The Baum-Connes assembly maps in terms of localizations of triangulated categories are considered in \cite{461, 462, 463, 641, 642, 643}. A categorial approach in terms of codescent is presented in \cite{63}.

Chain complex versions of the L-theoretic assembly map for additive categories are intensively studied by Ranicki \cite{756} and Kühl-Macko-Mole \cite[Section 11]{538} emphasizing the aspect of comparing local Poincaré duality and global Poincaré duality.
The idea of the geometric assembly map is due to Quinn \cite{741,746} and its algebraic counterpart was introduced by Ranicki \cite{756}. See also Loday \cite{573}. The basic and uniform approach to assembly as presented in this chapter is sometimes called the Davis-Lück approach and was developed in \cite{252}.

For more information about assembly maps we refer for instance to the survey article \cite{598}.

Comment 19: Are there other places where we should say something about the name assembly, for instance in the introduction or in part III?

last edited on 08.07.2021
last compiled on March 21, 2022
name of texfile: ic
Chapter 18
Karoubi filtrations

18.1 Introduction

This chapter is devoted to the notion of a Karoubi filtration, which is given by a full additive subcategory \(\mathcal{U} \) of an additive category \(\mathcal{A} \) satisfying certain conditions, and the existence of the associated weak homotopy fibration sequences

\[
\text{K}(\mathcal{U}) \to \text{K}(\mathcal{A}) \to \text{K}(\mathcal{A}/\mathcal{U});
\]
\[
\text{L}^{(-\infty)}(\mathcal{U}) \to \text{L}^{(-\infty)}(\mathcal{A}) \to \text{L}^{(-\infty)}(\mathcal{A}/\mathcal{U}),
\]

which induce long exact sequences of \(K \)- and \(L \)-groups. This will be a basic tool in Chapter 19 where we will define \(G \)-homology theories in terms of controlled topology and need to check the axioms of a \(G \)-homology theory such as the long exact sequence of a pair or excision. All this is presented in Section 18.2 and that is all we need for this book.

For the reader’s convenience we give a mild generalization of the notion of a Karoubi fibration in Section 18.3, which may be useful in other contexts. In Section 18.2 we extend the proof of the existence of the associated weak homotopy fibration sequence \(\text{K}(\mathcal{U}) \to \text{K}(\mathcal{A}) \to \text{K}(\mathcal{A}/\mathcal{U}) \) of \(\text{K}(\mathcal{U}) \to \text{K}(\mathcal{A}) \to \text{K}(\mathcal{A}/\mathcal{U}) \) to this setting, also taking care of a bug in \(\text{K}(\mathcal{U}) \to \text{K}(\mathcal{A}) \to \text{K}(\mathcal{A}/\mathcal{U}) \).

For the proof presented here we use the definition of the non-connective \(K \)-theory spectrum of homotopical Waldhausen categories due to Bunke-Kasprowski-Winges \(\text{K}(\mathcal{U}) \to \text{K}(\mathcal{A}) \to \text{K}(\mathcal{A}/\mathcal{U}) \) of \(\text{K}(\mathcal{U}) \to \text{K}(\mathcal{A}) \to \text{K}(\mathcal{A}/\mathcal{U}) \). Then the proof becomes conceptually very clear, it is essentially a consequence of the non-connective analogues of standard theorems such as the Fibration Theorem 18.14, Cisinski’s Approximation Theorem 18.15, and the Cofinality Theorem 18.16. We also identify this notion with the one we have used so far for the non-connective \(K \)-theory of additive categories, see Theorem 18.33.

18.2 Karoubi Filtration and the Associated Weak Homotopy Fibration Sequence

If \(\mathcal{U} \) is a full additive subcategory of \(\mathcal{A} \), then one can define the quotient category \(\mathcal{A}/\mathcal{U} \) as follows. The set of objects of \(\mathcal{A}/\mathcal{U} \) agrees with the set of objects of \(\mathcal{A} \). The set of morphism \(\text{mor}_{\mathcal{A}/\mathcal{U}}(A, A') \) for objects \(A \) and \(A' \) in
\mathcal{A}/\mathcal{U} is defined to be $\text{mor}_\mathcal{A}(A, A')/\sim$ for the equivalence relation \sim, where we call two morphisms $f, f': A \to A'$ in \mathcal{A} equivalent, if their difference $f - f': A \to A'$ factorizes in \mathcal{A} as a composition $A \to U \to A'$ for some object U in \mathcal{U}. We leave the elementary proof to the reader, that \mathcal{A}/\mathcal{U} inherits from \mathcal{A} the structure of an additive category such that the obvious projection $p: \mathcal{A} \to \mathcal{A}/\mathcal{U}$ is a functor of additive categories. For a morphism $f: A \to A'$ in \mathcal{A}, we denote by $[f]: A \to A'$ the morphism in \mathcal{A}/\mathcal{U} represented by f.

Definition 18.1 (Quotients for additive categories). We call the additive category \mathcal{A}/\mathcal{U} the quotient category of \mathcal{A} by \mathcal{U}.

Definition 18.2 (\mathcal{U}-filtered). We say that \mathcal{A} is \mathcal{U}-filtered or, equivalently, that the inclusion $\mathcal{U} \to \mathcal{A}$ is a Karoubi filtration, if the following holds:

- The additive subcategory $\mathcal{U} \subseteq \mathcal{A}$ is full. Moreover, given an object A in \mathcal{A}, objects $U, V \in \mathcal{U}$, and morphisms $f: A \to U$ and $g: V \to A$ in \mathcal{A}, there are objects A^U in \mathcal{U} and A^\perp in \mathcal{A} and morphisms $i^U: A^U \to A$ and $i^\perp: A^\perp \to A$ satisfying:
 - $i^U \oplus i^\perp: A^U \oplus A^\perp \xrightarrow{\cong} A$ is an isomorphism in \mathcal{A};
 - There exists a morphism $f^U: A \to A^U$ such that the following diagram commutes

 \[
 \begin{array}{ccc}
 A & \xrightarrow{f} & U \\
 i^U \oplus i^\perp & \xrightarrow{\cong} & f^U \\
 A^U \oplus A^\perp & \xrightarrow{\text{pr}_{A^U}} & A^U
 \end{array}
 \]
 - There exists a morphism $g^U: V \to A^U$ such that the following diagram commutes

 \[
 \begin{array}{ccc}
 V & \xrightarrow{g} & A \\
 g^U & \xrightarrow{\cong} & i^U \oplus i^\perp \\
 A^U \oplus A^\perp & \xrightarrow{i_{A^U}} & A^U \oplus A^\perp
 \end{array}
 \]

- where $\text{pr}_{A^U}: A^U \oplus A^\perp \to A^U$ is the canonical projection.

Exercise 18.3. Show that the morphisms f^U and g^U appearing in Definition 18.2 are uniquely determined by the desired properties.

Remark 18.4 (Relation to the classical definition of a Karoubi filtration). If one requires in Definition 18.2 additionally that $U = V$, then it reduces to [509, Definition 5.4]. One easily checks that Definition 18.2 and [509, Definition 5.4] are equivalent, the special case $U = V$ in [509, Definition 5.4] implies the general case of Definition 18.2 by considering $U \oplus V$. Note that [509, Definition 5.4] agrees with the more complicated notion of a \mathcal{U}-filtration due to Karoubi [491], see [509, Lemma 5.6].
The main result of this chapter is:

Theorem 18.5 (The weak homotopy fibration sequence of a Karoubi filtration). Let \mathcal{A} be an additive category and $i: \mathcal{U} \to \mathcal{A}$ be the inclusion of a full additive subcategory. Let $p: \mathcal{A} \to \mathcal{A}/\mathcal{U}$ be the canonical projection. Suppose that \mathcal{A} is \mathcal{U}-filtered.

(i) The sequence of spectra

$$
\begin{array}{c}
\mathbf{K}(\mathcal{U}) \xrightarrow{\mathbf{K}(i)} \mathbf{K}(\mathcal{A}) \xrightarrow{\mathbf{K}(p)} \mathbf{K}(\mathcal{A}/\mathcal{U})
\end{array}
$$

is a weak homotopy fibration sequence of non-connective spectra, i.e., the composite $\mathbf{K}(p) \circ \mathbf{K}(i)$ admits a preferred nullhomotopy, since there is a preferred natural transformation from $p \circ i$ to the trivial functor, and the induced map

$$
\mathbf{K}(\mathcal{U}) \to \text{hofib}(\mathbf{K}(p): \mathbf{K}(\mathcal{A}) \to \mathbf{K}(\mathcal{A}/\mathcal{U}))
$$

is a weak homotopy equivalence.

In particular we get a long exact sequence, infinite to both sides,

$$
\cdots \xrightarrow{\partial_{n+1}} K_n(\mathcal{U}) \xrightarrow{K_n(i)} K_n(\mathcal{A}) \xrightarrow{K_n(p)} K_n(\mathcal{A}/\mathcal{U}) \xrightarrow{\partial_n} K_{n-1}(\mathcal{U}) \xrightarrow{K_{n-1}(i)} K_{n-1}(\mathcal{A}) \xrightarrow{K_{n-1}(p)} K_{n-1}(\mathcal{A}/\mathcal{U}) \xrightarrow{\partial_{n-1}} \cdots ;
$$

(ii) Suppose additionally that \mathcal{A} is an additive category with involution such that the involution induces the structure of an additive category with involution on \mathcal{U}.

Then \mathcal{A}/\mathcal{U} inherits the structure of an additive category with involution and the sequence of spectra

$$
\begin{array}{c}
\mathbf{L}^{(-\infty)}(\mathcal{U}) \xrightarrow{\mathbf{L}^{(-\infty)}(i)} \mathbf{L}^{(-\infty)}(\mathcal{A}) \xrightarrow{\mathbf{L}^{(-\infty)}(p)} \mathbf{L}^{(-\infty)}(\mathcal{A}/\mathcal{U})
\end{array}
$$

is a weak homotopy fibration sequence of non-connective spectra.

In particular we get a long exact sequence, infinite to both sides,

$$
\cdots \xrightarrow{\partial_{n+1}} \mathbf{L}^{(-\infty)}_n(\mathcal{U}) \xrightarrow{\mathbf{L}^{(-\infty)}_n(i)} \mathbf{L}^{(-\infty)}_n(\mathcal{A}) \xrightarrow{\mathbf{L}^{(-\infty)}_n(p)} \mathbf{L}^{(-\infty)}_n(\mathcal{A}/\mathcal{U}) \xrightarrow{\partial_n} \mathbf{L}^{(-\infty)}_{n-1}(\mathcal{U}) \xrightarrow{\mathbf{L}^{(-\infty)}_{n-1}(i)} \mathbf{L}^{(-\infty)}_{n-1}(\mathcal{A}) \xrightarrow{\mathbf{L}^{(-\infty)}_{n-1}(p)} \mathbf{L}^{(-\infty)}_{n-1}(\mathcal{A}/\mathcal{U}) \xrightarrow{\partial_{n-1}} \cdots .
$$

Proof. (i) See [186] based on the work of Karoubi [491].

(ii) See [190, Theorem 4.2].

Theorem 18.5 (ii) follows also from [814, Example 1.8 and Theorem 2.10].
Exercise 18.6. Suppose that $\mathcal{U} \to \mathcal{A}$ is a Karoubi filtration and \mathcal{A} is flasque. Then there is weak homotopy equivalence $K(\mathcal{U}) \xrightarrow{\sim} \Omega K(\mathcal{A}/\mathcal{U})$.

18.3 Stable Karoubi Filtration

Let \mathcal{A} be an additive category and $i : \mathcal{U} \to \mathcal{A}$ be the inclusion of a full additive subcategory.

Definition 18.7 (Stably \mathcal{U}-filtered). We say that \mathcal{A} is stably \mathcal{U}-filtered, or, equivalently, that the inclusion $\mathcal{U} \to \mathcal{A}$ is a stable Karoubi filtration, if the following holds:

Given an object A in \mathcal{A}, objects $U, V \in \mathcal{U}$, and morphisms $f : A \to U$ and $g : V \to A$ in \mathcal{A}, there are objects \tilde{A} in \mathcal{A} and $\tilde{A}^{\mathcal{U}}$ in \mathcal{U}, and morphisms $\tilde{i} : A \to \tilde{A}$, $\tilde{r} : A \to A$, $\tilde{i}^{\mathcal{U}} : \tilde{A}^{\mathcal{U}} \to \tilde{A}$ and $\tilde{r}^{\mathcal{U}} : \tilde{A} \to \tilde{A}^{\mathcal{U}}$ satisfying:

- $\tilde{r} \circ \tilde{i} = \text{id}_A$ and $\tilde{r}^{\mathcal{U}} \circ \tilde{i}^{\mathcal{U}} = \text{id}_{\tilde{A}^{\mathcal{U}}}$ in \mathcal{A};
- There exists a morphism $f^{\mathcal{U}} : \tilde{A}^{\mathcal{U}} \to U$ such that the following diagram commutes

\[
\begin{array}{ccc}
 A & \xrightarrow{f} & U \\
 \downarrow{\tilde{i}} & & \downarrow{f^{\mathcal{U}}} \\
 \tilde{A} & \xrightarrow{\tilde{r}} & \tilde{A}^{\mathcal{U}}
\end{array}
\]

- There exists a morphism $g^{\mathcal{U}} : V \to \tilde{A}^{\mathcal{U}}$ such that the following diagram commutes

\[
\begin{array}{ccc}
 V & \xrightarrow{g} & A \\
 \downarrow{g^{\mathcal{U}}} & & \downarrow{\tilde{i}} \\
 \tilde{A}^{\mathcal{U}} & \xrightarrow{\tilde{r}^{\mathcal{U}}} & \tilde{A}
\end{array}
\]

Here is a stronger version where retractions are replaced by direct sum decompositions.

Definition 18.8 (Strongly stably \mathcal{U}-filtered). We say that \mathcal{A} is strongly stably \mathcal{U}-filtered, or, equivalently, that the inclusion $\mathcal{U} \to \mathcal{A}$ is a strongly stable Karoubi filtration, if the following holds:

Given an object A in \mathcal{A}, objects $U, V \in \mathcal{U}$, and morphisms $f : A \to U$ and $g : V \to A$ in \mathcal{A}, there are objects $A' \in \mathcal{A}$, $(A \oplus A')^{\mathcal{U}}$ in \mathcal{U} and $(A \oplus A')^{\perp}$ in \mathcal{A} and morphisms $i^{\mathcal{U}} : (A \oplus A')^{\mathcal{U}} \to A \oplus A'$ and $i^{\perp} : (A \oplus A')^{\perp} \to A \oplus A'$ satisfying:

- $i^{\mathcal{U}} \circ i^{\perp} : (A \oplus A')^{\mathcal{U}} \oplus (A \oplus A')^{\perp} \xrightarrow{\sim} A \oplus A'$ is an isomorphism in \mathcal{A};
There exists a morphism \(f_U : A \oplus A' \to A^U \) such that the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & U \\
\downarrow{\text{pr}_A} & & \downarrow{f^U} \\
A \oplus A' & \cong & (A \oplus A')^U \\
\end{array}
\]

where \(\text{pr}_A : A \oplus A' \to A \) and \(\text{pr}_{(A \oplus A')^U} : (A \oplus A')^U \oplus (A \oplus A')^\perp \to (A \oplus A')^U \) are the canonical projections;

There exists a morphism \(g^U : V \to A^U \) such that the following diagram commutes:

\[
\begin{array}{ccc}
V & \xrightarrow{g} & A \\
\downarrow{g^U} & & \downarrow{i_A} \\
(\oplus A')^U & \cong & (A \oplus A')^U \\
\end{array}
\]

where \(i_A : A \to A \oplus A' \) and \(i_{(A \oplus A')^U} : (A \oplus A')^U \to (A \oplus A')^U \oplus (A \oplus A')^\perp \) are the canonical inclusions.

Lemma 18.9.

1. We have the implications
 \[\mathcal{U} \text{-filtered} \implies \text{strongly stably } \mathcal{U} \text{-filtered} \implies \text{stably } \mathcal{U} \text{-filtered} \]

2. If \(\mathcal{A} \) is idempotent complete, then stably \(\mathcal{U} \)-filtered implies strongly stably \(\mathcal{U} \)-filtered.

Proof.

For \(\mathcal{U} \)-filtered \(\implies \) strongly stably \(\mathcal{U} \)-filtered take \(A' = \{0\} \) in the Definition 18.8 of strongly stably \(\mathcal{U} \)-filtered. For strongly stably \(\mathcal{U} \)-filtered \(\implies \) stably \(\mathcal{U} \)-filtered take \(A \) in Definition 18.7 to be \(A \oplus A' \).

In an idempotent complete additive category every retraction comes from a direct sum decomposition.

Let \(\mathcal{A}[t, \frac{1}{t}] \) the Laurent category associated to \(\mathcal{A} \), see for instance [616, Section 1].
Lemma 18.10. Suppose that \(\mathcal{A} \) is stably \(\mathcal{U} \)-filtered.

Then \(\mathcal{A}[t, t^{-1}] \) is stably \(\mathcal{U}[t, t^{-1}] \)-filtered and there is an isomorphism of additive categories

\[
\mathcal{A}[t, t^{-1}]/\mathcal{U}[t, t^{-1}] \cong \left(\mathcal{A}/\mathcal{U} \right)[t, t^{-1}].
\]

Proof. Consider an object \(A \) in \(\mathcal{A}[t, t^{-1}] \), objects \(U, V \) in \(\mathcal{U}[t, t^{-1}] \), and morphisms \(f : A \to U \) and \(g : V \to A \) in \(\mathcal{A}[t, t^{-1}] \). By definition \(A \) is an object in \(\mathcal{A}, U \) and \(V \) are objects in \(\mathcal{U} \), and \(f = \sum_{n \in \mathbb{Z}} f_n \cdot t^n \) and \(g = \sum_{n \in \mathbb{Z}} g_n \cdot t^n \) such that \(f_n : A \to U \) and \(g_n : V \to A \) are morphisms in \(\mathcal{A} \) and there exists a natural number \(N \) such that \(f_n = 0 \) and \(g_n = 0 \) holds for \(|n| \geq N \). Note that in an additive category finite sums are finite direct products. We can consider the morphisms \(\prod_{n=-N}^N f_n : A \to \prod_{n=-N}^N U \) and \(\bigoplus_{n=-N}^N g_n : \bigoplus_{n=-N}^N V \to A \) in \(\mathcal{A} \). Since \(\mathcal{A} \) is stably \(\mathcal{U} \)-filtered, there are objects \(\bar{A} \) in \(\mathcal{A} \) and \(\bar{\mathcal{A}}^\mathcal{U} \) in \(\mathcal{U} \), and morphisms \(i : A \to \bar{A}, \bar{r} : \bar{A} \to \bar{A}^\mathcal{U}, i^\mathcal{U} : \bar{\mathcal{A}}^\mathcal{U} \to A \) and \(r^\mathcal{U} : \bar{A}^\mathcal{U} \to A \) satisfying:

- \(r \circ \bar{r} = \text{id}_A \) and \(r^\mathcal{U} \circ i^\mathcal{U} = \text{id}_{\bar{A}^\mathcal{U}} \) in \(\mathcal{A} \);
- There exists a morphism \((\prod_{n=-N}^N f_n)^\mathcal{U} : \bar{\mathcal{A}}^\mathcal{U} \to \prod_{n=-N}^N U \) such that the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{\prod_{n=-N}^N f_n} & \prod_{n=-N}^N U \\
\downarrow{\bar{\rho}} & & \downarrow{(\prod_{n=-N}^N f_n)^\mathcal{U}} \\
\bar{A} & \xrightarrow{\bar{r}^\mathcal{U}} & \bar{\mathcal{A}}^\mathcal{U}
\end{array}
\]

- There exists a morphism \((\bigoplus_{n=-N}^N g_n)^\mathcal{U} : V \to \bar{\mathcal{A}}^\mathcal{U} \) such that the following diagram commutes:

\[
\begin{array}{ccc}
\bigoplus_{n=-N}^N V & \xrightarrow{\bigoplus_{n=-N}^N g_n} & A \\
\downarrow{(\bigoplus_{n=-N}^N g_n)^\mathcal{U}} & & \downarrow{\bar{r}} \\
\bar{\mathcal{A}}^\mathcal{U} & \xrightarrow{i^\mathcal{U}} & A
\end{array}
\]

Define \(f_n^\mathcal{U} : A \to U \) to be zero, if \(|n| > N \), and to be the composite of \((\prod_{n=-N}^N f_n)^\mathcal{U} \) with the projection \(\prod_{n=-N}^N U \to U \) onto the factor for \(n \), if \(|n| \leq N \). Define \(g_n^\mathcal{U} : V \to A \) to be zero, if \(|n| > N \), and to be the composite of \((\bigoplus_{n=-N}^N g_n)^\mathcal{U} \) with the injection \(U \to \prod_{n=-N}^N U \) of the factor for \(n \), if \(|n| \leq N \). Now define morphisms \(f^\mathcal{U} : A \to U \) in \(\mathcal{A}[t, t^{-1}] \) by \(f^\mathcal{U} = \sum_{n \in \mathbb{Z}} f_n^\mathcal{U} \cdot t^n \) and a morphism \(g^\mathcal{U} : V \to A \) by \(\sum_{n \in \mathbb{Z}} g_n^\mathcal{U} \cdot t^n \). Note that the morphism \(\bar{r}, \bar{i}, i^\mathcal{U} \) and \(r^\mathcal{U} \) in \(\mathcal{A} \) define morphisms in \(\mathcal{A}[t, t^{-1}] \) by \(\bar{r} \cdot t^0, \bar{i} \cdot t^0, i^\mathcal{U} \cdot t^0 \) and \(r^\mathcal{U} \cdot t^0 \). Obviously we have \(\bar{r} \cdot t^0 \circ \bar{i} \cdot t^0 = \text{id}_A \) and \(r^\mathcal{U} \cdot t^0 \circ i^\mathcal{U} \cdot t^0 = \text{id}_{\bar{\mathcal{A}}^\mathcal{U}} \). The following
diagrams in $A[t, t^{-1}]$ commute

\[
\begin{array}{c}
\xymatrix{ A & U \\
\tilde{f} & r \ar[u] \\
\tilde{A} & \tilde{A}^t \ar[u] \\
\end{array}
\]

and

\[
\begin{array}{c}
\xymatrix{ V & A \\
\tilde{g} & r \ar[u] \\
\tilde{A}^t & \tilde{A} \ar[u] \\
\end{array}
\]

Hence $A[t, t^{-1}]$ is stably $\mathcal{U}[t, t^{-1}]$-filtered.

The canonical projection $A[t, t^{-1}] \to A[t, t^{-1}] / \mathcal{U}[t, t^{-1}]$ induces a functor of additive categories

\[F: A[t, t^{-1}] / \mathcal{U}[t, t^{-1}] \to (A/\mathcal{U})[t, t^{-1}] \]

by the following argument. Consider a morphism $f = \sum_{n \in \mathbb{Z}} f_n \cdot t^n$ whose image under the projection $A[t, t^{-1}] \to A[t, t^{-1}] / \mathcal{U}[t, t^{-1}]$ is zero, i.e., it can be written as a composite composite $A \xrightarrow{u} U \xrightarrow{v} B$ in $A[t, t^{-1}]$ for $U \in \mathcal{U}[t, t^{-1}]$. Recall that U is by definition an object in \mathcal{U}. If we write $u = \sum_{k \in \mathbb{Z}} u_k \cdot t^k$ and $v = \sum_{l \in \mathbb{Z}} v_l \cdot t^l$, then we get $f_n = \sum_{k \in \mathbb{Z}} v_{n-k} \circ u_k$ in A for each $n \in \mathbb{Z}$. This implies $[f_n] = 0$ in A/\mathcal{U} for every $n \in \mathbb{Z}$. Hence f is sent under the projection $A[t, t^{-1}] \to (A/\mathcal{U})[t, t^{-1}]$ to zero. This shows that F is well-defined.

The canonical projection $A[t, t^{-1}] \to (A/\mathcal{U})[t, t^{-1}]$ induces a functor of additive categories

\[G: (A/\mathcal{U})[t, t^{-1}] \to A[t, t^{-1}] / \mathcal{U}[t, t^{-1}] \]

by the following argument. Consider a morphism $f = \sum_{n \in \mathbb{Z}} f_n \cdot t^n: A \to B$ whose image under the projection $A[t, t^{-1}] \to (A/\mathcal{U})[t, t^{-1}]$ is zero, i.e., for each $n \in \mathbb{Z}$ we can write $f_n: A \to B$ as a composite $A \xrightarrow{w_n} U_n \xrightarrow{w_n} B$ for an object U_n in \mathcal{U}. We have to show that the image of f under the projection $A[t, t^{-1}] \to A[t, t^{-1}] / \mathcal{U}[t, t^{-1}]$ is zero. Obviously it suffices to show for each $m \in \mathbb{Z}$ that $f_m \cdot t^m$ has this property. But this follows from the equation $f_m \cdot t^m = v_m \cdot t^m \circ u_m \cdot t^0$ in $A[t, t^{-1}]$ and the fact that U_m belongs to $\mathcal{U}[t, t^{-1}]$. Hence G is well-defined. One easily checks that F and G are inverse to one another. \qed
18.4 Non-connective K-theory for homotopical Waldhausen categories

Recall that we have defined the negative K-theory of an additive category using the delooping construction based on the Bass-Heller-Swan decomposition of $[616]$.

In this section we present another definition based on the non-connective K-theory spectrum associated to appropriate Waldhausen categories due to Bunke-Kasprowski-Winges $[163]$. These different approaches have advantages and disadvantages and we want to compare them so that finally we can use the advantages of both in the setting of additive categories. We begin with explaining one appearing in $[163]$.

In the sequel we use the definitions and notation of Waldhausen $[891]$. Given a Waldhausen category W, Waldhausen $[891]$ has defined its connective K-theory spectrum K^W, con$\langle W \rangle$ and proved some basic tools such as the Approximation Theorem and the Fibration Theorem. Next we explain how one can define for a homotopical Waldhausen category W a non-connective K-theory spectrum $K^W(W)$.

The next definition is taken from $[163$, Definition 2.1$]$.

Definition 18.11.

(i) The Waldhausen category W admits factorizations, if every morphism in W can be factorized into a cofibration followed by a weak equivalence; no functoriality of this factorization is assumed;

(ii) The Waldhausen category W is homotopical, if it admits factorizations and the weak equivalences satisfy the two-out-of-six property, i.e., if for composable morphisms $C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} C_2 \xrightarrow{f_3} C_3$ in W both $f_2 \circ f_1$ and $f_3 \circ f_2$ are weak equivalences, then also then also f_1, f_2, f_3 and $f_3 \circ f_2 \circ f_1$ are weak equivalences.

Let Wald^{ho} be the category of homotopical Waldhausen categories. In the sequel we denote by

$$K^W: \text{Wald}^{\text{ho}} \to \text{SPECTRA}$$

the non-connective K-theory functor constructed in $[163$, Definition 2.37$]$.

Remark 18.13. Let \mathcal{A} be an additive category. Then \mathcal{A} becomes a Waldhausen category, if we define the weak equivalences to be the isomorphisms and the cofibration to be the morphisms $f: A \to B$, for which there exists an object A^\perp and an isomorphism $u: A \oplus A^\perp \xrightarrow{\cong}_u B$ such that the composite of u with the canonical inclusion $A \to A \oplus A^\perp$ is f. Note this Waldhausen category is not homotopical, as it does not satisfy factorization. So we cannot apply $[18.12]$ to the Waldhausen category \mathcal{A}.

Let $\text{Ch}(\mathcal{A})$ be the Waldhausen category of bounded chain complexes over \mathcal{A}, where a cofibration $f_*: C_* \to D_*$ is a chain map such that $f_n: C_n \to D_n$ is a cofibration in \mathcal{A} and the weak equivalences are the chain homotopy equivalences. Then $\text{Ch}(\mathcal{A})$ is homotopical thanks to the mapping cylinder construction. Hence we can apply (18.12) to the Waldhausen category $\text{Ch}(\mathcal{A})$ and can consider its non-connective K-theory spectrum $K^W(\text{Ch}(\mathcal{A}))$.

More generally, if \mathcal{A} is an exact category, then the Waldhausen category $\text{Ch}(\mathcal{A})$ can be defined analogously and is homotopical.

Suppose that \mathcal{W} is a category with cofibrations and that \mathcal{W} is equipped with two categories of weak equivalences, one finer than the other, $v\mathcal{W} \subseteq w\mathcal{W}$. Thus \mathcal{W} becomes a Waldhausen category in two ways. Suppose that in both cases \mathcal{W} is a homotopical Waldhausen category. Let \mathcal{W}^w denote the full subcategory of \mathcal{W} given by the objects C in \mathcal{W} having the property that the map $C \to \{ \bullet \}$ belongs to $w\mathcal{W}$. Then \mathcal{W}^w inherits two Waldhausen structures if we put $v\mathcal{W}^w = \mathcal{W}^w \cap v\mathcal{W}$ and $w\mathcal{W}^w = \mathcal{W}^w \cap w\mathcal{W}$. Both yield homotopical Waldhausen categories.

Theorem 18.14 (Fibration Theorem). Under the assumptions above we get a weak homotopy fibration of spectra

$$K^W(\mathcal{W}^w, v\mathcal{W}^w) \to K^W(\mathcal{W}, v\mathcal{W}) \to K^W(\mathcal{W}, w\mathcal{W}).$$

Proof. This follows from [163, Theorem 2.35].

Theorem 18.15 (Cisinski’s Approximation Theorem). Let $F: \mathcal{W}_0 \to \mathcal{W}_1$ be an exact functor of homotopical Waldhausen categories. Assume:

(i) An arrow in \mathcal{W}_0 is a weak equivalence in \mathcal{W}_0, if and only if its image in \mathcal{W}_1 is a weak equivalence in \mathcal{W}_1;

(ii) Given any object C_0 in \mathcal{W}_0 and any map $f: F(C_0) \to C_1$ in \mathcal{W}_1, there exists a commutative diagram in \mathcal{W}_1

$$\begin{array}{ccc}
F(C_0) & \xrightarrow{f} & C_1 \\
\downarrow F(u) & & \downarrow v \\
F(D_0) & \xrightarrow{\sim w} & D_1
\end{array}$$

for a morphism $u: C_0 \to D_0$ in \mathcal{W}_0 and weak equivalences $v: C_1 \to D_1$ and $w: F(D_0) \to D_1$ in \mathcal{W}_1.

Then the map of spectra $K^W(F): K^W(\mathcal{W}_0) \xrightarrow{\sim} K^W(\mathcal{W}_1)$ is a weak homotopy equivalence.

Proof. This follows from [163, Theorem 2.16].
Theorem 18.16 (Cofinality Theorem). Let $I : W_0 \to W_1$ be the inclusion of a full homotopical Waldhausen subcategory W_0 into a homotopical Waldhausen category W_1. Assume:

(i) The functor F admits a mapping cylinder argument, i.e., for every morphism $f : C_0 \to C_1$ in W_1 such that C_0 belongs to W_0 and C_1 is the target of a weak equivalence with some object in W_0 as source, there is a factorization in W_1

$$C_0 \xrightarrow{f'} C' \xrightarrow{f''} C_1$$

such that C' belongs to W_0 and f'' is a weak equivalence;

(ii) The category W_1 is dominated by W_0, i.e., for any object C_1 in W_1 there exists an object C_0 in W_0 and an object C'_1 in W_1 and morphisms $r : C_0 \to C_1$ and $i : C'_1 \to C_0$ such that $r \circ i$ is a weak equivalence.

Then $K^W(I) : K^W(W_0) \to K^W(W_1)$ is a weak homotopy equivalence.

Proof. This follows from \cite{163} Theorem 2.30 and the fact that on the level of stable ∞-categories non-connective K-theory is inverting the passage to the idempotent completion.\Box

18.5 Non-connective K-theory and Karoubi Filtrations for Waldhausen categories

Theorem 18.17 (The weak homotopy fibration sequence of a stable Karoubi filtration for K-theory in the setting of Waldhausen categories). Let A be an additive category and $i : U \to A$ be the inclusion of a full additive subcategory. If the additive category A is stably U-filtered, then

$$K^W(\text{Ch}(U)) \to K^W(\text{Ch}(A)) \to K^W(\text{Ch}(A/U))$$

is a weak homotopy fibration of non-connective spectra, where K^W has been defined in \eqref{18.12}.

The rest of this devoted to the proof of Theorem \eqref{18.17} which needs some preparation. We will follow the ideas of the proof of \eqref{18.10} and correct a bug in it. We begin with proving some lemmas, which will be needed as input.

We can consider an additive category A as (not necessarily homotopical) Waldhausen category as explained in Remark \ref{18.13} Let $\text{Ch}(A)$ be the homotopical Waldhausen category of bounded chain complexes over A, i.e., chain complexes C_n in A such that there exists a natural number N (depending on C_n) satisfying $C_n = 0$ for $|n| > N$. A cofibration $i_n : C_n \to D_n$ is a chain map such that $i_n : C_n \to D_n$ is a cofibration in A for each $n \in \mathbb{Z}$. Weak equivalences are just the chain homotopy equivalences of bounded A-chain complexes.
We will consider on \(\text{Ch}(A) \) also the structure of a Waldhausen category, where the cofibrations are the same as before, namely chain maps which are levelwise inclusions of direct summand up to isomorphism, and weak equivalences are those chain maps \(f_*: C_* \to D_* \) which become weak homotopy equivalences in \(\text{Ch}(A/\mathcal{U}) \). We will denote the corresponding Waldhausen category by \(\text{Ch}(A, w(A/\mathcal{U})) \).

Lemma 18.18. Suppose that \(A \) is strongly stably \(\mathcal{U} \)-filtered. Then the functor

\[
F: \text{Ch}(A, w(A/\mathcal{U})) \to \text{Ch}(A/\mathcal{U})
\]

induced by the projection of additive categories \(A \to A/\mathcal{U} \) is a functor of Waldhausen categories and induces a weak homotopy equivalence

\[
K^W(F): K^W(\text{Ch}(A, w(A/\mathcal{U}))) \to K^W(\text{Ch}(A/\mathcal{U})).
\]

Proof. Obviously \(\text{Ch}(A, w(A/\mathcal{U})) \to \text{Ch}(A/\mathcal{U}) \) is a functor of homotopical Waldhausen categories. We want to apply Cisinski’s Approximation Theorem [18.15]. A morphism in \(\text{Ch}(A, w(A/\mathcal{U})) \) is a weak equivalence, if and only if its image under \(F \) is a weak equivalence in \(\text{Ch}(A/\mathcal{U}) \). Hence it remains to show that for any object \(C_* \) in \(\text{Ch}(A, w(A/\mathcal{U})) \), any object \(D_* \in \text{Ch}(A/\mathcal{U}) \) and any morphism \(f_*: C_* \to D_* \) in \(\text{Ch}(A/\mathcal{U}) \) we can construct an object \(C'_* \) in \(\text{Ch}(A, w(A/\mathcal{U})) \), a morphism \(f'_*: C_* \to C'_* \) in \(\text{Ch}(A, w(A/\mathcal{U})) \) and a morphism \(g_*: F(C'_*) \to D_* \) in \(\text{Ch}(A/\mathcal{U}) \) such that \(g_* \) is a chain homotopy equivalence in \(\text{Ch}(A/\mathcal{U}) \) and the following diagram in \(\text{Ch}(A/\mathcal{U}) \) commutes

\[
\begin{array}{ccc}
F(C_*) & \xrightarrow{f_*} & D_* \\
F(f'_*) \downarrow & & \downarrow g_* \\
F(C'_*) & \xrightarrow{g_*} & D_*
\end{array}
\]

(18.19)

For this purpose we will carry out the following construction. Note that the construction here is more involved than the one in the proof of [186, Proposition 7.2], since we are only assuming stably \(\mathcal{U} \)-filtered instead of \(\mathcal{U} \)-filtered. Moreover we have to fix the bug in the proof of [186, Proposition 7.2] that it is not clear that the chain map denoted there by \(\phi x \) lives already over \(A \), which is needed to ensure that \(T(\phi x) \) lives over \(A \). (Note that in [186] the role of \(A \) and \(\mathcal{U} \) are interchanged.)

Consider a sequence of morphisms in \(A \) of the shape

\[
\cdots \to C_n \oplus E_n \xrightarrow{c_n \ x_n \ 0 \ e_n} C_{n-1} \oplus E_{n-1} \to \cdots
\]
such that there exists a natural number N with $C_n = E_n = 0$ for $|n| > N$, we have $c_{n+1} \circ c_n = 0$ in \mathcal{A} and $(c_n x_n) \circ (c_{n+1} x_{n+1}) = 0$ in \mathcal{A}/\mathcal{U} for all $n \in \mathbb{Z}$. In other words (C_*, c_n) is a bounded chain complex over \mathcal{A} and the sequence above considered in \mathcal{A}/\mathcal{U} is a bounded chain complex over \mathcal{A}/\mathcal{U}. It is not necessarily a bounded chain complex over \mathcal{A} since the composite $(c_n x_n) \circ (c_{n+1} x_{n+1})$ may not be zero in \mathcal{A}. The purpose of the following construction is to replace it by a chain complex over \mathcal{A} which is \mathcal{A}/\mathcal{U}-chain homotopy equivalent to the given one in \mathcal{A}/\mathcal{U}, where C_n and c_n are not changed at all. More precisely, we want to construct a diagram in \mathcal{A}

\[\cdots \to C_n \oplus E_n \xrightarrow{i_{C_n} \oplus f_n} C_{n-1} \oplus E_{n-1} \to C_n \oplus E_n \xrightarrow{i_{C_n} \oplus f_n} C_{n-1} \oplus E_{n-1} \to \cdots \]

such that the upper row is a chain complex over \mathcal{A}, the diagram commutes over \mathcal{A}/\mathcal{U} and the chain map over \mathcal{A}/\mathcal{U} induces by the vertical arrows from the upper row to the lower row is a chain homotopy equivalence over \mathcal{A}/\mathcal{U} and $E_n = 0$ for $|n| > N$. We do this inductively over n, where we arrange all the desired statements hold except that we only know $(c_{n-1} x_{n-1}) \circ (c_m x_m) = 0$ in \mathcal{A} for $m \leq n$. The induction beginning $n = 1 - N$ is trivial. The induction step from n to $n + 1$ is done as follows. By the induction hypothesis we can assume that $(c_{m+1} x_{m+1}) \circ (c_m x_m) = 0$ in \mathcal{A} for $m \leq n$. Recall that $c_n \circ c_{n+1} = 0$ holds in \mathcal{A} by assumption. The composite

\[E_{n+1} \xrightarrow{(x_{n+1})} C_n \oplus E_n \xrightarrow{(c_n x_n)} C_{n-1} \oplus E_{n-1} \]

is by assumption trivial, when considered in \mathcal{A}/\mathcal{U}. Hence we can find an object U in \mathcal{U} and morphisms $u: E_{n+1} \to U$ and $v: U \to C_{n-1} \oplus E_{n-1}$ such that the composite above is equal to the composite $v \circ u: E_{n+1} \to C_{n-1} \oplus E_{n-1}$ in \mathcal{A}. Since by assumption \mathcal{A} is stably \mathcal{U}-filtered, we can find an objects E_n', and $(E_{n+1} \oplus E_n')_+ \in \mathcal{A}$, an object $(E_{n+1} \oplus E_n')_+ \in \mathcal{U}$ and morphisms $i_U: (E_{n+1} \oplus E_n')_+ \to E_{n+1} \oplus E_n'$, $i_+: (E_{n+1} \oplus E_n')_+ \to E_{n+1} \oplus E_{n-1}$ and $u_i: (E_{n+1} \oplus E_n')_+ \to U$ such that $i_U \oplus i_+ : (E_n \oplus E_n')_+ \to (E_{n+1} \oplus E_n')_+$.
$E_n \oplus E_n'$ is an isomorphism in \mathcal{A} and the following diagram commutes in \mathcal{A} (18.20)

\[
\begin{array}{cccc}
E_{n+1} \oplus E_{n+1}' & \xrightarrow{pr_{E_{n+1}'}} & E_{n+1} & \xrightarrow{u} U \\
\downarrow{\mu \otimes i^1} & & \downarrow{\mu} & \\
(E_{n+1} \oplus E_{n+1}') \mu & \oplus (E_{n+1} \oplus E_{n+1}') \mu & \xrightarrow{pr_{(E_{n+1} \oplus E_{n+1}') \mu}} & (E_{n+1} \oplus E_{n+1}') \mu
\end{array}
\]

Now we modify the given row

\[
\ldots \begin{pmatrix} c_{n+1} + x_{n+1} \\ 0 \\ e_{n+1} \end{pmatrix} \xrightarrow{C_n \oplus E_n} \begin{pmatrix} c_n + x_n \\ 0 \\ e_n \end{pmatrix} \xrightarrow{C_{n-1} \oplus E_{n-1}} \begin{pmatrix} c_{n-1} + x_{n-1} \\ 0 \\ e_{n-1} \end{pmatrix} \xrightarrow{\ldots}
\]

by first adding the elementary chain complex which is concentrated in dimension $n + 1$ and n and has as $n + 1$-th differential id: $E_{n+1} \to E_{n+1}'$ and then the $n + 1$-th chain module $C_{n+1} \oplus E_{n+1} \oplus E_{n+1}'$ is cut down to the direct summand $C_{n+1} \oplus (E_{n+1} \oplus E_{n+1}')$. We record the result of this operation in dimensions $(n+2), (n+1), n$ and $(n-1)$, since nothing changes in the other dimensions. Namely, we get the following diagram in \mathcal{A}

\[
\begin{array}{cccc}
c_{n+2} \oplus E_{n+2} & \xrightarrow{A_{n+2}} & c_{n+1} \oplus (E_{n+1} \oplus E_{n+1}') & \xrightarrow{A_{n+1}} & c_n \oplus E_n \\
\downarrow{id} & & \downarrow{id \circ pr_{E_{n+1}} \circ i^1} & \downarrow{id \circ pr_{E_{n+1}} \circ i^1} & \downarrow{id} \\
c_{n+2} \oplus E_{n+2} \begin{pmatrix} c_{n+2} \\ 0 \\ e_{n+2} \end{pmatrix} & \xrightarrow{C_{n+1} \oplus E_{n+1} \begin{pmatrix} c_{n+1} \\ 0 \\ e_{n+1} \end{pmatrix}} & \xrightarrow{C_n \oplus E_n \begin{pmatrix} c_n \\ 0 \\ e_n \end{pmatrix}} & \end{array}
\]

for the matrices

\[
A_{n+2} = \begin{pmatrix} c_{n+2} \\ 0 \\ pr_{(E_{n+1} \oplus E_{n+1}')} \mu \circ (\mu \otimes i^1)^{-1} \circ i_{E_{n+1} \oplus E_{n+2}} \end{pmatrix};
\]

\[
A_{n+1} = \begin{pmatrix} c_{n+1} + x_{n+1} \circ pr_{E_{n+1}} \circ i^1 \\ 0 \\ e_{n+1} \circ pr_{E_{n+1}} \circ i^1 \end{pmatrix};
\]

\[
A_n = \begin{pmatrix} c_n + x_n \\ 0 \\ e_n \end{pmatrix}.
\]

The diagram commutes and has isomorphisms as vertical maps when considered in \mathcal{A}/U. We have to check that $A_n \circ A_{n+1} = 0$ holds in \mathcal{A}. Now $A_n \circ A_{n+1}$ is given by the matrix

\[
\begin{pmatrix}
c_n \circ c_{n+1} + c_n \circ x_{n+1} \circ pr_{E_{n+1}} \circ i^1 + x_n \circ e_{n+1} \circ pr_{E_{n+1}} \circ i^1 \\
0 \\
0 \\
\end{pmatrix}
\]

We have by assumption $c_n \circ c_{n+1} = 0$. Hence it remains to show that
Lemma 18.21. Suppose that the diagram (18.19) and hence the proof of Lemma 18.18. if an inclusion C to this sequence. The result is a chain complex

$$\cdots \to (E_{n+1} \oplus E'_{n+1}) \xrightarrow{i} E_{n+1} \oplus E'_{n+1} \xrightarrow{pr_{E_{n+1}}} E_{n+1} \xrightarrow{\epsilon_{n+1}} C_n \oplus E_n \xrightarrow{\epsilon_n} C_{n-1} \oplus E_{n-1} \xrightarrow{\epsilon_{n-1}} \cdots$$

is the zero homomorphism in A. This is the composite

$$(E_{n+1} \oplus E'_{n+1}) \xrightarrow{i} E_{n+1} \oplus E'_{n+1} \xrightarrow{pr_{E_{n+1}}} E_{n+1} \xrightarrow{\epsilon_{n+1}} C_n \oplus E_n \xrightarrow{\epsilon_n} C_{n-1} \oplus E_{n-1}$$

and therefore agrees with the composite

$$(E_{n+1} \oplus E'_{n+1}) \xrightarrow{i} E_{n+1} \oplus E'_{n+1} \xrightarrow{pr_{E_{n+1}}} E_{n+1} \xrightarrow{\epsilon_{n+1}} U \xrightarrow{\epsilon_n} C_{n-1} \oplus E_{n-1}.$$

Hence it suffices to show that the composite

$$(E_{n+1} \oplus E'_{n+1}) \xrightarrow{i} E_{n+1} \oplus E'_{n+1} \xrightarrow{pr_{E_{n+1}}} E_{n+1} \xrightarrow{\epsilon_{n+1}} U$$

is trivial in A. This follows from the diagram (18.20). This finishes the in-duction step in the construction above. The construction above is finished, if we have reached $n = N$.

Now we can construct the desired diagram (18.19). Consider the mapping cylinder $\text{cyl}(f_s)$ of the chain map $f_s : F(C_s) \to D_s$ in \mathcal{A}/U. Let $p_* : \text{cyl}(f_s) \to D_*$ be the projection and $i_* : F(C_*) \to \text{cyl}(f_s)$ be the inclusion. Then p_* is a chain homotopy equivalence over \mathcal{A}/U and $p_* \circ i_*$ agrees with f_*. If we put $E_n = C_{n-1} \oplus D_n$, then we can find a sequence in \mathcal{A} of the shape

$$\cdots \to (c_{n+1} x_{n+1}) \xrightarrow{0} C_{n+1} \oplus E_{n+1} \xrightarrow{0} C_n \oplus E_n \xrightarrow{c_n x_n} C_{n-1} \oplus E_{n-1} \xrightarrow{c_{n-1} x_{n-1}} \cdots$$

such that its image in \mathcal{A}/U is $\text{cyl}(f_s)$. Now apply the construction above to this sequence. The result is a chain complex C'_s over \mathcal{A} together with an inclusion $f'_s : C_s \to C'_s$ of chain complexes over \mathcal{A} together with a chain homotopy equivalence $g'_s : F(C'_s) \to \text{cyl}(f_s)$ over \mathcal{A}/U such that $g'_s \circ F(f'_s) = i_*$ holds over \mathcal{A}/U. Now put $g_* = p_* \circ g'_s$. This finishes the construction of the diagram (18.19) and hence the proof of Lemma 18.18.

The following result is the extension of the corresponding result in [190] Proposition 7.4 from U-filtered to stably U-filtered.

Lemma 18.21. Suppose that \mathcal{A} is strongly stably U-filtered. Then a bounded \mathcal{A}-chain complex C_* is finitely dominated by a bounded U-chain complex in \mathcal{A}, if and only if C_* is contractible over \mathcal{A}/U.

Proof. If \(C_* \) is dominated in \(\mathcal{A} \) by a \(\mathcal{U} \)-chain complex, then it is finitely dominated by 0, and hence chain homotopy equivalent to 0, when considered over \(\mathcal{A}/\mathcal{U} \). It remains to show for a bounded \(\mathcal{A} \)-chain complex \(C_* \), which is contractible over \(\mathcal{A}/\mathcal{U} \), that it is finitely dominated by a bounded \(\mathcal{U} \)-chain complex.

Fix a natural number \(N \) such that \(C_n=0 \) for \(|n|>N \). Fix morphisms \(\gamma_n:C_n\to C_{n+1} \) in \(\mathcal{A} \) for \(n\in\mathbb{Z} \) such that \(\text{id}_{c_n}+\text{id}_{c_{n+1}}\circ\gamma_n+\gamma_{n-1}\circ\gamma_n \) becomes trivial in \(\mathcal{A}/\mathcal{U} \) for all \(n\in\mathbb{Z} \). Suppose we have the following diagram in \(\mathcal{A} \) for some \(k\in\mathbb{Z} \) with \(0\leq k \):

\[
\begin{array}{ccccccccc}
C^M_N & \xrightarrow{d^M_N} & \cdots & \xrightarrow{d^M_{N-k+2}} & C^M_{n-k+1} & \xrightarrow{\epsilon_{n-k+1}\circ\gamma_{n-k}+\gamma_{n-k-1}\circ\gamma_{n-k-1}} & C^M_{n-k} & \xrightarrow{\epsilon_{n-k}} & \cdots \\
| \quad j_N & & & & \downarrow j_{n-k+1} & \downarrow \text{id} \quad & & \downarrow \text{id} & \quad & \\
C_N & \quad \xrightarrow{\epsilon_N} & \cdots & \xrightarrow{\epsilon_{n-k+2}} & C_{n-k+1} & \xrightarrow{\epsilon_{n-k+1}} & C_{n-k} & \quad \xrightarrow{\epsilon_{n-k}} & \cdots \\
\end{array}
\]

where the lower row is the given bounded \(\mathcal{A} \)-chain complex \(C_* \). Moreover, for every integer \(i \) with \(0\leq i\leq k-1 \) the object \(C^M_{N-i} \) belongs to \(\mathcal{U} \), \(j_i:C^M_{N-i}\to C_{N-i} \) is the inclusion of a direct summand up to isomorphism, and there exist morphisms \(\delta_{N-i}:C_{N-i}\to C^M_{N-i} \) such that the following diagram in \(\mathcal{A} \) commutes

\[
\begin{array}{ccc}
C_{N-i} & \xrightarrow{\delta_{N-i}} & C^M_{N-i} \\
\text{id}_{C_{N-i}}+\epsilon_{N-i+1}\circ\gamma_{N-i}+\gamma_{N-i-1}\circ\gamma_{N-i} & & j_{N-i} \\
C_{N-i} & \xrightarrow{\epsilon_{N-i}+\gamma_{N-k}\circ\gamma_{N-k-1}\circ\gamma_{N-k}} & C_{N-i} \\
\end{array}
\]

Now we perform the following construction to improve the situation above in the sense that we can replace \(k-1 \) by \(k \), where we will have to add to \(C_* \) an elementary chain complex concentrated in dimensions \((N-k) \) and \((N-k-1) \). By assumption there is an object \(U \) in \(\mathcal{U} \) and morphisms \(u:C_{N-k}\to U \) and \(v:U\to C_{N-k} \) such that the following diagram commutes

\[
\begin{array}{ccc}
C_{N-k} & \xrightarrow{\text{id}_{C_{N-k}}+\epsilon_{N-k+1}\circ\gamma_{N-k}+\gamma_{N-k-1}\circ\gamma_{N-k}} & C_{N-k} \\
\qquad u & & v \\
\end{array}
\]

Since \(\mathcal{A} \) is strongly stably \(\mathcal{U} \)-filtered, we can find an objects \(A \) and \((C_{N-k}\oplus A) \) in \(\mathcal{A} \), an object \((C_{N-k}\oplus A) \) in \(\mathcal{U} \), and morphisms \(i^\perp:(C_{N-k}\oplus A)^\perp \to C_{N-k}\oplus A \), \(\delta^\perp:(C_{N-k}\oplus A)^\perp \to C_{N-k}\oplus A \), \(\text{id}_{C_{N-k}\oplus A} \) and \(\delta':U\to (C^M_{N-k}\oplus A)^\perp \) such that the following diagram commutes

\[
\begin{array}{ccc}
C_{N-k} & \xrightarrow{\text{id}_{C_{N-k}+\epsilon_{N-k+1}\circ\gamma_{N-k}+\gamma_{N-k-1}\circ\gamma_{N-k}}+\gamma_{N-k-1}\circ\gamma_{N-k-1}} & C_{N-k} \\
\qquad u & & v \\
\end{array}
\]
Moreover, the following diagram commutes for γ as considered in \mathcal{A}.

\[
\begin{array}{ccc}
C_{N-k+1}^d & \xrightarrow{\epsilon'_{N-k+1}} & C_{N-k}^d \\
\downarrow & & \downarrow \\
(C_{N-k} \oplus A)^d & \xrightarrow{\gamma_{N-k} \oplus \text{id}} & (C_{N-k} \oplus A)^d
\end{array}
\]

Define C_{N-k}^d to be $(C_{N-k} \oplus A)^d$. Then ϵ'_{N-k+1} becomes a homomorphism $C_{N-k+1}^d \to C_{N-k}^d$. Let $j_{N-k}: C_{N-k}^d \to C_{N-k} \oplus A$ be ϵ'_{N-k+1}. Then we obtain the following commutative diagram in \mathcal{A}

\[
\begin{array}{ccc}
C_{N-k+1}^d & \xrightarrow{\epsilon'_{N-k+1}} & C_{N-k}^d \\
\downarrow & & \downarrow \\
C_{N-k} & \xrightarrow{j_{N-k}} & C_{N-k} \oplus A \\
\downarrow & & \downarrow \\
C_{N-k} & \xrightarrow{id} & C_{N-k} \oplus A \\
\downarrow & & \downarrow \\
C_{N-k-1} & \xrightarrow{id} & C_{N-k} \oplus A
\end{array}
\]

which is a modification of the diagram (18.22) and agrees with it in dimensions $\geq N-k+2$ and $\leq N-k-2$.

Let C'_i be the chain complex given by the lower row. It is the direct sum of \mathcal{C}_* and the elementary chain complex concentrated in dimensions $(N-k)$ and $(N-k-1)$ whose $(N-k)$th differential is $\text{id}: A \to A$. Define $\delta'_{N-i}: C'_{N-i} \oplus A \to C'_{N-i}$ to be $\delta_i: C_{N-i} \to C'_{N-i}$ for $i \leq k-1$ and to be the composite

\[\delta_{N-k}: C_{N-k} \oplus A \xrightarrow{\text{pr}_{C_{N-k}}} C_{N-k} \xrightarrow{U} C'_{N-k} \xrightarrow{\delta'_{N-k}} C'_{N-k} := (C_{N-k} \oplus A)^d\]

for $i = k$.

Note that this elementary chain complex has a chain null homotopy which is given by $\text{id}: A \to A$. We extend the morphisms $\gamma_{i}: C_{i} \to C_{i+1}$ to morphisms $\gamma'_{i}: C'_{i} \to C'_{i+1}$ by putting $\gamma'_{N-k} = \gamma_{N-k} \circ \text{pr}_{C_{N-k}}$, $\gamma'_{N-k-1} = \gamma_{N-k} \oplus \text{id}_A$, $\gamma'_{N-k-2} = \iota_{C_{N-k-1}} \circ \gamma_{N-k-2}$ and $\gamma'_{i} = \gamma_{i}$ for $i \notin \{N-k-2, N-k-1, N-k\}$. Note that then γ_{*} is a chain contraction of C'_{*} when considered in \mathcal{A}/\mathcal{U}, and \mathcal{C}_* and C'_{*} are chain homotopy equivalent over \mathcal{A}. Moreover, the following diagram commutes for $i \leq k$

\[
\begin{array}{ccc}
C_{N-i} & \xrightarrow{\iota_{N-i}} & C'_{N-i} \\
\downarrow & & \downarrow \\
C_{N-i} & \xrightarrow{\text{id}_{C_{N-i}} + \epsilon'_{N-i+1} \circ \gamma_{N-i-1} + \gamma'_{N-i-1} \circ \iota_{N-i}} & C'_{N-i}
\end{array}
\]

Hence we have improved the situation of diagram (18.22) from $(k-1)$ to k after replacing \mathcal{C}_* by a chain homotopy equivalent bounded chain complex C'_{*}.
We do this inductively starting with $k = 0$ until k reaches N. Note that $C^i_{\text{fin}} = 0$ for $i < N$, whereas $C^i_{\text{fin}} = 0$ for $i < -N - 1$ and $C_{-N-1} = A$. Thus we have constructed a bounded A chain complex C'' which is chain homotopy equivalent to C_s over A, a bounded \mathcal{U}-chain complex C_{fin}, a chain map $j'_i: C^i_{\text{fin}} \to C''$ such that j_i is an inclusion of a direct summand up to isomorphism for $i \in \mathbb{Z}$, morphism $\gamma''_i: C''_i \to C''_{i+1}$ which fit together to a chain contraction of C'' over A/\mathcal{U}, and morphisms $\delta'_i: C''_i \to C_{\text{fin}}$ such that for every $i \in \mathbb{Z}$ the following diagram in A commutes

\[
\begin{array}{ccc}
C''_i & \xrightarrow{\delta'_i} & C_{\text{fin}} \\
\downarrow{\text{id}_{C''_i} + e''_i \circ \gamma''_i + \gamma''_{i-1} \circ e''_i} & & \downarrow{j_i} \\
C''_i & & C''_i \\
\end{array}
\]

One easily checks that the collection of the δ'_i-s yields a chain map $\delta'_*: C''_* \to C_{\text{fin}}$ and the collection of the γ''_i-s yields a chain homotopy $j''_i \circ \delta''_i \simeq \text{id}$. Hence the bounded \mathcal{U}-chain complex C_{fin} dominates C'' and hence C_s. This finishes the proof of Lemma \[18.21\]

\begin{proof}[Proof of Theorem \[18.17\]]
Let $\text{Ch}(A^{w(A/\mathcal{U})})$ be the full homotopical Waldhausen subcategory of $\text{Ch}(A)$ consisting of those A-chain complexes, whose the image under $\text{Ch}(p): \text{Ch}(A) \to \text{Ch}(A/\mathcal{U})$ is contractible in $\text{Ch}(A/\mathcal{U})$. Let $I: \text{Ch}(\mathcal{U}) \to \text{Ch}(A^{w(A/\mathcal{U})})$ be the inclusion of full homotopical Waldhausen categories induced by the inclusion $i: \mathcal{U} \to A$. We conclude from the Cofinality Theorem \[18.16\] that we get a weak homotopy equivalence

\[\textbf{(18.23)} \quad \textbf{K}(I): \textbf{K}(\text{Ch}(\mathcal{U})) \to \textbf{K}(\text{Ch}(A^{w(A/\mathcal{U})})).\]

after we have shown that the two conditions appearing in the Cofinality Theorem \[18.16\] are satisfied. The second condition follows from Lemma \[18.21\], the first one is proved as follows. Consider objects $C_s, C'_s \in \text{Ch}(\mathcal{U})$ and $D \in \text{Ch}(A^{w(A/\mathcal{U})})$ together with morphisms $f: C \to D$, $u: C' \to D$, and $v: D \to C'$ in $\text{Ch}(A^{w(A/\mathcal{U})})$ such that u and v are to one another chain homotopy inverse chain homotopy equivalences. Then the mapping cylinder $\text{cyl}(v \circ f)$ and the canonical inclusion $i: C_s \to \text{cyl}(v \circ f)$ live in $\text{Ch}(\mathcal{U})$. Let $p: \text{cyl}(v \circ f) \to D$ be the canonical projection, which is a chain homotopy equivalence in $\text{Ch}(A^{w(A/\mathcal{U})})$. Since $u \circ p \circ i \simeq u \circ v \circ f \simeq f$ holds, and $i: C_s \to \text{cyl}(v \circ f)$ is a cofibration, we can change $u \circ p$ up to chain homotopy to a chain homotopy equivalence $q: \text{cyl}(v \circ f) \to D$ satisfying $q \circ i = f$. This finishes the proof that \[18.23\] is a weak homotopy equivalence.

We obtain from the Fibration Theorem \[18.14\] a weak homotopy fibration

\[\textbf{(18.24)} \quad \textbf{K}(\text{Ch}(A^{w(A/\mathcal{U})})) \to \textbf{K}(\text{Ch}(A)) \to \textbf{K}(\text{Ch}(A, w(A/\mathcal{U}))).\]
Now Theorem \[18.17\] follows from Lemma \[18.18\] and the weak homotopy equivalences \[18.23\] and \[18.24\]. □

18.6 Non-connective \(K\)-theory and stable Karoubi Filtrations

Theorem 18.25 (The weak homotopy fibration sequence of a stable Karoubi filtration for \(K\)-theory). Let \(A\) be an additive category and \(i: \mathcal{U} \to A\) be the inclusion of a full additive subcategory. If the additive category \(A\) is stably \(\mathcal{U}\)-filtered, then

\[
\begin{align*}
K(\mathcal{U}) & \xrightarrow{K(i)} K(A) \xrightarrow{K(p)} K(A/\mathcal{U})
\end{align*}
\]

is a weak homotopy fibration of non-connective spectra.

Proof. For both \(K^W\) and \(K\), there are natural transformations \(K^W,\text{con} \to K^W\) and \(K^\text{con} \to K\) with their connective versions as source such that each of them induces on \(\pi_n\) for \(n \geq 1\) an isomorphism. Recall that \(K^W,\text{con}\), in contrast to \(K^W\), is defined for Waldhausen categories in general, the condition homotopical is not needed, and that by definition \(K^W,\text{con}(\mathcal{W}) = K^\text{con}(\mathcal{W})\) for any Waldhausen category \(\mathcal{W}\).

Note that for the connective \(K\)-theory spectrum the obvious inclusion \(I_0: A \to \text{Ch}(A)\), where one assigned to an object the associated chain complex concentrated in degree 0, is an exact functor of Waldhausen categories and induces the weak homotopy equivalence on the connective \(K\)-theory by the Gillet-Waldhausen Theorem, see \([862, 1.11.7]\) or \([618, \text{Theorem 4.1}]\),

\[
\begin{align*}
K^W,\text{con}(I_0): K^\text{con}(A) & = K^W,\text{con}(A) \to K^W,\text{con}(\text{Ch}(A)).
\end{align*}
\]

Hence we conclude from Theorem \[18.17\] the long homotopy sequence associated to \(\text{hofib}(K(p): K(A) \to K(A/\mathcal{U}))\), and the Five-Lemma that the canonical map

\[
f: K(\mathcal{U}) \to \text{hofib}(K(p): K(A) \to K(A/\mathcal{U}))
\]

induces an isomorphism on \(\pi_n\) for \(n \geq 1\).

Next we show by induction over \(N = 1, 0, -1, -2, \ldots\) that it induces an isomorphism for \(n \geq N\). The induction beginning has already been explained, the induction step from \(N\) to \((N - 1)\) is done as follows.

We conclude from Lemma \[18.10\] that \(\mathcal{A}[t, t^{-1}]\) is stably \(\mathcal{U}[t, t^{-1}]\)-filtered and that \((\mathcal{A}/\mathcal{U})[t, t^{-1}]\) is isomorphic to \(\mathcal{A}[t, t^{-1}]/\mathcal{U}[t, t^{-1}]\). Hence we obtain from the induction hypothesis that the canonical map

\[
f': K(\mathcal{U}[t, t^{-1}]) \to \text{hofib}(K(\mathcal{A}[t, t^{-1}]) \to K((\mathcal{A}/\mathcal{U})[t, t^{-1}]))
\]
18.7 Comparing the non-connective K-theory spectra

is an isomorphism for $n \geq N$. We get from the Bass Heller-Swan decomposition, see for instance [616, Theorem 6.2], weak equivalences

$$K(U) \wedge (S^1)_+ \vee N_+ K(U) \vee N_- K(U) \cong K(U[t, t^{-1}]);$$

$$K(A) \wedge (S^1)_+ \vee N_+ K(A) \vee N_- K(A) \cong K(A[t, t^{-1}]);$$

$$K(A/U) \wedge (S^1)_+ \vee N_+ K(A/U) \vee N_- K(A/U) \cong K((A/U)[t, t^{-1}]).$$

The maps f' and f are compatible with these weak isomorphisms. This implies that the map

$$\pi_{n-1}(f): \pi_{n-1} (K(U)) \to \pi_{n-1} (\text{hofib}(K(A) \to K(A/U)))$$

is a direct summand of the map

$$\pi_n(f') : \pi_n (K(U[t, t^{-1}])) \to \pi_n (\text{hofib}(K(A[t, t^{-1}]) \to K(A/U[t, t^{-1}])))$$

Since $\pi_n(f')$ is bijective for $n \geq N$, the map $\pi_{n-1}(f)$ is bijective for $n \geq N - 1$. This finishes the proof of Theorem 18.25.

18.7 Comparing the non-connective K-theory spectra

Next we want to compare the non-connective K-theory spectra $K(A)$ and $K^W(\text{Ch}(A))$ for any additive category. Note that we have compared the connective versions already in Theorem 18.26, but we also have explained in Remark 18.13 why this does not work any more for the non-connective K-theory. This will be rectified as follows.

Consider an additive category \mathcal{A}. Define a new additive category $\Lambda \mathcal{A}$ as follows. An object in $\Lambda \mathcal{A}$ is a sequence $\underline{A} = (A_n)_{n \in \mathbb{N}}$ of objects in \mathcal{A}. A morphism $f: \underline{A} \to \underline{A}'$ is a collection $\{f_{n,n'}: A_n \to A'_{n'} \mid n, n' \in \mathbb{N}\}$ of morphisms in \mathcal{A} such that there exists a natural number N (depending on f) such that $f_{n,n'} \neq 0 \implies |n - n'| \leq N$ holds. Let $\iota: \mathcal{A} \to \Lambda \mathcal{A}$ be the obvious inclusion sending an object A to the object given by the sequence \underline{A} with $A_0 = A$ and $A_n = 0$ for $n \geq 1$. Let $\Lambda_f \mathcal{A}$ be the full subcategory of $\Lambda \mathcal{A}$ consisting of objects \underline{A} such that only finitely many of the objects A_n are different from zero. Then the inclusion $\Lambda_f \mathcal{A} \to \Lambda \mathcal{A}$ is a Karoubi filtration and we define $\Sigma \mathcal{A}$ to be the quotient $\Lambda \mathcal{A}/\Lambda_f \mathcal{A}$. The obvious inclusion $\mathcal{A} \to \Lambda_f \mathcal{A}$ is an equivalence of additive categories and hence induces a weak equivalence $K^W(\text{Ch}(\mathcal{A})) \to K^W(\text{Ch}(\Lambda_f \mathcal{A}))$. There is an obvious Eilenberg swindle on $\Lambda \mathcal{A}$ coming from the shift to the right functor, which sends an object \underline{A} to the object \underline{A}' satisfying $A'_0 = \{0\}$ and $A'_{n+1} = A_n$ for $n \in \mathbb{N}$. The Eilenberg swindle on \mathcal{A} yields an Eilenberg swindle on $\text{Ch}(\mathcal{A})$. This implies that the inclusion $\ast \to K^W(\text{Ch}(\Lambda \mathcal{A}))$ of the trivial trivial spectrum \ast is a weak homotopy equivalence. Thus we get a weak homotopy equivalence
For $k \in \mathbb{Z}$ and a spectrum E, let $\Sigma^k E$ be the spectrum obtained by shifting, i.e., $(\Sigma^k E)_n = E_{n-k}$. Denote by ΩE the spectrum with n-space ΩE_n. From the structure maps of a spectrum E, which can be written as maps $E_n \to \Omega E_n$, we get a canonical map $E \xrightarrow{\simeq} \Sigma \Omega E$, which is a weak homotopy equivalence. Hence we get a weak homotopy equivalence

$$\Sigma^{-1} K^W(Ch(\Sigma A)) \xrightarrow{\simeq} \text{hofib}(K^W(Ch(\Lambda A)) \to K^W(Ch(\Sigma A))).$$

We get a weak homotopy equivalence $K^W(Ch(A_f A)) \xrightarrow{\simeq} \text{hofib}(K^W(Ch(\Lambda A)) \to K^W(Ch(\Sigma A)))$ from Theorem 18.17. Composing it with the weak homotopy equivalence $K^W(Ch(\Lambda A)) \xrightarrow{\simeq} K^W(Ch(A_f A))$ yields a weak homotopy equivalence

$$K^W(Ch(A)) \to \text{hofib}(K^W(Ch(\Lambda A)) \xrightarrow{\simeq} K^W(Ch(\Sigma A))).$$

Thus we obtain a two stage zigzag of weak homotopy equivalence

$$(18.27) \quad K^W(Ch(A)) \xrightarrow{\simeq} \text{hofib}(K^W(Ch(\Lambda A)) \xleftarrow{\simeq} \Sigma^{-1} K^W(Ch(\Sigma A))),$$

which is natural in A. For simplicity we assume in the sequel that the two stage zigzag (18.27) is a weak homotopy equivalence

$$K^W(Ch(A)) \xrightarrow{\simeq} \Sigma^{-1} K^W(Ch(\Sigma A))$$

and leave it to the reader to extend the argument below to the general case, which actually only requires to replace the homotopy colimits below by more sophisticated diagrams.

We can iterate this and obtain a string of weak homotopy equivalences

$$K^W(Ch(A)) \xrightarrow{\simeq} \Sigma^{-1} K^W(Ch(\Sigma A)) \xrightarrow{\simeq} \Sigma^{-2} K^W(Ch(\Sigma^2 A)) \xrightarrow{\simeq} \cdots.$$

Define $\text{hocolim}_{n \to \infty} \Sigma^{-n} K^W(Ch(\Sigma^n A))$ to be the homotopy colimit. The canonical map

$$(18.28) \quad K^W(Ch(A)) \xrightarrow{\simeq} \text{hocolim}_{n \to \infty} \Sigma^{-n} K^W(Ch(\Sigma^n A))$$

is a weak homotopy equivalence.

There is a natural transformation from the connective K-theory to the non-connective K-theory spectrum, which induces isomorphism on homotopy groups in degree ≥ 1, see (18.26). It yields a weak homotopy equivalence of spectra, natural in A,

$$(18.29) \quad \text{hocolim}_{n \to \infty} \Sigma^{-n} K^W,\text{con}(Ch(\Sigma^n A)) \xrightarrow{\simeq} \text{hocolim}_{n \to \infty} \Sigma^{-n} K^W(Ch(\Sigma^n A)).$$
since there is a natural isomorphism \(\pi_k(\Sigma^{-n}E) \xrightarrow{\cong} \pi_{k+n}(E) \) for any spectrum \(E \) and the canonical map \(\text{colim}_{n \to \infty} \pi_k(E_n) \xrightarrow{\cong} \pi_k(\hocolim_{n \to \infty} E_n) \) is an isomorphism for a sequence \(E_0 \to E_1 \to E_2 \to \cdots \) of spectra for every \(k \in \mathbb{Z} \).

Since \(K^\text{W,con}(\mathcal{W}) = K^\text{con}(\mathcal{W}) \) holds for any Waldhausen category \(\mathcal{W} \), we get from \((18.29) \) the weak homotopy equivalence

\[
(18.30) \quad \text{hocolim}_{n \to \infty} \Sigma^{-n}K^\text{con}(\Sigma^n A) \xrightarrow{\cong} \text{hocolim}_{n \to \infty} \Sigma^{-n}K^\text{W}(\text{Ch}(\Sigma^n A)).
\]

Since also the functor sending \(A \) to \(K(A) \) is compatible with Karoubi filtrations, see Theorem \(18.25 \), we get analogously to \((18.28) \) and \((18.29) \) weak homotopy equivalences

\[
(18.31) \quad K(A) \xrightarrow{\cong} \text{hocolim}_{n \to \infty} \Sigma^{-n}K(\Sigma^n A)
\]

and

\[
(18.32) \quad \text{hocolim}_{n \to \infty} \Sigma^{-n}K^\text{con}(\Sigma^n A) \xrightarrow{\cong} \text{hocolim}_{n \to \infty} \Sigma^{-n}K(\Sigma^n A),
\]

which are natural in \(A \). Putting \((18.28) \), \((18.30) \), \((18.31) \), and \((18.32) \) together shows

Theorem 18.33 (Gillet-Waldhausen zigzag for non-connective \(K \)-theory). There is a zigzag of weak homotopy equivalences, natural in \(A \), from the non-connective \(K \)-theory spectrum \(K^W(\text{Ch}(A)) \) in the sense of Bunke-Kasprowski-Winges \([163] \) to the non-connective \(K \)-theory spectrum \(K(A) \) in the sense of Lueck-Steimle \([616] \).

Remark 18.34. Arguing as in the proof of Theorem \(18.33 \), one can show that the definition of the non-connective \(K \)-theory spectra as they appear in \([186, 616, 719] \) agree up to natural zigzags of weak homotopy equivalences.

18.8 Notes

We have not checked the details, but are convinced that the proof of \([190] \) Theorem 4.2 of the existence of the long exact weak homotopy fibration \(L(\infty)(\mathcal{U}) \to L(-\infty)(A) \to L(-\infty)(A/\mathcal{U}) \) associated to a Karoubi filtration of additive categories with involution carries over to stable Karoubi filtrations.
Chapter 19
Controlled Topology Methods

19.1 Introduction

Comment 20: This chapter is under construction!!
Comment 21: Insert introduction

19.2 The Definition of a Control Coefficient Category

Let G be a discrete group. A \mathbb{Z}-category is a small category \mathcal{A} enriched over the category of \mathbb{Z}-modules, i.e., for every two objects A and A' in \mathcal{A} the set of morphisms $\text{mor}_\mathcal{A}(A, A')$ has the structure of a \mathbb{Z}-module for which composition is a \mathbb{Z}-bilinear map.

Definition 19.1 (Control coefficient category). A control coefficient category over G is a pair $\mathcal{B} = (\mathcal{B}, \text{supp}_G)$ consisting of:

- A \mathbb{Z}-category \mathcal{B};
- A map called support function $\text{supp}_G : \text{mor}(\mathcal{B}) \to \{\text{finite subsets of } G\}$.

We require that the following axioms are satisfied for all objects B in \mathcal{B}, all morphisms $u, u' : B_1 \to B_2$, $v : B_2 \to B_3$ in \mathcal{B}, and all $n \in \mathbb{Z}$:

(i) $\text{supp}_G(u) = \emptyset \iff u = 0$;
(ii) $\text{supp}_G(v \circ u) \subseteq \text{supp}_G(v) \cdot \text{supp}_G(u) =: \{gg' \mid g \in \text{supp}_G(v), g' \in \text{supp}_G(u)\}$;
(iii) $\text{supp}_G(u + u') \subseteq \text{supp}_G(u) \cup \text{supp}_G(u')$;
(iv) $\text{supp}_G(n \cdot u) \subseteq \text{supp}_G(u)$;
(v) For every object B in \mathcal{B} its support $\text{supp}_G(B) := \text{supp}_G(\text{id}_B)$ is $\{e\}$.

Example 19.2. Let \mathcal{A} be a G-\mathbb{Z}-category, i.e., a \mathbb{Z}-category with G action by isomorphisms of \mathbb{Z}-categories. Define the control coefficient category $\mathcal{A}[G]$ as follows: The set of objects in $\mathcal{A}[G]$ is the set of objects in \mathcal{A}. For two objects A and A' in \mathcal{A}, a morphism $\phi : A \to A'$ in $\mathcal{A}[G]$ is a formal sum $\sum_{g \in G} \phi_g \cdot g$, where $\phi_g : gA \to A'$ is a morphism in \mathcal{A} from gA to A' and its G-support

$$\text{supp}_G(\phi) := \{g \in G \mid \phi_g \neq 0\}$$
is assumed to be finite. The composite of \(\phi: A \to A' \) and \(\psi: A' \to A'' \) is given by convolution, i.e.,

\[
(\psi \circ \phi)_g = \sum_{g' \cdot g'' = g} \psi_{g'} \circ g' \phi_{g''} : gA \to A''.
\]

The identity of the object \(A \) is given by

\[
\sum_{g \in G} \phi_g \cdot g, \quad \text{where} \quad \phi_e = \text{id}_A \quad \text{and} \quad \phi_g = 0 \quad \text{for} \quad g \neq e.
\]

The \(\mathbb{Z} \)-structure on \(\text{mor}_A[G](A, A') \) is given by

\[
m \cdot \left(\sum_{g} \phi_g \cdot g \right) + n \cdot \left(\sum_{g} \psi_g \cdot g \right) = \sum_{g} \left(m \cdot \phi_g + n \cdot \psi_g \right) \cdot g.
\]

One easily checks that \(A[G] \) is a \(\mathbb{Z} \)-category and becomes with the notion of the support above a control coefficient category.

Example 19.3. Let \(R \) be a unital ring. Denote by \(R \) the \(\mathbb{Z} \)-category which consist of precisely one object and has as set of morphisms \(R \). Composition is given by the multiplicative structure. Then \(R \) becomes a \(\mathbb{Z} \)-category in the obvious way. Suppose that we have the group homomorphisms \(\rho: G \to \text{aut}(R) \) to the group of ring automorphisms of \(R \). Denote by \(R_{\rho}[G] \) the twisted group ring.

Then there is an obvious equivalence of additive \(\mathbb{Z} \)-categories from \(R[G] \oplus \) to the category of finitely generated free right \(R_{\rho}[G] \)-modules.

19.3 The Additive Category \(\mathcal{O}^G(X; \mathcal{B}) \)

19.3.1 The Definition of \(\mathcal{O}^G(X; \mathcal{B}) \)

Let \(X \) be a \(G \)-CW-complex and \(\mathcal{B} \) be a control coefficient category in the sense of Definition 19.1. We define an additive category \(\mathcal{O}^G(X; \mathcal{B}) \) as follows.

Definition 19.4 (\(\mathcal{O}^G(X; \mathcal{B}) \)). An object in \(\mathcal{O}^G(X; \mathcal{B}) \) is a quadruple \(\mathcal{B} = (S, \pi, \eta, \mathcal{B}) \) consisting of a set \(S \) and maps \(\pi: S \to X \), \(\eta: S \to \mathbb{N} \), and \(\mathcal{B}: S \to \text{ob}(\mathcal{B}) \) satisfying:

- **Compact support over \(X \)**
 The image of \(\pi: S \to X \) is contained in a compact subset of \(X \);

- **Locally finiteness over \(\mathbb{N} \)**
 For every \(t \in \mathbb{N} \) the preimage \(\eta^{-1}(t) \) is a finite subset of \(S \).

Given two objects \(\mathcal{B} = (S, \pi, \eta, \mathcal{B}) \) and \(\mathcal{B}' = (S', \pi', \eta', \mathcal{B}') \), a morphism \(\phi: \mathcal{B} \to \mathcal{B}' \) is given by a collection \(\{ \phi_{s,s'}: \mathcal{B}(s) \to \mathcal{B}'(s') \mid s \in S, s' \in S' \} \) of morphisms in \(\mathcal{B} \) satisfying the following conditions
19.3 The Additive Category \(\mathcal{O}(X; \mathcal{B}) \)

- **Finite \(G \)-support**
 There exists a finite subset \(F \subset G \) such that
 \[
 \text{supp}_G(\phi_{s,s'}) \subseteq F
 \]
 holds for all \(s \in S \) and \(s' \in S' \);

- **Bounded control over \(\mathbb{N} \)**
 The exists a natural number \(n \) such that for \(s \in S \) and \(s' \in S' \) the implication
 \[\phi_{s,s'} \neq 0 \implies |\eta(s) - \eta'(s')| \leq n\]
 holds;

- **Continuous control**
 For every \(x \in X \) and every open \(G_x \)-invariant neighborhood \(U \subseteq X \) of \(x \), there exists an open \(G_x \)-invariant neighborhood \(U' \subseteq U \) and a natural number \(r' \) such that for \(s \in S \), \(s' \in S' \), and \(g \in \text{supp}_G(\phi_{s,s'}) \), the implications
 \begin{align*}
 g\pi(s) \in U', \eta(s) \geq r' & \implies \pi'(s') \in U; \\
 g^{-1}\pi'(s') \in U', \eta'(s') \geq r' & \implies \pi(s) \in U;
 \end{align*}
 holds.

Given three objects \(B = (S, \pi, \eta, B) \), \(B' = (S', \pi', \eta', B') \), and \(B'' = (S'', \pi'', \eta'', B'') \) and morphisms \(\phi : B \to B' \) and \(\phi' : B' \to B'' \), define their composite \(\phi' \circ \phi : B \to B'' \) by
\[
(\phi' \circ \phi)_{s,s''} = \sum_{s' \in S'} \phi'_{s',s''} \circ \phi_{s,s'}
\]
for \(s \in S \) and \(s'' \in S'' \).

Define the identity \(\text{id}_B \) for the object \(B = (S, \pi, \eta, B) \) by \((\text{id}_B)_{s,s} = \text{id}_{B(s)} \) for \(s \in S \) and by \((\text{id}_B)_{s,s'} = 0 \) for \(s, s' \in S \) with \(s \neq s' \).

Given two objects \(B = (S, \pi, \eta, B) \) and \(B' = (S', \pi', \eta', B') \) and two morphism \(\phi, \phi' : B \to B' \) and \(m, n \in \mathbb{Z} \), define the morphism \(m \cdot \phi + n \cdot \phi' \) by
\[
(m \cdot \phi + n \cdot \phi')_{s,s'} = m \cdot \phi_{s,s'} + n \cdot \phi'_{s,s'}
\]
for \(s \in S \) and \(s' \in S' \).

We have to check that Definition 19.4 makes sense. The conditions *locally finiteness over \(\mathbb{N} \) and bounded control over \(\mathbb{N} \) ensure that the sum occurring in the definition of the composition is indeed a finite sum, namely,
\[
(\phi' \circ \phi)_{s,s''} = \sum_{s' \in S'} \phi'_{s',s''} \circ \phi_{s,s'}. \quad \text{for } \phi'_{s',s''} \neq 0
\]
Since ϕ and ϕ' satisfy finite G-support, we can choose finite subsets F and F' of G such that $\text{supp}_G(\phi_{s,s'}) \subseteq F$ and $\text{supp}_G(\phi'_{s',s''}) \subseteq F'$ holds for $s \in S$, $s' \in S'$, and $s'' \in S''$. We get for $s \in S$ and $s'' \in S''$

$$\text{supp}_G((\phi' \circ \phi)_{s,s''}) = \text{supp}_G \left(\sum_{s' \in S'} \phi'_{s',s''} \circ \phi_{s,s'} \right) \subseteq \bigcup_{\phi'_{s',s''}, \phi_{s,s'} \neq 0} \text{supp}_G(\phi'_{s',s''} \circ \phi_{s,s'}) \subseteq \bigcup_{\phi'_{s',s''}, \phi_{s,s'} \neq 0} \text{supp}_G(\phi'_{s',s''}) \cdot \text{supp}_G(\phi_{s,s'}) \subseteq \bigcup_{\phi'_{s',s''}, \phi_{s,s'} \neq 0} F' \cdot F \subseteq F' \cdot F.$$

Since $F' \cdot F$ is a finite subset of G, the composite $\phi' \circ \phi$ satisfies finite G-support.

Since both ϕ and ϕ' satisfy bounded control over \mathbb{N}, there exist natural numbers n and n' such that the implications $\phi_{s,s'} \neq 0 \implies |\eta(s) - \eta'(s')| \leq n$ and $\phi'_{s',s''} \neq 0 \implies |\eta'(s') - \eta''(s'')| \leq n'$ hold for $s \in S$, $s' \in S'$ and $s'' \in S''$. Hence we have the implication $(\phi' \circ \phi)_{s,s''} \neq 0 \implies |\eta(s) - \eta''(s'')| \leq n + n'$ for $s \in S$, and $s'' \in S''$. This shows that $\phi' \circ \phi$ satisfies bounded control over \mathbb{N}.

Finally we show that continuous control is satisfied by $\phi' \circ \phi$. Consider $x \in X$ and an open G_x-invariant neighborhood $U \subseteq X$. Since ϕ' satisfies continuous control, we can find an open G_{x^r}-invariant neighborhood $U' \subseteq X$ of x satisfying $U' \subseteq U$ and a natural number r' such that the implication

$$g \pi'(s') \in U', \eta'(s') \geq r' \implies \pi''(s'') \in U$$

holds for all $s' \in S'$, $s'' \in S''$ and $g' \in \text{supp}_G(\phi'_{s',s''})$. Because of condition finite G-support, there exists a finite subset $F' \subseteq G$ with $\text{supp}_G(\phi'_{s',s''}) \subseteq F'$ for $s' \in S'$, and $s'' \in S''$. Fix $g' \in F'$. Then $g'-1 U'$ is an open $G_{g'-1x}$-invariant neighborhood of $g'^{-1} x$. Since ϕ satisfies bounded control over \mathbb{N} and continuous control, we can find an open $G_{g'-1x}$-invariant neighborhood $U'' \subseteq X$ of $g'^{-1} x$ satisfying $U''_g \subseteq g'^{-1} U$ and a natural number r''_g with $r''_g \geq r'$ such that the implication

$$g \pi(s) \in U''_g, \eta(s) \geq r''_g \implies \pi'(s') \in g'^{-1} U', \eta'(s') \geq r'$$

holds for all $s \in S'$, $s' \in S'$ and $g \in \text{supp}_G(\phi_{s,s'})$. Put
We can replace in Definition 19.4 the condition

\((19.5) \)

When

Notation 19.9.

category.\footnote{The condition \(r'' := \max\{r''_g \mid g' \in F'\} \) is clear from the context, we will often omit it in the obvious way. This finishes the proof that \(O \) without changing \(O \) and define the desired morphisms \(B \) \footnote{Since \(\text{supp}_G(\phi' \circ \phi)_s \subseteq \bigcup_{s' \in S'} \text{supp}_G(\phi'_{s',s'}) \cdot \text{supp}_G(\phi_{s,s'}) \) holds, we have shown for \(s' \in S', s'' \in S'' \) and \(g'' \in \text{supp}_G(\phi_{s,s'}) \).

\(g'' \pi(s) \in U'', \eta(s) \geq r'' \implies \phi''(s'') \in U. \)

This finishes the proof of implication \((19.5)\). We leave the analogous proof of the other implication \((19.6)\) to the reader. This finishes the proof that \(\phi' \circ \phi \) satisfies the condition \textit{continuous control} and hence the proof that the composition is well-defined.

One easily checks that the identity morphism is well-defined.

Obviously the definition of the \(Z \)-structure makes sense.

Given two objects \(B = (S, \pi, \eta, B) \) and \(B' = (S', \pi', \eta', B') \), we have to define their direct sum \(B \oplus B' \). We put

\(B \oplus B' = (S \sqcup S', \pi \sqcup \pi', \eta \sqcup \eta', B \sqcup B') \)

and define the desired morphisms \(B \to B \oplus B' \) and \(B' \to B \oplus B' \) in the obvious way. This finishes the proof that \(O^G(X; B) \) is a well-defined additive category.

\textbf{Notation 19.9.} When \(B \) is clear from the context, we will often omit it in the notation and write for instance \(O^G(X) \) instead of \(O^G(X; B) \).

\textbf{Lemma 19.10.} (i) We can replace in Definition \((19.4)\) the condition \((19.5)\) by the condition

\((19.11) \quad \pi(s) \in U', \eta(s) \geq r' \implies g^{-1} \cdot \pi'(s') \in U \)

without changing \(O^G(X) \);

(ii) We can replace in Definition \((19.4)\) the condition \((19.6)\) by the condition

\((19.12) \quad \pi'(s') \in U', \eta'(s') \geq r' \implies g \cdot \pi(s) \in U \)
without changing $\mathcal{O}^G(X)$;

(iii) We can replace in Definition 19.4 simultaneously the condition (19.5) by the condition (19.11) and the condition (19.6) by the condition (19.12) without changing $\mathcal{O}^G(X)$.

Proof. We give the proof only for assertion (iii), the one for the other assertions is analogous.

We first show that the condition (19.12) is automatically satisfied. Consider $x \in X$ and an open G_x-invariant neighborhood U of x. Let $\phi : B \to B'$ be a morphisms in $\mathcal{O}^G(X)$. Since it satisfies finite G-support, we can find a finite subset $F \subseteq G$ such that $\text{supp}_G(\phi_{s,s'}) \subseteq F$ holds for all $s \in S$ and $s' \in S'$. Fix $g \in F$. We can apply condition (19.6) to the open $G_{g^{-1}}x$-invariant neighborhood $g^{-1}U$ of $g^{-1}x$, and obtain an open $G_{g^{-1}}x$-invariant neighborhood U'_g of $g^{-1}x$ with $U'_g \subseteq g^{-1}U'$ and a natural number r'_g such that for all $s \in S$, $s' \in S'$ and $g \in \text{supp}_G(\phi_{s,s'})$ the implication

\begin{equation}
(19.13) \quad g^{-1}\pi'(s') \in U'_g, \eta'(s') \geq r'_g \implies \pi(s) \in g^{-1}U
\end{equation}

holds. Define

$$r' = \max\{r'_g \mid g \in F\};$$
$$U' = \bigcap_{g \in F} gU'_g.$$

Then U' is an open G_x-invariant neighborhood of x with $U' \subseteq U$ and condition (19.12) is satisfied since for $s \in S$, $s' \in S'$ and $g \in \text{supp}_G(\phi_{s,s'}) \subseteq F$ we get

$$\pi'(s') \in U', \eta'(s') \geq r' \implies g^{-1}\pi'(s') \in g^{-1}U', \eta'(s') \geq r' \implies g^{-1}\pi'(s') \in U'_g, \eta'(s') \geq r'_g \implies \pi(s) \in g^{-1}U \implies g\pi(s) \in U.$$

The proof in the case, where we replace in Definition 19.4 the condition (19.6) by the condition (19.12) and then show that condition (19.6) is satisfied, is analogous and left to the reader.

The next result gives a criterion when we can modify the map π for an object $B = (S, \pi, \eta, B)$ in $\mathcal{O}^G(X)$ without changing its isomorphism class.

Lemma 19.14. Consider two objects in $\mathcal{O}^G(X)$ of the form $B = (S, \pi, \eta, B)$ and $B' = (S, \pi', \eta, B)$. Suppose that for every $x \in X$ and open G_x-invariant neighborhood U of x there exists an open G_x-invariant neighborhood U' of x in X with $U' \subseteq U$ and a natural number r' such that for $s \in S$ the implications
Consider a \(s = \text{supp} \) with \(s \geq \text{G} \) induces a functor of additive categories by \(B \). We define to one another inverse morphisms \(\phi, \phi' \) by \(\phi \circ \pi \) and \(\pi \circ \phi' \). Then \(B \) and \(B' \) are isomorphic.

Proof. We define to one another inverse morphisms \(\phi : B \to B' \) and \(\phi' : B' \to B \) by \(\phi_{s,s'} = \phi'_{s,s} = \text{id}_{B(s)} \) for \(s \in S \) and by \(\phi_{s,s'} = \phi'_{s',s} = 0 \) for \(s, s' \in S \) with \(s \neq s' \). One has to check that \(\phi \) and \(\phi' \) are well-defined. Note that \(\text{supp}_G(\phi_{s,s'}) \) and \(\text{supp}_G(\phi'_{s',s}) \) are empty if \(s \neq s' \) and agree with \(\{e\} \) if \(s = s' \). Hence \(\phi \) and \(\phi' \) satisfy finite \(G \)-support and bounded control over \(\mathbb{N} \) for obvious reasons and the assumptions appearing in Lemma \([19.14]\) imply continuous control.

19.4 Functionality of \(O^G(X; B) \)

Consider a \(G \)-map \(f : X \to Y \) of \(G \)-CW-complexes. Next we show that it induces a functor of additive categories

\[(19.15) \quad O^G(f) : O^G(X) \to O^G(Y).\]

It sends an object \(B = (S, \pi, \eta, B) \) in \(O^G(X) \) to the object \((S, f \circ \pi, \eta, B) \) in \(O^G(Y) \). One easily checks that the conditions compact support over \(X \) and locally finiteness over \(\mathbb{N} \) are satisfied for \((S, f \circ \pi, \eta, B) \).

For two objects \(B = (S, \pi, \eta, B) \) and \(B' = (S', \pi', \eta', B') \) and a morphism \(\phi : B \to B' \) given by a collection \(\{\phi_{s,s'} : B(s) \to B'(s') \mid s \in S, s' \in S'\} \) in \(O^G(X) \), define the morphism \(O^G(f)(\phi) : O^G(f)(B) \to O^G(f)(B') \) in \(O^G(Y) \) by the same collection \(\{\phi_{s,s'} : B(s) \to B'(s') \mid s \in S, s' \in S'\} \). Obviously conditions finite \(G \)-support and bounded control over \(\mathbb{N} \) are satisfied for \(O^G(f)(\phi) \). The hard part is the proof of continuous control which we will give next. We only deal with the implication \([19.5]\), the one for the implication \([19.6]\) is completely analogous.

Suppose that the implication \([19.5]\) is not satisfied for \(O^G(f)(\phi) \). Then we can find a point \(y \in Y \) and an open \(G_y \)-invariant neighborhood \(U \) of \(y \) such that for every open \(G_y \)-invariant neighborhood \(U' \) of \(y \) with \(U' \subseteq U \) and natural number \(r \) there exists elements \(s \in S \) and \(s' \in S \) and an element \(g \in \text{supp}_G(\phi_{s,s'}) \) such that \(gn(s) \in U' \), \(\eta(s) \geq r' \), and \(\pi(s') \notin U \) hold. Since \(Y \) is a \(G \)-CW-complex, we can find a sequence of nested open \(G_y \)-invariant neighborhoods \(V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots \) of \(y \) such that \(\bigcap_{n \geq 0} V_n = \{y\} \). Hence we can find a sequence of nested open \(G_y \)-invariant neighborhoods \(U_0 \supseteq U_1 \supseteq U_2 \supseteq \cdots \) of \(y \) satisfying \(\bigcap_{n \geq 0} \overline{U_n} = \{y\} \), a sequence of natural numbers \(r_n \) satisfying \(\lim_{n \to \infty} r_n = \infty \), a sequence \((s_n)_{n \geq 0} \) in \(S \), a sequence \((s'_n)_{n \geq 0} \) in \(S' \), and elements \(g \in \text{supp}(\phi_{s_n,s'_n}) \) such that \(g \circ \pi(s_n) \in U_n \), \(\eta(s_n) \geq r_n \), and \(f \circ \pi'(s'_n) \notin U \) hold for all \(n \in \mathbb{N} \).
Since \(\phi \) satisfies \textit{finite G-support}, we can arrange by passing to subsequences that there exists \(g \in G \) such that \(g = g_n \) holds for all \(n \geq 0 \). Since \(\phi \) satisfies \textit{compact support over X}, we can arrange by passing to subsequences that there exists \(x \in X \) such that \(\lim_{n \to \infty} \pi(s_n) = x \) holds. We get \(\lim_{n \to \infty} f \circ \pi(s_n) = f(x) \). Since \(g \cdot f \circ \pi(s_n) \in U'_n \) holds for all \(n \geq 0 \), we conclude \(\lim_{n \to \infty} g \cdot f \circ \pi(s_n) = y \). This implies \(f(gx) = y \). Note that \(f^{-1}(U) \) is an open \(G_{gx} \)-invariant neighborhood of \(gx \). Since \(\phi \) satisfies \textit{continuous control}, there exists an open \(G_{gx} \)-invariant neighborhood \(V'' \) of \(gx \) with \(V'' \subseteq f^{-1}(U) \) and a natural number \(r'' \) such that for \(s \in S, s' \in S' \) and \(g'' \in \text{supp}_G(\phi_{s,s'}) \), the implication

\[
g'' \pi(s) \in V'', \eta(s) \geq r'' \implies \pi'(s') \in f^{-1}(U)
\]

holds. Hence we get for all \(n \in \mathbb{N} \) the implication

\[
g\pi(s_n) \in V'', \eta(s_n) \geq r'' \implies \pi'(s'_n) \in f^{-1}(U).
\]

Since \(\lim_{n \to \infty} r'_n = \infty \), \(\lim_{n \to \infty} g\pi(s_n) = gx \), and \(V'' \) is an open neighborhood of \(gx \), we can arrange by passing to subsequences that \(g\pi(s_n) \in V'' \) and \(\eta(s_n) \geq r'' \) holds for all \(n \geq 0 \). Hence we get \(\pi'(s'_n) \in f^{-1}(U) \) for all \(n \geq 0 \). This implies \(f \circ \pi'(s'_n) \in U \) for all \(n \geq 0 \), a contradiction.

Obviously we get a covariant functor \(O^G(-, \mathcal{B}) \) from the category of \(G \)-CW-spaces with arbitrary \(G \)-maps as morphisms to the category of additive categories.

19.5 The \(\mathcal{TOD} \)-Sequence

Let \(X \) be a \(G \)-CW-complex and \(\mathcal{B} \) be a control coefficient category in the sense of Definition 19.1.

Definition 19.16 \((\mathcal{T}^G(X)) \). Let \(\mathcal{T}^G(X) \) be the full additive subcategory of \(O^G(X) \) consisting of those objects \(\mathcal{B} = (S, \pi, \eta, \mathcal{B}) \) for which there exists a natural number \(n \) satisfying \(\eta(s) \leq n \) for all \(s \in S \).

Lemma 19.17. The inclusion \(\mathcal{T}^G(X) \to O^G(X) \) is a Karoubi filtration in the sense of Definition 18.2.

Proof. Consider an object \(\mathcal{B} = (S_B, \pi_B, \eta_B, \mathcal{B}_B) \) in \(O^G(X) \), two objects \(U = (S_U, \pi_U, \eta_U, \mathcal{B}_U) \) and \(V = (S_V, \pi_V, \eta_V, \mathcal{B}_V) \) in \(\mathcal{T}^G(X) \), and morphisms \(f : \mathcal{B} \to U \) and \(g : \mathcal{B} \to V \) in \(O^G(X) \). By definition we can find natural numbers \(n_0 \) and \(n_1 \) such that \(\eta_U(s') \leq n_0 \) for \(s' \in S_U \) and \(\eta_V(s) \leq n_0 \) for \(s \in S_V \) hold and we have the implications

\[
s \in S_B, s' \in S_U, f_{s,s'} \neq 0 \implies |\eta_B(s) - \eta_U(s')| \leq n_1; \]
\[
s \in S_V, s' \in S_B, g_{s,s'} \neq 0 \implies |\eta_V(s) - \eta_B(s')| \leq n_1.
\]
Now define objects $B^\mu = (S_B, \pi_B, \eta_B, B_B)$ in $\mathcal{T}^G(X)$, and $B^\perp = (S_B, \pi_B, \eta_B, B_B)$ in $\mathcal{O}^G(X)$ by
\[
S_B^\perp := \{ s \in S_B \mid \eta_B(s) \leq n_0 + n_1 \}; \\
S_B^\mu := \{ s \in S_B \mid \eta_B(s) > n_0 + n_1 \},
\]
and restricting the maps $\pi_B, \eta_B,$ and B_B. There are obvious morphisms $i^\mu: B^\mu \to B$ and $i^\perp: B^\perp \to B$ in $\mathcal{O}^G(X)$ such that $i^\mu \oplus i^\perp: B^\mu \oplus B^\perp \xrightarrow{\cong} B$ is an isomorphism. We leave it to the reader to figure out the obvious definition of the maps f^μ and g^μ and the proof of the commutativity of the relevant diagrams. Hence inclusion $\mathcal{T}^G(X) \to \mathcal{O}^G(X)$ is a Karoubi filtration. \hfill \square

Definition 19.18 ($D^G(X)$). Let $D^G(X)$ be the additive category given by the quotient $\mathcal{O}^G(X)/\mathcal{T}^G(X)$ in the sense of Definition 18.1.

Lemma 19.19. The so called \mathcal{TOD}-sequence
\[
K(\mathcal{T}^G(X)) \to K(\mathcal{O}^G(X)) \to K(D^G(X))
\]
is a weak homotopy fibration of spectra.

Proof. This follows from Lemma 19.17 and Theorem 18.5. \hfill \square

Given a map $f: X \to Y$ of G-CW-complexes, the functor of additive categories $\mathcal{O}^G(f): \mathcal{O}^G(X) \to \mathcal{O}^G(Y)$ of (19.15) induces functors of additive categories
\begin{align}
(19.20) & \quad \mathcal{T}^G(f): \mathcal{T}^G(X) \to \mathcal{T}^G(Y); \\
(19.21) & \quad \mathcal{D}^G(f): \mathcal{D}^G(X) \to \mathcal{D}^G(Y).
\end{align}

Lemma 19.22. Let $f: X \to Y$ be a G-map between G-CW-complexes.

Then $\tau^G(f): \tau^G(X) \xrightarrow{\cong} \tau^G(Y)$ is an equivalence of additive categories.

Proof. We can assume without loss of generality that $Y = \{ \bullet \}$.

Given an object $B = (S, \pi, \eta, B)$ in $\tau^G(\{ \bullet \})$, choose any map $\pi': S \to X$ and define an object $B' = (S, \pi', \eta, B)$ in $\tau^G(X)$. Since $\mathcal{T}^G(f)(B') = B$, we have shown that $\tau^G(\{ \bullet \})$ is surjective on objects. Obviously $\mathcal{T}^G(f)$ induces for two objects B_0 and B_1 in $\tau^G(X)$ a bijection
\[
\text{mor}_{\tau^G(X)}(B_0, B_1) \xrightarrow{\cong} \text{mor}_{\tau^G(\{ \bullet \})}(\mathcal{T}^G(f)(B_0), \mathcal{T}^G(f)(B_1)), \quad \phi \mapsto \mathcal{T}^G(f)(\phi)
\]
since for $\mathcal{T}^G(X)$ the conditions finite G-support, bounded control over \mathbb{N}, and continuous control are automatically satisfied. Hence $\mathcal{T}^G(f)$ is an equivalence of additive categories. \hfill \square
19.6 The Definition for Pairs

Let \((X, A)\) be a \(G\)-CW-pair. Denote by \(i : A \to X\) the inclusion.

Lemma 19.23. (i) The functor \(O^G(i) : O^G(A) \to O^G(X)\) of (19.15) induces an isomorphism of additive categories from \(O^G(A)\) onto its image. The image is a full additive subcategory of \(O^G(X)\) which is a Karoubi filtration; (ii) The same statement holds for the functor \(D^G(i) : D^G(A) \to D^G(X)\) of (19.21).

Proof. (i) The image of \(O^G(i)\) can be identified with the full additive subcategory \(O^G(X)_A\) of \(O^G(X)\) whose objects \(B = (S, \pi, \eta, B)\) satisfy \(\text{im}(\eta) \subseteq A\). The functor \(O^G(i, B)\) induces an isomorphism \(O^G(A) \cong O^G(X)_A\), since for every \(x \in A\) and open \(G_x\)-invariant neighbourhood \(U\) of \(x\) in \(A\) there exists an open \(G_x\)-invariant neighbourhood \(V\) of \(x\) in \(X\) with \(U = A \cap X\). It remains to show that the inclusion \(O^G(X)_A \subseteq O^G(X)\) is a Karoubi filtration.

Consider three objects \(B_0 = (S_0, \pi_0, \eta_0, B_0), B_1 = (S_1, \pi_1, \eta_1, B_1)\) and \(B = (S, \pi, \eta, B)\) in \(O^G(X)\) with \(\text{im}(\pi_0) \subseteq A\) and \(\text{im}(\pi_1) \subseteq A\), and two morphisms \(a_0 : B \to B_0\) and \(a_1 : B_1 \to B\) in \(O^G(X)\). Define subsets of \(S\) which consists of those elements which are interacting with \(S_0\) and \(S_1\) via \(a_0\) and \(a_1\)

\[
\hat{S}_0 := \{s \in S \mid \exists s_0 \in S_0 \text{ with } (a_0)_{s,s_0} \neq 0\};
\]

\[
\hat{S}_1 := \{s' \in S \setminus \hat{S}_0 | \exists s_1 \in S_1 \text{ with } (a_1)_{s_1,s'} \neq 0\}.
\]

Define objects \(B^{\mathcal{U}} = (S^{\mathcal{U}}, \pi^{\mathcal{U}}, \eta^{\mathcal{U}}, B^{\mathcal{U}})\) and \(B^\perp = (S^\perp, \pi^\perp, \eta^\perp, B^\perp)\) by putting \(S^{\mathcal{U}} := \hat{S}_0 \cup \hat{S}_1\) and \(S^\perp = S \setminus S^{\mathcal{U}}\) and defining \(\pi^{\mathcal{U}}, \eta^{\mathcal{U}}, B^{\mathcal{U}}, \pi^\perp, \eta^\perp, B^\perp\) by restricting \(\pi, \eta, B\). There are obvious morphisms \(i^{\mathcal{U}} : B^{\mathcal{U}} \to B\) and \(i^\perp : B^\perp \to B\) in \(O^G(X)_A\) such that \(i^{\mathcal{U}} \oplus i^\perp : B^{\mathcal{U}} \oplus B^\perp \cong B\) is an isomorphism and morphisms \(a^{\mathcal{U}}_0 : B^{\mathcal{U}} \to B_0\) and \(a^\perp_1 : B^\perp \to B\) such that the relevant diagrams as they appear in the definition of a Karoubi filtration commute. However, we are not done since \(B^{\mathcal{U}}\) is not an object in \(O^G(X)_A\).

In order to finish the proof of assertion (ii) it suffices to construct an object \(\hat{B} = (\hat{S}, \hat{\pi}, \hat{\eta}, \hat{B})\) in \(O^G(X)_A\) together with an isomorphism \(\phi : \hat{B} \cong B^{\mathcal{U}}\) in \(O^G(X)\).

Choose functions \(u_0 : \hat{S}_0 \to S_0, g_0 : \hat{S}_0 \to G, u_1 : \hat{S}_1 \to S_1,\) and \(g_1 : \hat{S}_1 \to G\) such that \(g_0(s) \in \text{supp}((a_0)_{s,0(s)})\) holds for \(s \in \hat{S}_0\) and \(g_1(s) \in \text{supp}((a_1)_{u_1(s),s})\) holds for \(s \in \hat{S}_1\). Define a new object \(\hat{B} = (\hat{S}, \hat{\pi}, \hat{\eta}, \hat{B})\) in \(O^G(X)_A\) by
19.7 The Proof of the Axioms of a G-Homology Theory

\[\hat{S} := \hat{S}_0 \amalg \hat{S}_1; \]
\[\hat{\pi}(s) := \begin{cases}
 g_0(s)^{-1} \cdot \pi_0 \circ u_0(s) & \text{if } s \in \hat{S}_0; \\
 g_1(s) \cdot \pi_1 \circ u_1(s) & \text{if } s \in \hat{S}_1;
\end{cases} \]
\[\hat{\eta}(s) := \eta(s) \text{ for } s \in \hat{S}; \]
\[\hat{B}(s) := B(s) \text{ for } s \in \hat{S}. \]

Recall $S^U = \hat{S}_0 \amalg \hat{S}_1 = \hat{S}$. In order to show that \hat{B} and B^U are isomorphic, we want to apply the criterion appearing of Lemma 19.14.

Consider an element $x \in X$ and an open G_x-invariant neighbourhood U of x in X. Since a_0 and a_1 satisfy continuous control, we can find an open G_x-invariant neighbourhood $U' \subseteq U$ and $r' \in \mathbb{N}$ such that for $s \in S, s_0 \in S_0, g_0 \in \text{supp}_G((a_0)_{s,s_0})$ the implication
\[g_0^{-1} \cdot \pi_0(s_0) \in U', \eta(s_0) \geq r' \implies \pi(s) \in U \]
and for $s_1 \in S_1, s \in S, g_1 \in \text{supp}_G((a_1)_{s_1,s})$
\[g_1 \pi_1(s_1) \in U', \eta_1(s_1) \geq r' \implies \pi(s) \in U \]
hold. This implies that for $s \in \hat{S}_0 \amalg \hat{S}_1$ the implication
\[\hat{\pi}(s) \in U', \hat{\eta}(s) \geq r' \implies \hat{\pi}(s) \in U \]
is valid. The proof of the other implication
\[\hat{\pi}(s) \in U', \hat{\eta}(s) \geq r' \implies \hat{\pi}(s) \in U \]
for $s \in \hat{S}_0 \amalg \hat{S}_1$ is analogous and left to the reader. Now Lemma 19.14 implies that \hat{B} and B^U are isomorphic.

The constructions appearing in the proof of assertion (i) yield the desired result for $D^G(i)$ using Lemma 19.22.

Definition 19.24 ($D^G(X,A)$). Define the additive category $D^G(X,A)$ to be the quotient of $D^G(X)$ by the image of $D^G(i): D^G(A) \to D^G(X)$.

Obviously a G-map of G-CW-pairs $f: (X,A) \to (Y,B)$ induces a functor of additive categories
\[D^G(f): D^G(X,A) \to D^G(Y,B). \]

19.7 The Proof of the Axioms of a G-Homology Theory

The main result of this chapter is
Theorem 19.26 (The algebraic \(K \)-groups of \(\mathcal{D}^G(X,A) \) yield a \(G \)-homology theory). Let \(\mathcal{B} \) be a control coefficient category in the sense of Definition 19.1.

Then we obtain a \(G \)-homology theory with values in \(\mathbb{Z} \)-modules in the sense of Definition 11.1 by the covariant functor from the category of \(G \)-CW-pairs to the category of \(\mathbb{Z} \)-graded abelian groups sending \((X,A) \) to \(K_*(\mathcal{D}^G(X,A;\mathcal{B})) \).

19.7.1 The Long Exact Sequence of a Pair

Proposition 19.27. Given a \(G \)-CW-pair \((X,A) \), we have the inclusions \(i: A \to X \) and \(j: X \to (X,A) \) and obtain a long exact sequence, infinite to both sides and natural in \((X,A) \),

\[
\cdots \xrightarrow{\partial_{n+1}} K_n(\mathcal{D}^G(A)) \xrightarrow{K_n(\mathcal{D}(i))} K_n(\mathcal{D}^G(X)) \xrightarrow{K_n(\mathcal{D}(j))} K_n(\mathcal{D}^G(X,A)) \xrightarrow{\partial_n} K_{n-1}(\mathcal{D}^G(A)) \xrightarrow{K_{n-1}(\mathcal{D}(i))} K_{n-1}(\mathcal{D}^G(X)) \xrightarrow{K_{n-1}(\mathcal{D}(j))} K_{n-1}(\mathcal{D}^G(X,A)) \xrightarrow{\partial_{n-1}} \cdots.
\]

Proof. This follows from Lemma 19.23 [iii] and Theorem 18.5 [ii]. \(\Box \)

19.7.2 Some Eilenberg Swindles on \(\mathcal{O}^G(X) \)

Remark 19.28 (Eilenberg swindles on additive categories defined in terms of controlled topology). Sometimes we want to show that the algebraic \(K \)-theory of certain additive categories defined by controlled topology is weakly contractible. This is done in all cases by constructing an Eilenberg swindle. The basic strategy is illustrated for \(\mathcal{O}^G(X) \) as follows.

One defines a functor \(\text{sh}: \mathcal{O}^G(X) \to \mathcal{O}^G(X) \) which shifts one position to the right over \(\mathbb{N} \), as follows. It sends an object \(\mathcal{B} = (S, \pi, \eta, \mathcal{B}) \) to the object \(\text{sh}(\mathcal{B}) = (\text{sh}(S), \text{sh}(\pi), \text{sh}(\eta), \text{sh}(\mathcal{B})) \), where \(\text{sh}(S) = S, \text{sh}(\mathcal{B}) = \mathcal{B}, \text{sh}(\pi) = \pi, \text{sh}(\eta) = \eta + 1 \). Roughly speaking, nothing is changed, only the objects are moved one position to the right in the \(\mathbb{N} \)-direction. (Sometimes one also has to vary \(\pi \).) One easily checks that \(\text{sh}(\mathcal{B}) \) satisfies compact support over \(X \) and locally finiteness over \(\mathbb{N} \). The definition of \(\text{sh}(\phi) \) for morphisms \(\phi: \mathcal{B} \to \mathcal{B}' \) is the tautological one. Again it is easy to check that \(\text{sh}(\phi) \) will again satisfy finite \(G \)-support, bounded control over \(\mathbb{N} \), and continuous control. Moreover there is an obvious natural equivalence \(t: \text{id} \to \text{sh} \) of functors of additive categories \(\mathcal{O}^G(X) \to \mathcal{O}^G(X) \).
The basic idea which works in some special cases, is to define a functor $SH: \mathcal{O}^G(X) \to \mathcal{O}^G(X)$ on objects by $SH(B) = \bigoplus_{n=0}^{\infty} sh^n(B)$. This definition makes indeed sense since B satisfies \textit{locally finiteness over \mathbb{N}} and hence the set
\[\{(s, n) \in S \times \mathbb{N} \mid \eta(s) \leq n, B(s) \neq 0\} = \prod_{k=0}^{n} \eta^{-1}(k) \]
is finite. However, the obvious definition on morphisms will not work in general. The conditions \textit{compact support over X} and \textit{locally finiteness over \mathbb{N}} cause no difficulties, whereas conditions \textit{continuous control} is the problem. The reason is that in $SH(B)$ the objects are moved arbitrary far to the right concerning \mathbb{N} and the continuous control condition becomes more and more restrictive the larger the position with respect to \mathbb{N} is. One example where this problem does not occur is for instance the case $X = \{\bullet\}$ which we will handle in Lemma 19.29. If SH is well-defined, then one obtains the desired natural equivalence using $t: id \sim \rightarrow sh$ by
\[id \oplus SH = sh^0 \oplus \bigoplus_{n=0}^{\infty} sh^n \rightarrow sh^0 \oplus \left(\bigoplus_{n=0}^{\infty} sh^n \right) \cong \bigoplus_{n=1}^{\infty} sh^n = SH. \]

\textbf{Lemma 19.29.} If \mathcal{B} is a control coefficient category, then $\mathcal{O}^G(\{\bullet\})$ is flasque. In particular $K(\mathcal{O}^G(\{\bullet\}))$ is weakly contractible.

\textit{Proof.} The desired Eilenberg swindle described in Remark 19.28 is constructed in detail as follows. Next we define a functor of additive categories $SH: \mathcal{O}^G(\{\bullet\}) \to \mathcal{O}^G(\{\bullet\})$.

For an object $B = (S, \pi, \eta, \mathcal{B})$ in $\mathcal{O}^G(\{\bullet\})$, define $SH(B)$ by the quadruple $(SH(S), SH(\pi), SH(\eta), SH(\mathcal{B}))$, where for $s \in S$ and $n \in \mathbb{N}$ we put
\[SH(S) = \{(s, n) \in S \times \mathbb{N} \mid \eta(s) \leq n\}; \]
\[SH(\pi)(s, n) = \pi(s); \]
\[SH(\eta)(s, n) = n; \]
\[SH(\mathcal{B})(s, n) = B(s). \]

Obviously $SH(B)$ satisfies \textit{compact support over $\{\bullet\}$}. Since \mathcal{B} satisfies \textit{locally finiteness} and $SH(\eta')^{-1}(n) = \bigcup_{m=0}^{n} \eta^{-1}(m)$ holds for $n \in \mathbb{N}$, \mathcal{B}' satisfies \textit{locally finiteness}.

For two objects $B = (S, \pi, \eta, \mathcal{B})$ and $B' = (S', \pi', \eta', \mathcal{B}')$ and a morphism $\phi: B \to B'$ given by a collection $\{\phi_{s,s'}: B(s) \to B'(s') \mid s \in S, s' \in S'\}$, define the morphism $SH(\phi): SH(B) \to SH(B')$ by the collection
\[\{SH(\phi)(s, n), (s', n') : B(s) \to B'(s') \mid \]
\[s \in S, s' \in S', n \in \mathbb{N}, n' \in \mathbb{N}, \eta(s) \leq n, \eta'(s') \leq n' \} \]
where \(\text{SH}(\phi)_{(s,n),(s',n')} = \phi_{s,s'} \) if \(n - \eta(s) = n' - \eta'(s') \) and \(\text{SH}(\phi)_{(s,n),(s',n')} = 0 \) otherwise.

Since \(\phi \) satisfies finite \(G \)-support, the same is true for \(\text{SH}(\phi) \). Since \(\phi \) satisfies bounded control over \(\mathbb{N} \), we can find a natural number \(N \) such that \(\phi_{s,s'} \neq 0 \implies |\eta(s) - \eta'(s')| \) holds for \(s \in S \) and \(s' \in S' \). Now consider \((s,n) \in \text{SH}(S) \) and \((s',n') \in \text{SH}(S') \) with \(\text{SH}(\phi)_{(s,n),(s',n')} \neq 0 \). Since then
\[
|n - \eta(s)| = |n' - \eta'(s')| = |\eta(s) - \eta'(s')| \leq N.
\]
Hence \(\text{SH}(\phi) \) satisfies bounded control over \(\mathbb{N} \). Obviously \(\text{SH}(\phi) \) satisfies continuous control since we are working over \(\{\bullet\} \). One easily checks that \(\text{SH} \) is a well-defined functor of additive categories.

It remains to construct a natural equivalence \(T: \text{id} \oplus \text{SH} \xrightarrow{\sim} \text{SH} \) of functors of additive categories. We have to define for any object \(B = (S, \pi, \eta, \mathcal{B}) \) an isomorphism \(T(B): B \oplus \text{SH}(B) \xrightarrow{\sim} \text{SH}(B) \). We obtain a bijection of sets
\[
u: S \prod \text{SH}(S) \xrightarrow{\sim} \text{SH}(S)
\]
by sending \(s \in S \) to \((s, \eta(s))\) and \((s,n) \in \text{SH}(S)\) to \((s, n + 1)\). Note that for \(s \in S \) we have \(B(s) = \text{SH}(B) \circ u(s) \) and for \((s,n) \in \text{SH}(S)\) we have \(\text{SH}(B(s,n)) = B(s) = \text{SH} \circ u(s,n) \). Now we can define \(T(B)_{t,t'} \) for \(t \in S \prod \text{SH}(S) \) and \(t' \in \text{SH}(S) \) to be \(\text{id}_{B(t')} \) if \(u(t) = t' \) and to be \(0 \) if \(u(t) \neq t' \). We leave the elementary proof to the reader to check that \(T(B) \) is a well-defined isomorphism in \(\mathcal{O}^G(\{\bullet\}) \) which is natural in \(B \) and hence defines the desired natural equivalence \(T: \text{id} \oplus \text{SH} \xrightarrow{\sim} \text{SH} \).

Thus we have defined an Eilenberg swindle \((\text{SH}, T)\) on \(\mathcal{O}^G(\{\bullet\}) \). The weak contractibility of \(K(\mathcal{O}^G(\{\bullet\})) \) follows from Theorem \([6.36][6.36]\).

Comment 22: Later add an exercise showing that \(\mathcal{O}^G(G/H) \) is not necessarily flasque.

The next result generalizes Lemma \([19.29][19.29]\). The basic idea of the proof is the same but becomes much more complicated since now we have to deal with the condition continuous control.

Lemma 19.30. Let \(X \) be a \(G \)-CW-complex which is \(G \)-contractible, i.e., \(G \)-homotopy equivalent to \(\{\bullet\} \).

Then \(K(\mathcal{O}^G(X)) \) is weakly contractible.

Proof. Denote by \(\text{cone}(X) \) the cone of \(X \). As \(X \) is \(G \)-contractible, there are \(G \)-maps \(i: X \to \text{cone}(X) \) and \(r: \text{cone}(x) \to X \) with \(r \circ i = \text{id}_X \). Hence the composite of maps of spectra
\[
K(\mathcal{O}^G(X)) \xrightarrow{K(\mathcal{O}^G(i))} K(\mathcal{O}^G(\text{cone}(X))) \xrightarrow{K(\mathcal{O}^G(r))} K(\mathcal{O}^G(X))
\]
is the identity. Therefore it suffices to show that $K(\text{cone}(X))$ is weakly contractible.

We explain the basic idea of the proof before we give the details. In the construction of an Eilenberg swindle for a given object $B = (S, \pi, \eta, B)$ one assigns to B a new object $SH(B)$, where one adds for $s \in S$ a copy of $B(s)$ at n for each natural number $n \geq \eta(s)$. The problem is to specify, where this copy over n sits in X, i.e., to define the image of this object under π^{SH}. The idea is to move the copies of the object $B(s)$ with the right speed to the cone point. This has to be done fast enough so that the obvious definition of $SH(\phi)$ for a morphism $\phi: B \to B'$ still defines continuous control but slow enough so that the desired obvious transformation $T(B): B \oplus SH(B) \xrightarrow{=} SH(B)$ satisfies continuous control. This will lead to the properties of the function ρ below.

Recall that $\text{cone}(X)$ is defined as the G-pushout, where $i_0: X \to X \times [0, 1]$ sends x to $(x, 0)$

$$
\begin{array}{ccc}
X & \xrightarrow{i_0} & X \times [0, 1] \\
\downarrow & & \downarrow \text{pr} \\
\{\bullet\} & \xrightarrow{i_0} & \text{cone}(X)
\end{array}
$$

In the sequel we write $[x, t] = \text{pr}(x, t)$ for $(x, t) \in X \times [0, 1]$. For $t' \in [0, 1]$ we define $t' \cdot [x, t] := [x, t't]$. Denote by \ast the cone point $[x, 0]$ for any $x \in X$, or, equivalently, $\ast = i_0(\{\bullet\})$. For $z = [x, t] \in \text{cone}(X)$ we denote $z_t = t$. For $z = [x, t] \in \text{cone}(X) \setminus \{\ast\}$ we denote $z_X = x$. In particular $\text{pr}(x, t)_X = x$ for $x \in X$, $t \in (0, 1]$, and $\text{pr}(x, t)_t = t$ for $x \in X$ and $t \in [0, 1]$.

Next we define a functor of additive categories $SH: O^G(\text{cone}(X)) \to O^G(\text{cone}(X))$.

For this purpose we choose a function $\rho: \mathbb{N} \times \mathbb{N} \to (0, 1]$ with the following three properties.

- We have
 \begin{equation}
 \lim_{m \to \infty} \rho(m, 0) = 1;
 \end{equation}

- For every $m \in \mathbb{N}$, we have
 \begin{equation}
 \lim_{n \to \infty} \rho(m, n) = 0;
 \end{equation}

- For every $N \in \mathbb{N}$ and $\mu > 0$, there exists $M \in \mathbb{N}$ satisfying for all $m, m', n \in \mathbb{N}$ the implication
 \begin{equation}
 m \geq M, |m - m'| \leq N \implies |\rho(m, n) - \rho(m', n)| < \mu;
 \end{equation}
For every $\mu > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$ the implication

$$\tag{19.34} n \geq N, m \leq n \implies 1 - \mu \leq \frac{\rho(m, n + 1 - m)}{\rho(m, n - m)} \leq 1$$

holds.

If $(a_k)_{k \in \mathbb{N}}$ is any sequence of elements in $(0, 1]$ such that $\lim_{k \to \infty} a_k = 0$ and $\sum_{k=0}^{\infty} a_k = \infty$, then we can take $\rho(m, n) := \exp(-\sum_{k=m}^{m+n} a_k)$. An example for $(a_k)_{k \in \mathbb{N}}$ is $a_k = 1/k$.

The functor SH sends an object $B = (S, \pi, \eta, B)$ to the object $\text{SH}(B) = (\text{SH}(S), \text{SH}(\pi), \text{SH}(\eta), \text{SH}(B))$, where for $s \in S$ we put

$$\text{SH}(S) = \{(s, n) \mid s \in S, n \in \mathbb{N}, n \geq \eta(s)\}$$

and define for $(s, n) \in \text{SH}(S)$

$$\text{SH}(\pi)(s, n) = \rho(\eta(s), n - \eta(s)) \cdot \pi(s);$$
$$\text{SH}(\eta)(s, n) = n;$$
$$\text{SH}(B)(s, n) = B(s).$$

Since B satisfies compact support over X, there is a compact subset $C \subseteq \text{cone}(X)$ with $\text{im}(\pi) \subseteq C$. This implies

$$\text{im}(\text{SH}(\pi)) \subseteq [0, 1] \cdot C := \{t \cdot c \mid t \in [0, 1], c \in C\}.$$

Since $[0, 1] \cdot C$ is compact, $\text{SH}(B)$ satisfies compact support over X.

Since B satisfies locally finiteness over \mathbb{N} and $\text{SH}(\eta)^{-1}(m) = \coprod_{n=0}^{m} \eta^{-1}(n)$ holds, $\text{SH}(B)$ satisfies locally finiteness over \mathbb{N}.

Consider a morphism $\phi: B = (S, \pi, \eta, B) \to B' = (S', \pi', \eta', B')$ given by the collection $\{\phi_{s,s'}: B(s) \to B'(s') \mid s \in S, s' \in S'\}$. Define $\text{SH}(\phi): \text{SH}(B) \to \text{SH}(B')$ by

$$\text{SH}(\phi)(s, n), (s', n') = \begin{cases}
\phi_{s,s'} & \text{if } n' - \eta'(s') = n - \eta(s); \\
0 & \text{otherwise,}
\end{cases}$$

for $(s, n) \in \text{SH}(B)$ and $(s', n') \in \text{SH}(B')$.

Since ϕ satisfies finite G-support, there exists a finite subset $F \subseteq G$ such that $\text{supp}_G(\phi) \subseteq F$ holds for every $s \in S$, and $s' \in S'$. This implies $\text{supp}_G(\text{SH}(\phi)(s, n), (s', n')) \subseteq F$ for every $(s, n) \in \text{SH}(S)$, and $(s', n') \in \text{SH}(S')$. Hence $\text{SH}(\phi)$ satisfies finite G-support.

Since ϕ satisfies bounded control over \mathbb{N}, there exists a natural number N with $|\eta(s) - \eta'(s')| \leq N$ for all $s \in S$ and $s' \in S'$ with $\phi_{s,s'} \neq 0$. Consider $(s, n) \in \text{SH}(B)$ and $(s', n') \in \text{SH}(B')$ with $\text{SH}(\phi)(s, n), (s', n') \neq 0$. Then $n' - \eta'(s') = n - \eta(s)$ and $|\eta(s) - \eta'(s')| \leq N$. This implies
19.7 The Proof of the Axioms of a G-Homology Theory

(19.35) $|\text{SH}(\eta)(s, n) - \text{SH}(\eta')(s', n')| = |n - n'| = |\eta(s) - \eta'(s')| \leq N.$

Hence $\text{SH}(\phi)$ satisfies bounded control over \mathbb{N}. The hard part is to show that $\text{SH}(\phi)$ satisfies continuous control. We only deal with the implication (19.5). The proof for the other implication (19.6) is completely analogous.

Consider $[x, t] \in \text{cone}(X)$ and an open $G_{[x, t]}$-invariant neighborhood U of $[x, t]$ in $\text{cone}(X).$ We have to find an open $G_{[x, t]}$-invariant neighborhood U' of $[x, t]$ in $\text{cone}(X)$ satisfying $U' \subseteq U$ and a natural number r' such that for all $(s, n) \in \text{SH}(S),$ $(s', n') \in \text{SH}(S')$, and $g \in \text{supp}_G(\text{SH}(\phi)(s, n), (s', n'))$ the implication

(19.36) $g \cdot \text{SH}(\pi)(s, n) \in U', \text{SH}(\eta)(s, n) \geq r' \implies \text{SH}(\pi')(s', n') \in U$

holds.

We begin with the case, where $[x, t]$ is different from the cone point $*$, or, equivalently $0 < t \leq 1.$ In the sequel we denote for $t \in (0, 1]$ and $\epsilon > 0$ by $I_t(\epsilon)$ the open neighborhood of t in $[0, 1]$ given by $(t - \epsilon, t + \epsilon) \cap [0, 1].$

Choose an open G_x-invariant neighborhood V_0 of x in X and $\epsilon > 0$ satisfying

(19.37) $\text{pr}(V_0 \times I_t(\epsilon)) \subseteq U;$

(19.38) $\epsilon \leq t/2.$

Since ϕ satisfies continuous control, we can find for $t' \in [t/2, 1]$ an open G_x-invariant neighborhood $V'[t']$ of $x,$ a real number $\delta'[t'] > 0,$ and $r'[t'] \in \mathbb{N}$ such that for $s \in S,$ $s' \in S'$ and $g \in \text{supp}_G(\phi_{s,s'})$ the implication

(19.39) $g\pi(s)_X \in V'[t'], \pi(s)_I \in I_{\delta'[t']}(t'), \eta(s) \geq r'[t'] \implies \pi'(s')_X \in V_0, \pi'(s')_I \in I_{\epsilon/8}(t')$

holds. Obviously we can arrange $0 < \delta'[t'] < \epsilon/8.$ Since $[t/2, 1]$ is compact, we can find finitely many elements t'_1, t'_2, \ldots, t'_l in $[t/2, 1]$ such that for each $t' \in [t/2, 0]$ there exists an element $i(t') \in \{1, 2, \ldots, l\}$ satisfying $t' \in I_{\delta'[t'_i]}(t'_i).$

Put

$$V' = \bigcap_{i=1}^l V'[t'_i];$$

$$r'_0 = \max\{r'[t'_i] \mid i = 1, 2, \ldots, l\}.$$

Then V' is an open G_x-invariant neighbourhood of x in $X.$ Moreover, for $s \in S,$ $s' \in S'$, $g \in \text{supp}_G(\phi_{s,s'}),$ and $t' \in [t/2, 1]$ the implication
holds, since \(\pi(s)_I \geq t/2 \) implies the existence of \(i \in \{1, 2, \ldots, l\} \) satisfying
\[
\pi(s)_X \in V'[t_i] \quad \text{and} \quad \pi(s)_I \in I_{\delta[t'_i]}(t_i)
\]
from (19.39), and now one can apply the triangle inequality to \(\pi(s)_I, \pi'(s')_I, \) and \(t_i \) using \(\delta'[t'_i] + \epsilon/8 < \epsilon/8 + \epsilon/8 = \epsilon/4. \)

Let \(N \) be the number appearing in (19.35). Choose a natural number \(M \)
such that (19.33) holds if we put \(\epsilon/2. \) Since \(\lim_{n \to \infty} \rho(m, n) = 0 \) holds
for \(m \in \{0, 1, \ldots, \max\{r'_0, M\}\} \) by (19.32), we can find a natural number \(r' \)
satisfying \(r' \geq \max\{r'_0, M\} \) such that for every \(m, n \in \mathbb{N} \) the implication

\[
(19.41) \quad m \leq \max\{r'_0, M\}, n \geq r' - \max\{r'_0, M\} \implies \rho(m, n) < t/2
\]

holds. Next we show that the desired implication (19.36) holds if we put
\(U' := V' \times I_{\epsilon/4}(t) \) and use the number \(r' \) above.

Consider \((s, n) \in \text{SH}(S), (s', n') \in \text{SH}(S'), \) and \(g \in \text{supp}(\phi_{s,s'}) \) satisfying
\(\text{SH}(\pi)(s, n) \in U' \) and \(\eta(s, n) := n \geq r'. \) Since \(\text{SH}(\pi)(s, n) \in U' \) implies that
\(\text{SH}(\pi)(s, n)_I = \rho(\eta(s), n - \eta(s)) \cdot \pi(s)_I \) belongs to \(I_{\epsilon/4}(t) \), we get

\[
(19.42) \quad \rho(\eta(s), n - \eta(s)) \geq \rho(\eta(s), n - \eta(s)) \cdot \pi(s)_I \geq t - \epsilon/4 \quad \geq t/2.
\]

We conclude from (19.41) and (19.42) that \(\eta(s) > \max\{r'_0, M\} \) holds. In
particular we get \(\eta(s) \geq r'_0 \) and \(\eta(s) \geq M. \)

Since \(n' - \eta'(s') = n - \eta(s) \), we conclude from (19.33) and (19.35)

\[
(19.43) \quad |\rho(\eta'(s'), n' - \eta'(s')) - \rho(\eta(s), n - \eta(s))| \leq \epsilon/2.
\]

We have \(\text{SH}(\pi)(s, n)_I = \rho(\eta(s), n - \eta(s)) \cdot \pi(s)_I \in I_{\epsilon/4}(t). \) This implies

\[
\pi(s)_I \geq \rho(\eta(s), n - \eta(s)) \cdot \pi(s)_I \geq t - \epsilon/4 \geq t/2.
\]

Since \(g \cdot \text{SH}(\pi)(s)_X = g\pi(s)_X \in V' \) and \(\pi(s)_I \geq t/2 \) holds, we get

\[
(19.44) \quad \pi'(s')_X \in V_0;
\]

\[
(19.45) \quad |\pi'(s')_I - \pi(s)_I| < \epsilon/4,
\]

from (19.40). We estimate
19.7 The Proof of the Axioms of a G-Homology Theory

\begin{align*}
|\text{SH}(\pi'(s')_I - t)| & \leq |\text{SH}(\pi'(s')_I - \text{SH}(\pi)(s)_I)| + |\text{SH}(\pi)(s)_I - t| \\
& = |\rho(\eta'(s'), n' - \eta'(s')) \cdot \pi'(s')_I - \rho(\eta(s), n - \eta(s)) \cdot \pi(s)_I| \\
& \quad + |\text{SH}(\pi)(s)_I - t| \\
& \leq |\rho(\eta'(s'), n' - \eta'(s')) \cdot \pi'(s')_I - \rho(\eta'(s'), n' - \eta'(s')) \cdot \pi(s)_I| \\
& \quad + |\rho(\eta'(s'), n' - \eta'(s')) \cdot \pi(s)_I - \rho(\eta(s), n - \eta(s)) \cdot \pi(s)_I| \\
& \quad + |\text{SH}(\pi)(s)_I - t| \\
& = |\rho(\eta'(s'), n' - \eta'(s'))| \cdot |\pi'(s')_I - \pi(s)_I| \\
& \quad + |\rho(\eta'(s'), n' - \eta'(s')) - \rho(\eta(s), n - \eta(s))| \cdot |\pi(s)_I| + \epsilon/4 \\
& \leq |\pi'(s')_I - \pi(s)_I| + |\rho(\eta'(s'), n' - \eta'(s')) - \rho(\eta(s), n - \eta(s))| + \epsilon/4 \\
& \leq \epsilon/4 + \epsilon/2 + \epsilon/4 \\
& = \epsilon.
\end{align*}

This implies together with \ref{19.37} and \ref{19.44} that $\text{SH}(\pi'(s')) \subseteq U$ holds. This finishes the proof of the implication \ref{19.36} in the case $[x, t] \neq \ast$.

Next we show the implication \ref{19.36} in the case $[x, t] = \ast$. Consider an open G-invariant neighborhood U of \ast. We have to find an open G-invariant neighbourhood U' of \ast and a natural number r' such that for all $(s, n) \in \text{SH}(S)$, $(s', n') \in \text{SH}(S')$ and $g \in \text{supp}_G(\text{SH}(\phi)_{(s, n), (s', n')})$ the implication

\begin{equation}
\tag{19.46}
g \cdot \text{SH}(\pi)(s, n) \in U', \text{SH}(\eta)(s, n) \geq r' \Rightarrow \text{SH}(\pi')(s', n') \in U
\end{equation}

holds.

For $\epsilon > 0$, we define V_ϵ to be the open G-invariant neighborhood of \ast in $\text{cone}(X)$ given by

$$V_\epsilon = \{[x, t] \mid x \in X, t < \epsilon\}.$$

Since B' satisfies compact support over $\text{cone}(X)$, the subset $[0, 1] \cdot \text{im}(\pi')$ of $\text{cone}(X)$ is compact. Hence there exists an $\epsilon > 0$ satisfying

$$V_\epsilon \cap [0, 1] \cdot \text{im}(\pi') \subseteq U.$$

Since $\text{im}(\text{SH}(\pi')) \subseteq [0, 1] \cdot \text{im}(\pi')$ holds, it suffices to prove \ref{19.46} in the special case $U = V_\epsilon$.

Since ϕ satisfies continuous control, there exists an open G-invariant neighborhood U'_0 of \ast in $\text{cone}(X)$ and a natural number r'_2 such that for all $s \in S$, $s' \in S'$ and $g \in \text{supp}_G(\phi_{s, s'})$ the implication

\begin{equation}
\tag{19.47}
g \pi(s) \in U'_0, \eta(s) \geq r'_2 \Rightarrow \pi'(s') \in V_\epsilon
\end{equation}

holds. Since B satisfies compact support over $\text{cone}(X)$, there exists $\delta > 0$ satisfying

$$V_\delta \cap [0, 1] \cdot \text{im}(\pi) \subseteq U'_0.$$
We get from (19.47) the implication

\[(19.48) \quad \text{supp}_G(\phi_{s',s'}) \neq \emptyset, \pi(s) \leq \delta, \eta(s) \geq r'_2 \implies \pi'(s') \in V_\epsilon.\]

Let \(N\) be the number appearing in (19.35). Choose a natural number \(M\) such that (19.33) holds if we put \(\mu = \epsilon/2\). Since \(\lim_{n \to \infty} \rho(m, n) = 0\) holds for \(m \in \{0, 1, \ldots, N + \max\{r', M\}\}\) by (19.32), we can find a natural number \(r'\) satisfying \(r' \geq N + \max\{r'_2, M\}\) such that for every \(m, n \in \mathbb{N}\) the implication

\[(19.49) \quad m \leq N + \max\{r'_2, M\}, n \geq r' - N - \max\{r'_2, M\} \implies \rho(m, n) < \epsilon/2\]

holds.

Next we want to prove the implication (19.46) in the special case \(U = V_\epsilon\), were we take \(r'\) to be the natural number above and \(U' = V_\epsilon^{\ell/2}\). Choose \((s, n) \in \text{SH}(s), (s', n') \in \text{SH}(S')\) and \(g \in \text{supp}_G(\text{SH}(\phi)_{(s, n), (s', n')})\) satisfying \(\text{SH}(\pi)(s, n)_I \leq \epsilon/2\) and \(\text{SH}(\eta)(s, n) := n \geq r'\). We have to show \(\pi'(s')_I \leq \epsilon\).

If \(\rho(\eta'(s'), n' - \eta'(s')) < \epsilon\) holds, then we get

\[\text{SH}(\pi')(s') = \rho(\eta'(s'), n' - \eta'(s')) \cdot \pi'(s') \in V_\epsilon.\]

Hence we can assume without loss of generality that

\[(19.50) \quad \rho(\eta'(s'), n' - \eta'(s')) \geq \epsilon.\]

We conclude from (19.49) and (19.50) that \(\eta'(s') \geq N + \max\{r'_2, M\}\) holds. In particular we have \(\eta'(s') \geq N + r'_2\) and \(\eta'(s') \geq M\). Since \(n' - \eta'(s') = n - \eta(s)\) holds, we conclude from (19.33) that

\[|\rho(\eta'(s'), n' - \eta'(s')) - \rho(\eta(s), n - \eta(s))| \leq \epsilon/2\]

holds. This implies together with (19.50)

\[(19.51) \quad \rho(\eta(s), n - \eta(s)) \geq \epsilon/2.\]

Hence we get

\[
\pi(s)_I = \frac{\text{SH}(\pi)(s)_I}{\rho(\eta(s), n - \eta(s))} \leq \frac{2 \cdot \text{SH}(\pi)(s)_I}{\epsilon} \leq \frac{2 \cdot \delta \cdot \epsilon/2}{\epsilon} = \delta.
\]

Since \(\eta'(s') \geq N + r'_2\), we conclude \(\eta(s) \geq r'_2\) from (19.35). Finally (19.48) implies \(\pi'(s') \in V_\epsilon\).

This finishes the proof that \(\text{SH}(\phi)\) is a well-defined morphism. Now one easily checks that \(\text{SH}\) is a well-defined functor of additive categories.

Next we define a natural equivalence of covariant functors of additive categories \(\mathcal{O}_c^G(\text{cone}(X)) \to \mathcal{O}_c^G(\text{cone}(X))\)

\[T: \text{id} \oplus \text{SH} \xrightarrow{\cong} \text{SH}\]
We have to define for an object $B = (S, \pi, \eta, B)$ an isomorphism $T(B) \colon B \oplus \text{SH}(B) \xrightarrow{\cong} \text{SH}(B)$ in $O^G(\text{cone}(X))$. Define a bijection

$$u : \coprod S \text{SH}(S) \xrightarrow{\cong} \text{SH}(S)$$

by sending $s \in S$ to $(s, \eta(s))$ and $(s, n) \in \text{SH}(S)$ to $(s, n + 1)$. For $z \in \coprod S \text{SH}(S)$ and $(s, n) \in \text{SH}(S)$ define $T(B)_{z,(s,n)}$ by $\text{id}_{B(s)}$ for $(s, n) = u(z)$ and by 0 otherwise. Note that $\text{supp}_G(T(B))$ is empty or $\{e\}$. Obviously $T(B)$ satisfies finite G-support and bounded control over \mathbb{N}, whereas continuous control is proved as follows. We only deal with the implication (19.5).

The proof for the other implication (19.6) is completely analogous.

Consider an element $[x,t] \in \text{cone}(X)$ and a $G_{[x,t]}$-invariant neighbourhood U of $[x,t]$ in $\text{cone}(X)$. It remains to construct a $G_{[x,t]}$-invariant neighbourhood U' of $[x,t]$ in $\text{cone}(X)$ with $U' \subseteq U$ and a natural number r' such that for $s \in S$ the implication

$$\pi(s) \in U', \eta(s) \geq r' \implies \text{SH}(\pi)(s, \eta(s)) \in U$$

and for $(s, n) \in \text{SH}(S)$ the implication

$$\text{SH}(\pi)(s, n) \in U', \text{SH}(\eta)(s, n) \geq r' \implies \text{SH}(\pi)(s, n + 1) \in U$$

hold.

Next we show that we can choose $\mu \in (0, 1]$ and an open a $G_{[x,t]}$-invariant neighbourhood U' of $[x,t]$ in $\text{cone}(X)$ satisfying

$$t' \cdot U' \subseteq U \text{ for all } t' \in [1 - \mu, 1].$$

We first consider the case $[x,t] = \ast$. Recall that $\text{pr} : X \times [0, 1] \rightarrow \text{cone}(X)$ is the obvious projection. Let $p : X \rightarrow X/G$ be the canonical projection. We have $X \times \{0\} \subseteq \text{pr}^{-1}(U) \subseteq X \times [0, 1]$ as $\ast \in U$. This implies

$$X/G \times \{0\} \subseteq p(\text{pr}^{-1}(U)) \subseteq X/G \times [0, 1].$$

Since X/G is a CW-complex and hence paracompact, see [670], and $p(\text{pr}^{-1}(U))$ is open, we can find a continuous map $\epsilon : X/G \rightarrow (0, 1)$ such that $\{(xG, t) \mid xG \in X/G, t < \epsilon(xG)\}$ is contained in $p(\text{pr}^{-1}(U))$. Define

$$U' = \text{pr}\{(x, t) \mid x \in X, t < \epsilon \circ p(x)\}.$$

This is an open G-invariant neighborhood of \ast in $\text{cone}(X)$ satisfying $U' \subseteq U$ and $[0, 1] \cdot U' = U'$. Hence we choose for μ any value in $(0, 1]$.

Next we consider the case $[x,t] \neq \ast$, or, equivalently, $t > 0$. Let $p : X \rightarrow X/G_x$ be the projection. Then $\text{pr}^{-1}(U)$ is an open G_x-invariant neighbourhood of $(x, t) \in X \times [0, 1]$ and $p(\text{pr}^{-1}(U))$ is an open neighbourhood of $(p(x), t)$ in $X/G_x \times [0, 1]$. Choose an open neighborhood V' of $p(x)$ in X/G_x.
and $\epsilon \in \mathbb{R}$ with $0 < \epsilon < t/2$ such that $V' \times (t - \epsilon, t + \epsilon)$ is contained in $p(pr^{-1}(U))$. Put $V = p^{-1}(V')$. Then V is an open G_x-invariant neighborhood of x such that $V \times (t - \epsilon, t + \epsilon)$ is contained in $pr^{-1}(U)$. Choose $\mu \in (0, 1]$ such that $(1 - \mu) \cdot (t - \epsilon/2) > t - \epsilon$ holds. Then $t't'' \in (t - \epsilon, t + \epsilon)$ holds for $t' \in [1 - \mu, 1]$ and $t'' \in (t - \epsilon/2, t + \epsilon/2)$. Put

$$U' = pr((V \times (t - \epsilon/2, t + \epsilon/2))).$$

This is an open G_x-invariant neighbourhood of $[x, t]$ satisfying \[19.54\]. This finishes the proof that we can choose $\mu \in (0, 1]$ and an open a $G_{[x, t]}$-invariant neighbourhood U' of $[x, t]$ in cone(X) satisfying \[19.54\].

Because of \[19.31\] and \[19.34\] we can choose a natural number r' such that for all $m \in \mathbb{N}$ with $m \geq r'$ we have

$$1 - \mu \leq \rho(m, 0) \leq 1$$

and for all $m, n \in \mathbb{N}$ with $m \leq n$ and $n \geq r'$ we have

$$1 - \mu \leq \frac{\rho(m, n + 1 - m)}{\rho(m, n - m)} \leq 1.$$

Now \[19.32\] follows from \[19.54\] and \[19.55\] since $\text{SH}(\pi)(s, \eta(s)) = \rho(\eta(s), 0) \cdot \pi(s)$ holds. Moreover, \[19.53\] follows from \[19.54\] and \[19.56\], since $\text{SH}(\eta)(s, n) = n$ and $\text{SH}(\pi)(s, n + 1) = \frac{\rho(n, n + 1 - \eta(s))}{\rho(n, n - \eta(s))} \cdot \text{SH}(\pi)(s, n)$ hold.

One easily checks that $T(B)$ is an isomorphism and the collection of the $T(B)$-s fit together to define the desired natural equivalence T.

Thus we have defined an Eilenberg swindle (SH, T) on $O^G(\text{cone}(X))$. The weak contractibility of $K(O^G(\text{cone}(X)))$ follows from Theorem 6.36 \[20\]. \[21\]

19.7.3 Excision and G-Homotopy Invariance

Lemma 19.57. Let (X, A) be a G-CW-pair and let $B = (S, \pi, \eta, B)$ be an object in $O^G(X)$. Choose a nested sequence of open G-invariant sets

$$X \supseteq V_0 \supseteq V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots \supseteq A$$

together with a G-map $\rho: V_0 \rightarrow A$ such that $\bigcap_{n \geq 0} \overline{V_n} = A$ and $\rho|_A = A$ hold. Fix a non-decreasing function $\omega: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim_{n \rightarrow \infty} \omega(n) = \infty$ and a natural number $w \in \mathbb{N}$. Define new objects $B^{\omega, w} = (S^{\omega, w}, \pi^{\omega, w}, \eta^{\omega, w}, B^{\omega, w})$ and $B^\perp = (S^\perp, \pi^\perp, \eta^\perp, B^\perp)$ by

$$S^{\omega, w} := \{s \in S \mid \eta(s) < w \text{ or } \pi(s) \in V_{\omega \eta(s)}\};$$

$$S^\perp = S \setminus S^{\omega, w};$$

$$\pi^\perp = \pi;$$

$$\eta^\perp(s) = \eta(s) \cdot \omega(n)$$

for $s \in S$ and $n \in \mathbb{N}$.
and by defining $\pi^{\omega, w}$, $\eta^{\omega, w}$, $B^{\omega, w}$, π^\perp, η^\perp, and B^\perp by restricting π, η, and B.

(i) The desired sequences $(V_n)_{n \geq 0}$ and the G-map ρ exist;
(ii) There are obvious morphisms $i^{\omega, w}: B^{\omega, w} \to B$ and $i^\perp: B^\perp \to B$ such that $i^{\omega, w} \oplus i^\perp: B^{\omega, w} \oplus B^\perp \xrightarrow{\pi} B$ is an isomorphism, and $\text{im}(\pi^\perp) \subseteq X \setminus A$;
(iii) There is an object $\hat{B} = (\hat{S}, \hat{\pi}, \hat{\eta}, \hat{B})$ in $O^G(A)$ such that $B^{\omega, w}$ and \hat{B} are isomorphic in $O^G(A)$;
(iv) Consider an object $B' = (S', \pi', \eta', B')$ in $O^G(A)$ and a morphism $\phi: B' \to B$ in $O^G(X)$. Then we can find (ω, w) and a morphism $\phi': B' \to B^{\omega, w}$ such that ϕ factorizes as

$$\phi: B' \xrightarrow{\phi'} B^{\omega, w} \xrightarrow{\iota^{\omega, w}} B.$$

Proof. (i) The inclusion $A \to X$ is a G-cofibration, or, equivalently, a G-NDR-pair. The proofs of these facts in the non-equivariant case carry over to the equivariant case. This implies assertion (i). For some information and relevant references we refer for instance to [619, Chapter 1]. The basic ideas of the proof can also be derived from the construction appearing in the proof of Theorem 7.1. The basic idea is to use the retraction $r: D^n \setminus \{0\} \to S^{n-1}$ given by the radial projection and the continuous function $u: D^n \to [0, 1]$ given by the Euclidean norm which obviously satisfies $u^{-1}(1) = S^{n-1}$ and $u^{-1}(0, 1]) = D^n \setminus \{0\}$.

(ii) This is obvious.

(iii) We define $\hat{B} = (\hat{S}, \hat{\pi}, \hat{\eta}, \hat{B})$ by

$$\hat{S} := S^{\omega, w};$$
$$\hat{\pi}(s) := \begin{cases} a_0 & \text{if } \eta(s) < w; \\ \rho \circ \pi(s) & \text{if } \eta(s) \geq w; \end{cases}$$
$$\hat{\eta}(s) := \eta(s);$$
$$\hat{B}(s) := B(s),$$

where $s \in S^{\omega, w}$ and a_0 is some point in A. In order to show that $B^{\omega, w}$ and \hat{B} are isomorphic in $O^G(X)$, we check the criterion appearing in Lemma 19.14.

So consider $x \in X$ and an open G_x-invariant neighborhood U of x in X. Since B satisfies compact support over X, we can find a compact subset $C \subseteq X$ such that $\text{im}(\pi) \subseteq C$ holds. Choose an open G_x-invariant neighbourhood U'_0 of x in X with $U'_0 \subseteq U$. Next we show that there exists a natural number r'_0 satisfying the implication

$$y \in C, \rho(y) \in U'_0, y \in V_{\omega(r'_0)} \implies y \in U.$$

Suppose that this is not the case. Since $V_m \subseteq V_n$ holds for $m \geq n$, and $\lim_{n \to \infty} \omega(n) = \infty$, we can find a sequence $(y_n)_{n \geq 0}$ of elements in C such that
\(\rho(y_n) \in U'_0 \), \(y_n \in V_n \) and \(y_n \notin U \) holds for \(n \geq 0 \). Since \(C \) is compact, there is a strictly monotone increasing function \(u : \mathbb{N} \to \mathbb{N} \) with \(\lim_{n \to \infty} u(n) = \infty \) and an element \(y \in C \) satisfying \(\lim_{n \to \infty} y_{u(n)} = y \). Since for each natural number \(n \) we have \(y_{u(n)} \in V_{u(n)} \) for \(m \geq n \), we get \(y \in V_{u(n)} \) for every \(n \geq 0 \). This implies \(y \in \bigcap_{n \geq 0} V_{u(n)} = A \) and hence \(\rho(y) = y \). From \(\lim_{n \to \infty} y_{u(n)} = y \) we conclude \(\lim_{n \to \infty} \rho(y_{u(n)}) = \rho(y) = y \). Since \(\rho(y_{u(n)}) \in U'_0 \) for \(n \geq 0 \), we conclude \(y \in U'_0 \) and hence \(y \in U \). Since \(\lim_{n \to \infty} y_{u(n)} = y \) holds, there exists a natural number \(n_0 \) with \(y_{u(n)} \in U \) for \(n \geq n_0 \), a contradiction. This finishes the proof of (19.57).

Suppose that the element \(x \in X \) does not belong to \(A \). Then we can find an open \(G_x \)-invariant neighborhood \(U'_1 \) of \(x \) and a natural number \(r'_1 \) satisfying the implication

\[y \in C, y \in V_{\omega(r'_1)} \implies y \notin U'_1. \tag{19.59} \]

Suppose the contrary. The same ideas as they appear in the sketch of the proof of assertion \(\text{1} \) lead to the construction of a sequence of open \(G_x \)-invariant sets \(X \supseteq W_0 \supseteq W_1 \supseteq W_2 \supseteq \cdots \supseteq \{ x \} \) with \(\bigcap_{n \geq 0} W_n = \{ x \} \). Fix \(n \in \mathbb{N} \). Since (19.59) does not hold for \(U'_1 = W_n, V_m \subseteq V_n \) holds for \(m \geq n \), and \(\lim_{n \to \infty} \omega(n) = \infty \), we can find an element \(y_n \in X \) satisfying \(y_n \in C, y_n \in V_n \) and \(y_n \in W_n \). Since \(C \) is compact, there is a strictly monotone increasing function \(u : \mathbb{N} \to \mathbb{N} \) and \(y \in C \) with \(\lim_{n \to \infty} y_{u(n)} = y \). This implies \(y \in \bigcap_{n \geq 0} V_{u(n)} = A \) and \(y \in \bigcap_{n \geq 0} W_{u(n)} = \{ x \} \), a contradiction. This finishes the proof of the implication (19.59).

Now we define the desired open \(G_x \)-invariant neighborhood \(U' \) of \(x \) in \(X \) by \(U'_0 \cap U'_1 \) and the desired natural number \(r' = \max\{ r'_0, r'_1, w \} \). We get for \(s \in S^{\omega, w} \)

\[
\begin{align*}
\hat{\pi}(s) & \in U', \hat{\eta}(s) \geq r' \\
\implies \pi(s) \in C, \hat{\pi}(s) \in U'_0, \eta(s) \geq w, \eta(s) \geq r'_0 & \implies \pi(s) \in C, \rho \circ \pi(s) \in U'_0, \pi(s) \in W_{\omega \eta(s)}, \eta(s) \geq r'_0 \\
\implies \pi(s) \in C, \rho \circ \pi(s) \in U'_0, \pi(s) \in W_{\omega(r'_0)} & \implies \pi^{\omega, w}(s) = \pi(s) \in U.
\end{align*}
\]

Moreover, we have for \(s \in S^{\omega, w} \)

\[
\begin{align*}
\eta^{\omega, w}(s) \geq r' & \implies \pi(s) \in C, \eta(s) \geq w, \eta(s) \geq r'_1 \\
\implies \pi(s) \in C, \pi(s) \in V_{\omega \eta(s)}, \eta(s) \geq r'_1 & \implies \pi(s) \in C, \pi(s) \in V_{r'_1} \\
\implies \pi(s) \notin U'_1 & \implies \pi^{\omega, w}(s) = \pi(s) \notin U'.
\end{align*}
\]
Hence there is no $s \in S^{\omega,w}$ satisfying $\pi^{\omega,w}(s) \in U'$, $\eta^{\omega}(s) \geq r'$ and hence the implication

$$\pi^{\omega,w}(s) \in U', \eta^{\omega,w}(s) \geq r' \implies \widehat{\pi}(s) \in U$$

obviously holds. This finishes the proof of Lemma 19.57 in the case that $x \notin A$.

It remains to treat the case $x \in A$. Then define the desired open G_x-invariant neighborhood U' of x in X by $U'_0 \cap \rho^{-1}(U)$ and the desired natural number $r' = \max\{r'_0, w\}$. Then we get analogously to the argument above

$$\widehat{\pi}(s) \in U', \widehat{\eta}(s) \geq r' \implies \pi^{\omega,w}(s) \in U.$$

and

$$\pi^{\omega,w}(s) \in U', \eta^{\omega,w}(s) \geq r' \implies \pi(s) \in \rho^{-1}(U), \eta(s) \geq w$$

$$\implies \rho \circ \pi(s) \in U, \eta(s) \geq w$$

$$\implies \widehat{\pi}(s) = \rho \circ \pi(s) \in U.$$

This finishes the proof of assertion [43].

Choose a compact subset $C \subseteq A$ satisfying $\text{im}(\pi') \subseteq C$ and a finite subset $F \subseteq G$ such that $\text{supp}_G(\phi_{s',s}) \subseteq F$ holds for all $s' \in S'$ and $s \in S$. Fix $n \in \mathbb{N}$. Consider $a \in F \cdot C$. Then V_n is an open G_a-invariant neighborhood of a in X. Since ϕ satisfies continuous control, we can find an open G_a-invariant neighbourhood $U_n(a)$ of a in X and a natural number $r_n(a)$ such for $s' \in S'$, $s \in S$ and $g \in \text{supp}_G(\phi_{s',s})$ the implication

$$g \cdot \pi'(s') \in U_n(a), \eta'(s') \geq r_n(a) \implies \pi(s) \in V_n$$

holds. Since $F \cdot C$ is compact and contained in $\bigcup_{a \in F \cdot C} U_n(a)$, we can find a finite subset \{a_1, a_2, \ldots, a_k\} $\subseteq F \cdot C$ satisfying $F \cdot C \subseteq \bigcup_{i=1}^k U_n(a_k)$. Define a natural number

$$r_n := \max\{r_n(a_i) \mid i = 1, 2, \ldots, k\}.$$

Consider $s' \in S'$ and $s \in S$ with $\phi_{s',s} \neq 0$. Then we get the implication

$$\eta'(s') \geq r_n \implies \pi(s) \in V_n$$

by the following argument. Suppose $\eta'(s') \geq r_n$. Since $\phi_{s',s} \neq 0$, we can choose $g \in \text{supp}_G(\phi_{s',s})$. Since $g \cdot \pi'(s') \in F \cdot C$, we can find $i \in \{1, 2, \ldots, k\}$ with $g \cdot \pi'(s') \in U_n(a_i)$. Since $r_n \geq r_n(a_i)$, we conclude from the implication (19.60) that $\pi(s) \in V_n$ holds.

We can additionally arrange that $r_n < r_{n+1}$ holds for $n \in \mathbb{N}$. Since ϕ satisfies bounded control over \mathbb{N}, we can find a natural number N such that $|\eta(s') - \eta(s)| \leq N$ holds for all $s' \in S'$ and $s \in S$ with $\phi_{s',s} \neq 0$.

Now define a function
\[\omega: \mathbb{N} \to \mathbb{N} \]

by requiring that for \(m, n \in \mathbb{N} \) with \(r_n + N \leq m < r_{n+1} + N \) we have \(\omega(m) = n \) and \(\omega(m) = 0 \) for \(m < r_0 + N \). Then \(\omega \) is a non-decreasing function with \(\lim_{m \to \infty} = \infty \). Put \(w = r_0 + N \).

Consider any \(s \in S \) such that there exists \(s' \in S' \) with \(\phi_{s',s} \neq 0 \). Next we want to show \(s \in S_{\omega,w} \), or, equivalently, the implication

\[\eta(s) \geq w \implies \pi(s) \in V_{\omega\eta(s)}. \]

Suppose \(\eta(s) \geq w \). Then we can choose \(n \in \mathbb{N} \) such that \(r_n + N \leq \eta(s) < r_{n+1} + N \) holds. Then \(\omega \eta(s) = n \) and \(\eta'(s') \geq r_n \). We conclude \(\pi(s) \in V_{\omega\eta(s)} \) from implication \((19.61)\). Hence \(\phi \) induces the desired morphism \(\phi': B' \to B^\omega \) by putting \(\phi'_{s',s} = \phi_{s',s} \) for \(s' \in S' \) and \(s \in S_{\omega,w} \). This finishes the proof of Lemma \(19.57\).

\[\square \]

Lemma 19.62. Let \(X \) be \(G \)-CW-complex with sub \(G \)-CW-complexes \(X_0, X_1, \) and \(X_0 \) satisfying \(X = X_1 \cup X_2 \) and \(X_0 = X_1 \cap X_2 \).

(i) The inclusion \(i: (X_2, X_0) \to (X, X_1) \) induces an equivalence of additive categories

\[D^G(i): D^G(X_0) \xrightarrow{\cong} D^G(X_1); \]

(ii) The square induced by the various inclusions

\[
\begin{array}{ccc}
K(D^G(X_0)) & \longrightarrow & K(D^G(X_1)) \\
\downarrow & & \downarrow \\
K(D^G(X_2)) & \longrightarrow & K(D^G(X))
\end{array}
\]

is weakly homotopy cocartesian.

Proof. Consider an object \(B \) in \(\mathcal{O}^G(X) \). We get from Lemma \(19.57\) (ii) and (iii) applied to the pair \((X, X_1) \) and the object \(B \) the decomposition \(B = B^{\omega,w} \oplus B^\perp \) such that \(B^{\omega,w} \) is isomorphic to an object in \(\mathcal{O}^G(X_1) \) and \(\im(\pi^\perp) \subseteq X \setminus X_1 \) holds. Therefore the inclusion \(B^\perp \to B \) yields an isomorphisms in \(D^G(X, X_1) \). The object \(B^\perp \) is in the image of \(D^G(i) \) since the inclusion \(X_2 \setminus X_0 \to X \setminus X_1 \) is a \(G \)-homeomorphism. We conclude that \(D^G(i) \) is surjective on the set of isomorphism classes of objects.

Consider a morphism \(\phi: B \to B' \) in \(\mathcal{O}^G(X) \). It can be written in terms of the decomposition of Lemma \(19.57\) (iii) applied to the pair \((X, X_1) \) and the objects \(B \) and \(B' \) as

\[\phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}: B^{\omega,w} \oplus B^\perp \to B'^{\omega,w} \oplus B'^\perp. \]

Define a morphism in \(\mathcal{O}^G(X) \) by the composite
20.7 The Proof of the Axioms of a G-Homology Theory

$$\psi: B^{\omega, w} \oplus B^\bot \xrightarrow{\begin{pmatrix} \text{id} & 0 \\ 0 & b \end{pmatrix}} B^{\omega, w} \oplus B'^{\omega, w} \xrightarrow{\begin{pmatrix} a & \text{id} \\ c & 0 \end{pmatrix}} B'^{\omega, w} \oplus B'^\bot.$$

Then $B^{\omega, w} \oplus B'^{\omega, w}$ is isomorphic to an object in the image of $O^G(X_0) \to O^G(X)$ by Lemma [19.57](iii), the morphism $\phi - \psi: B^{\omega, w} \oplus B^\bot \to B'^{\omega, w} \oplus B'^B$ is of the shape $\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$, and $d: B^\bot \to B'^\bot$ is in the image of $O^G(X_2) \to O^G(X)$ since $\text{im}(\pi^\bot)$ and $\text{im}(\pi'^\bot)$ are contained in $X \setminus X_1 \subseteq X_2$. This implies that the morphism in $D^G(X, X_1)$ represented by ϕ is in the image of $D^G(i)$. Hence $D^G(i)$ is full.

In order to show that $D^G(i)$ is an equivalence, it remains to show that $D^G(i)$ is faithful. This is done as follows.

Consider a morphism $\phi: B \to B'$ in $O^G(X_2)$. Suppose that its class $D^G(i)$ is sent under $D^G(i)$ to zero. Hence there is an object B_0 in $O^G(X_1)$, an object B_1 in $O^G(X)$, morphisms $\psi: B \to B_0$, $\psi': B_0 \to B$, $\mu: B \to B_1$, and $\mu': B_1 \to B'$ such that $\phi - \psi' \circ \psi$ factorizes as

$$(\phi - \psi' \circ \psi): B \xrightarrow{\mu} B_1 \xrightarrow{\mu'} B'.$$

Because of Lemma [19.22] the object B_1 is isomorphic to an object in $\tau^G(X_0)$. Therefore we can replace ϕ by $\phi - \mu' \circ \mu$ without changing the the element it represents in $O^G(X_2, X_0)$. Hence we can assume without loss of generality that ϕ factorizes as

$$\phi: B \xrightarrow{\psi} B_0 \xrightarrow{\psi'} B'.$$

We conclude from Lemma [19.57](iv) applied the pair (X, X_2) and ψ that for appropriate (ω, w) $\psi: B \to B_0$ factorizes as in $D^G(X)$ as

$$\psi: B \xrightarrow{\nu} B_0 \xrightarrow{\iota^* w} B_0$$

and there is an object \widehat{B}_0 in $O^G(X_2)$ and an isomorphism $\zeta: B_0^{\omega, w} \cong \widehat{B}_0$ in $O^G(X)$. In the construction of B_0 an element $a \in X_2$ and a retraction $\rho: V_0 \to X_2$ occurs. We can pick $a \in X_0$ and can arrange that $\rho(V_0 \cap X_1) \subseteq X_0$ holds.

Comment 24: Do we have to elaborate on this? Maybe in Lemma [19.57](ii).

Since B_0 belongs to X_1 the object \widehat{B}_0 is actually an object in $O^G(X_0)$. Hence we obtain the factorization in $O^G(X)$

$$\phi: B \xrightarrow{\zeta \iota^* w} \widehat{B}_0 \xrightarrow{\phi' \iota^* w \circ \zeta^{-1}} B'.$$

Since $O^G(X_2) \to O^G(X)$ is faithful, the factorization above can be viewed as a factorization in $O^G(X_2)$. Hence the class in $D^G(X_2, X_0)$ represented by ϕ is trivial.
This is a direct consequence of assertion (i) and Proposition 19.27. This finishes the proof of Lemma 19.62.

Lemma 19.63. The inclusion \(i : (X, A) \to (X, A) \times [0, 1] \) sending \(x \) to \((x, 0)\) induces a weak homotopy equivalence

\[
K(D^G(i)) : K(D^G(X, A)) \xrightarrow{\simeq} K(D^G((X, A) \times [0, 1])).
\]

Proof. Because of the Five-Lemma and Proposition 19.27 it suffices to treat the case \(A = \emptyset \).

Since we can apply Lemma 19.62(i) to the \(G\)-CW-complex \(\text{cone}(X) \cup_X X \times [0, 1] \) with the subcomplexes \(\text{cone}(X), X \times [0, 1], \) and \(X \), it suffices to show that the map induced by the obvious inclusion \(K(D^G(\text{cone}(X))) \xrightarrow{\simeq} K(D^G(\text{cone}(X) \times_X X \times [0, 1])) \) is a weak homotopy equivalence. Because of Lemma 19.17, Lemma 19.22, and Theorem 18.5(i), it suffices to show that the map induced by the obvious inclusion \(K(O^G(\text{cone}(X))) \xrightarrow{\simeq} K(O^G(\text{cone}(X) \cup_X X \times [0, 1])) \) is a weak homotopy equivalence. Since \(\text{cone}(X) \) and \(\text{cone}(X) \cup_X X \times [0, 1] \) are \(G\)-homeomorphic, both its source and its target are weakly contractible by Lemma 19.30. This finishes the proof of Lemma 19.63.

Proposition 19.64. Let \(f_0, f_1 : (X, A) \to (Y, B) \) be \(G\)-maps of \(G\)-CW-pairs which are \(G\)-homotopic. Then for every \(n \in \mathbb{Z} \) the homomorphism \(K_n(D^G(f_0)) \) and \(K_n(D^G(f_1)) \) from \(K_n(D^G(X, A)) \) to \(K_n(D^G(Y, B)) \) agree.

Proof. Let \(i_k : (X; A) \to (X, A) \times [0, 1] \) be the map sending \(x \) to \((x, k)\) for \(k = 0, 1 \) and let \(\text{pr} : (X, A) \times [0, 1] \to (X, A) \) be the projection. Since \(\text{pr} \circ i_k = \text{id}_{(X; A)} \) holds for \(k = 0, 1 \), we conclude from Lemma 19.63 that the two homomorphisms \(K_n(D^G(i_0)) \) and \(K_n(D^G(i_1)) \) from \(K_n(D^G(X, A)) \) to \(K_n(D^G((X, A) \times [0, 1])) \) agree. Let \(h : (X; A) \times [0, 1] \to (Y, B) \) be a \(G\)-homotopy between \(f_0 \) and \(f_1 \). Now the claim follows from the equality \(K_n(D^G(f_k)) = K_n(D^G(h)) \circ K_n(D^G(i_k)) \) for \(k = 0, 1 \).

Proposition 19.65. Consider a \(G\)-CW-pair \((X, A) \), a \(G\)-CW-complex \(B \) and a cellular \(G\)-map \(f : A \to B. \) Put \(Y = X \cup_f B. \) Then:

(i) The pair \((Y, B) \) is a \(G\)-CW-pair and the canonical map \((F, f) : (X, A) \to (Y, B) \) is a cellular \(G\)-map;

(ii) The functor \(D^G(F, f) : D^G(X, A) \xrightarrow{\simeq} D^G(Y, B) \) is an equivalence of additive categories and induces for all \(n \in \mathbb{Z} \) an isomorphism

\[
K_n(D^G(F, f)) : K_n(D^G(X, A)) \xrightarrow{\simeq} K_n(D^G(Y, B));
\]

(iii) Let \(i : A \to X \) and \(j : B \to Y \) be the inclusions. We obtain a long exact Mayer-Vietoris sequence, infinite to both sides and natural in \((X, A) \) and \(f : A \to B. \)
\[\begin{align*}
\cdots & \xrightarrow{\partial_{n+1}} K_n(D^G(A)) \xrightarrow{K_n(D^G(i)) \times K_n(D^G(j))} \\
K_n(X) \oplus K_n(B) & \xrightarrow{K_n(F) \oplus K_n(j)} K_n(D^G(Y)) \xrightarrow{\partial_n} K_{n-1}(D^G(A)) \\
K_{n-1}(D^G(i)) \times K_{n-1}(D^G(j)) & \xrightarrow{\partial_{n-1}} K_{n-1}(X) \oplus K_{n-1}(B) \\
K_{n-1}(F) \oplus K_{n-1}(j) & \xrightarrow{K_{n-1}(D^G(i)) \times K_{n-1}(D^G(j))} K_{n-1}(D^G(Y)) \xrightarrow{\partial_{n-1}} \cdots .
\end{align*} \]

Proof. (i) This is obvious.

(ii) Apply Lemma 19.62 (i) to \(X \cup_A \text{cyl}(f)\) and the \(G\)-subcomplexes \(X, \text{cyl}(f)\) and \(A\) and then Proposition 19.64 to the obvious \(G\)-homotopy equivalences \(X \cup_A \text{cyl}(f) \xrightarrow{\simeq} Y\) and \(\text{cyl}(f) \xrightarrow{\simeq} B\).

(iii) This follows from assertion (ii) and Proposition 19.27. \(\square\)

19.7.4 The Disjoint Union Axiom

Proposition 19.66. Let \(\{X_i \mid i \in I\}\) be a collection of \(G\)-CW-complexes. Let \(j_i \colon X_i \to \coprod_{i \in I} X_i\) be the obvious inclusion for \(i \in I\).

(i) The obvious map of additive categories

\[\bigoplus_{i \in I} D^G(j_i) \colon \bigoplus_{i \in I} D^G(X_i) \to D^G \left(\coprod_{i \in I} X_i \right) \]

is an equivalence.

(ii) The obvious map of abelian groups

\[\bigoplus_{i \in I} K_n(D^G(j_i)) \colon \bigoplus_{i \in I} K_n(D^G(X_i)) \to K_n \left(D^G \left(\coprod_{i \in I} X_i \right) \right) \]

is an isomorphism for every \(n \in \mathbb{Z}\).

Proof. (i) In the sequel we put \(Y = \coprod_{i \in I} X_i\). Consider an object \(B = (S, \pi, \eta, B)\) in \(D^G(Y)\). Since it satisfies compact support over \(Y\), there is a finite subset \(I_0 \subseteq I\) such that \(\text{im}(\pi) \subseteq \coprod_{i \in I_0} Y_i\). For \(i \in I_0\) define \(B_i = (S_i, \pi_i, \eta_i, B_i)\), where \(S_i = \pi^{-1}(X_i)\) and \(\pi_i, \eta_i, \text{ and } B_i\) are obtained from \(\pi, \eta, \text{ and } B\) by restriction. Then \(B\) is the finite sum \(\bigoplus_{i \in I_0} B_i\) and \(B_i\) is in the image of \(D^G(j_i) \colon D^G(X_i) \to D^G(Y)\) for \(i \in I_0\). We leave it to the reader to check that this implies that the functor \(\bigoplus_{i \in I} D^G(j_i)\) is surjective on objects, full, and faithful. Hence \(\bigoplus_{i \in I} D^G(j_i)\) is an equivalence of additive categories.

(ii) This follows from assertion (i) and fact that \(K_n\) commutes with finite products, or, equivalently, with finite direct sums and is compatible with directed colimits, see for instance [616, Corollary 7.2]. \(\square\)
Now Theorem 19.26 follows from Propositions 19.27, 19.64, 19.65, and 19.66.

19.8 The Computation of $K_n(D^G(G/H))$

In this section we analyze the coefficients $K_n(B(G/H))$ of the G-homology theory appearing in Theorem 19.26.

19.8.1 Reduction to $K_n(B(G/H))$

Consider a control coefficient category B in the sense of Definition 19.1. Given a G-set T, define a Z-category $B(T)$ as follows. Objects are pairs (t, B) for $t \in T$ and $B \in \text{ob}(B)$. A morphism $\phi: (t, B) \rightarrow (t', B')$ is a morphism $\phi: B \rightarrow B'$ in B satisfying $\text{supp}_G(\phi) \subseteq G_{t,t'}$ for $G_{t,t'} := \{ g \in G \mid t' = gt \}$. Composition in $B(S)$ comes from the composition in B. The identity on (t, B) is given by id_B. The structure of a Z-category on $B(T)$ comes from the one on B. Given a map $f: T \rightarrow T'$, we get a functor of Z-categories $B(f): B(T) \rightarrow B(T')$ by sending an object (t, B) to the object $(f(t), B)$ and a morphism $\phi: (t, B) \rightarrow (t', B')$ given by the morphism $\phi: B \rightarrow B'$ in B to the morphism $(f(s), B) \rightarrow (f(s'), B')$ in $B(T')$ given by $\phi: B \rightarrow B'$ again. This definition makes sense as $G_{t,t'} \subseteq G_{f(t),f(t')}$ holds. Thus we obtain a covariant functor from G-sets to the category of Z-categories by sending T to $B(T)$. It induces a covariant $\text{Or}(G)$-spectrum

\begin{equation}
K(B(?)_{\oplus}): \text{Or}(G) \rightarrow \text{SPECTRA}, \quad G/H \mapsto K(B(G/H)_{\oplus}).
\end{equation}

We obtain another covariant $\text{Or}(G)$-spectrum

\begin{equation}
K(D^G(?)_{\oplus}): \text{Or}(G) \rightarrow \text{SPECTRA}, \quad G/H \mapsto K(D^G(G/H; B)).
\end{equation}

Proposition 19.69. There is a weak homotopy equivalence of covariant $\text{Or}(G)$-spectra

\[K(B(?)_{\oplus}) \xrightarrow{\sim} \Omega K(D^G(?)_{\oplus}); B).\]

In particular we get for $n \in \mathbb{Z}$ an isomorphism, natural in G/H,

\[K_n(B(G/H)_{\oplus}) \xrightarrow{\sim} K_{n+1}(D^G(G/H; B)).\]

Proof. Any Z-category can be viewed as a control coefficient category over the trivial group $\{1\}$. Hence can consider for any G-set T the additive categories $\mathcal{T}^{(1)}(\{\bullet\}, B(T))$, $\mathcal{T}^{(1)}(\{\bullet\}, B(T))$, and $D^{(1)}(\{\bullet\}, B(T))$. Next we define a functor of additive categories
Next we show that \(F(T) : \mathcal{O}^{(1)}(\{\bullet\}, \mathcal{B}(T)) \to \mathcal{O}^G(T; \mathcal{B}) \).

It sends an object \(\mathcal{B} = (S, \pi, \eta, \mathcal{B}) \) to the object \(\mathcal{B}' = (S', \pi', \eta', \mathcal{B}') \), where \(S' = S, \eta' = \eta \) and \(B' \) and \(\pi' \) are determined by the equality \(B(s) = (\pi'(s), B'(s)) \). It induces a functor of additive categories

\[
F(T) : D^{(1)}(\{\bullet\}, \mathcal{B}(T)) \to D^{(1)}(T, \mathcal{B}).
\]

Next we show that \(F(T) \) is full. Consider any morphism in \(D^{(1)}(T, \mathcal{B}) \) from \(\mathcal{B} = (S, \pi, \eta, \mathcal{B}) \) to \(\mathcal{B}' = (S', \pi', \eta', \mathcal{B}') \). Choose a morphism \(\phi : \mathcal{B} \to \mathcal{B}' \) in \(\mathcal{O}^{(1)}(T, \mathcal{B}) \) representing it. Since \(T \) is discrete and \(\phi \) satisfies continuous control, we can find for every \(t \in T \) a natural number \(r(t) \) such that for all \(s \in S, S' \in S' \), and \(g \in \text{supp}_G(\phi_{s,s'}) \) the implication

\[
g \cdot \pi(s) = t, \eta(s) \geq r(t) \implies \pi'(s) = t
\]

holds. Since the object \(\mathcal{B} \) satisfies compact support over \(T \), \(\phi \) satisfies finite \(G \)-support, and \(T \) is discrete, there is a finite subset \(T_0 \subseteq T \) satisfying \(g \cdot \pi(s) \in T_0 \) for all \(s \in S, s' \in S' \) and \(g \in \text{supp}_G(\phi_{s,s'}) \). Define \(r := \max \{r(t) \mid t \in T_0 \} \). Then for \(s \in S, s' \in S' \) and \(g \in \text{supp}_G(\phi_{s,s'}) \) the implication

\[
\eta(s) \geq r \implies g \pi(s) = \pi'(s)
\]

is true. Since \(\phi \) satisfies bounded control over \(\mathcal{N} \), we can change \(\phi \) such that \(\phi_{s,s'} = 0 \) holds for \(s \in S, s' \in S' \) satisfying \(\eta(s) < r \) and that the class represented by \(\phi \) in \(D^{(1)}(T, \mathcal{B}) \) is unchanged. Hence we can assume without loss of generality that \(g \in G_{\pi(s)}, \pi'(s) \) holds for \(s \in S, s' \in S' \) and \(g \in \text{supp}_G(\phi_{s,s'}) \).

Define objects \(\hat{\mathcal{B}} = (\hat{S}, \hat{\pi}, \hat{\eta}, \hat{\mathcal{B}}) \) and \(\hat{\mathcal{B}'} = (\hat{S}', \hat{\pi'}, \hat{\eta'}, \hat{\mathcal{B}}') \) in \(\mathcal{O}^{(1)}(\{\bullet\}, \mathcal{B}(T)) \) by requiring that \(\hat{S} = S, \hat{S}' = S', \hat{\eta} = \eta, \hat{\eta}' = \eta' \) holds and we have \(\hat{\mathcal{B}}(s) = (\pi(s), B(s)) \) for \(s \in S \) and \(\hat{\mathcal{B}}'(s) = (\pi'(s'), B(s')) \) for \(s' \in S \). Then \(F(\hat{\mathcal{B}}) = \mathcal{B} \) and \(F(\hat{\mathcal{B}'}) = \mathcal{B}' \). Define a morphism \(\psi : \hat{\mathcal{B}} \to \hat{\mathcal{B}'} \) in \(\mathcal{O}^{(1)}(\{\bullet\}, \mathcal{B}(T)) \) by defining the morphisms \(\psi_{s,s'} : (\pi(s), B(s)) \to (\pi'(s'), B(s')) \) in \(\mathcal{B}(T) \) by the morphism \(\phi_{s,s'} : B(s) \to B'(s') \) in \(\mathcal{B} \). One easily checks that \(\psi \) is well-defined is sent under \(F(T) \) to \(\phi \). Hence the class represented by \(\psi \) in \(D^{(1)}(\{\bullet\}, \mathcal{B}(T)) \) is sent by \(F(T) \) to the class represented by \(\phi \) in \(D^{(1)}(T, \mathcal{B}) \). This finishes the proof that \(F(T) \) is full.

Since \(F(T) \) is faithful, one easily checks that \(F(T) \) is faithful. Since \(F(T) \) is bijective on objects, \(F(T) \) is bijective on objects. We conclude that \(F(T) : D^{(1)}(\{\bullet\}, \mathcal{B}(T)) \to D^{(1)}(T, \mathcal{B}) \) is an equivalence of additive categories.

In particular we see that the in \(T \) natural map

\[
(19.70) \quad K(F(T)) : K(D^{(1)}(\{\bullet\}, \mathcal{B}(T))) \to K(D^{(1)}(T, \mathcal{B}))
\]

is a weak homotopy equivalence of spectra.

The canonical map
\[K(\mathcal{T}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \xrightarrow{\text{hofib}} K(\mathcal{O}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \rightarrow K(\mathcal{D}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \]

is natural in \(T \) and is a weak homotopy equivalence by Theorem 18.5. The projection from \(K(\mathcal{O}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \) to the trivial spectrum is a weak homotopy equivalence by Lemma 19.29. It induces an in \(T \) natural weak homotopy equivalence

\[\text{hofib}(K(\mathcal{O}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \rightarrow K(\mathcal{D}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \xrightarrow{\simeq} \Omega K(\mathcal{D}^{(1)}(\{\bullet\}; \mathcal{B}(T))). \]

The composite of the two maps above gives a weak homotopy equivalence of spectra, natural in \(T \),

\[(19.71) \quad K(\mathcal{T}^{(1)}(\{\bullet\}; \mathcal{B}(T))) \xrightarrow{\simeq} \Omega K(\mathcal{D}^{(1)}(\{\bullet\}; \mathcal{B}(T))). \]

We define the inclusion of \(\mathbb{Z} \)-categories \(I : \mathcal{B}(T) \rightarrow \mathcal{T}^{(1)}(\{\bullet\}; \mathcal{B}(T)) \) sending an object \((t, B)\) to the object \((\{\bullet\}, \pi, \eta, B)\) given by \(\pi(\ast) = \{\bullet\}, \eta(\ast) = 0, \) and \(\pi(\ast) = s \). It induces a functor of additive categories \(I_\oplus : \mathcal{B}(T)_\oplus \rightarrow \mathcal{T}^{(1)}(\{\bullet\}; \mathcal{B}(T)) \). Obviously \(I_\oplus \) is full and faithful. We leave it to the reader to show that any object in \(\mathcal{T}^{(1)}(\{\bullet\}; \mathcal{B}(T)) \) is isomorphic to an object in the image of \(I_\oplus \). Hence \(I_\oplus \) is an equivalence of additive categories and induces a weak homotopy equivalence, natural in \(T \),

\[(19.72) \quad K(I_\oplus) : K(\mathcal{B}(T)_\oplus) \xrightarrow{\simeq} K(\mathcal{T}^{(1)}(\{\bullet\}; \mathcal{B}(T))). \]

Now the desired weak homotopy equivalence of covariant \(\text{Or}(G) \)-spectra from \(K(\mathcal{B}(?)_\oplus) \) to \(\Omega K(\mathcal{D}^G(?)\mathcal{B}) \) comes from the maps \(19.70, 19.71 \), and \(19.72 \).

\[\square \]

19.8.2 Assembly and Controlled \(G \)-homology

We have the \(G \)-homology theory \(K_\ast(\mathcal{D}^G(\{-; \mathcal{B}\})) \), see Theorem 19.26. The covariant \(\text{Or}(G) \)-spectrum \(K(\mathcal{B}(?)_\oplus) \) of \(19.67 \) determines a \(G \)-homology theory \(H^G(\{-; K(\mathcal{B}(?)_\oplus)) \) see Theorem 11.24. We get from Corollary 17.14 and Proposition 19.69.

Proposition 19.73. There is an equivalence of \(G \)-homology theories

\[T(\cdot) : K_{\ast+1}(\mathcal{D}^G(\{-; \mathcal{B}\})) \xrightarrow{\simeq} H^G(\{-; K(\mathcal{B}(?)_\oplus)). \]

Lemma 19.74. Let \(\mathcal{B} \) be a control coefficient category and let \(\mathcal{F} \) be a family of subgroups. Let \(\text{pr} : E \mathcal{F}(G) \rightarrow \{\bullet\} \) be the projection.

(i) The assembly map appearing in the Meta-Isomorphism Conjecture \(14.2 \) for the \(G \)-homology theory \(H^G(\{-; K(\mathcal{B}(?)_\oplus)) \) and the family \(\mathcal{F} \)

\[H^G_n(\mathcal{E} \mathcal{F}(G); K(\mathcal{B}(?)_\oplus)) \rightarrow H^G_n(\{\bullet\}; K(\mathcal{B}(?)_\oplus)) = K_n(\mathcal{B}_\oplus) \]
can be identified for every $n \in \mathbb{Z}$ with the homomorphism

$$K_{n+1}(D^G(E_F(G); B)) \to K_{n+1}(D^G(\{\bullet\}; B)) = K_n(B_{\mathbb{Z}});$$

(ii) The Meta-Isomorphisms Conjecture \[14.3\] for the G-homology theory $H^G_r(\cdot; K(B(?)))$ and the family F is true if and only if the spectrum $K(C(G(E_F(G); B)))$ is weakly contractible.

Proof. (i) This follows from Proposition \[19.73\].

(ii) This follows from assertion (i), Lemma \[19.22\] Lemma \[19.29\] and the commutative diagram of spectra

$$
\begin{array}{ccc}
T^G(E_F(G)) & \rightarrow & O^G(E_F(G)) \\
\downarrow T^G(pr) & & \downarrow O^G(pr) \\
T^G(\{\bullet\}) & \rightarrow & O^G(\{\bullet\}) \\
\end{array}
\begin{array}{ccc}
\rightarrow & \rightarrow & \rightarrow \\
D^G(E_F(G)) & D^G(\{\bullet\}) & \\
\end{array}
$$

whose rows are weak homotopy fibrations by Lemma \[19.19\].

Remark \[19.75\]. The benefit of Lemma \[19.74\] (ii) is that the proof of the Meta-Isomorphism Conjecture is reduced to the proof of the weak contractibility of the K-theory of the specific category $O^G(E_F(G); B)$ defined in terms of controlled topology and not just to the weak contractibility of some abstract homotopy fiber. This will allow us to use geometric tools for a proof of the Farrell-Jones Conjecture. Comment 25. This remark is not in final form.

19.8.3 The Definition of a Strong Control Coefficient Category

In this subsection we will upgrade the notion of control coefficient category over G of Definition \[19.1\] to a strong control coefficient category by additional implementing a G-action B and a homotopy trivialization for it.

Definition 19.76 (Strong control coefficient category over G). A strong control coefficient category over G is a triple $B = (B, \text{supp}, \Omega)$ consisting of:

- A G-\mathbb{Z}-category B;
- A map called support function

$$\text{supp}: \text{mor}(B) \to \{\text{finite subsets of } G\};$$

- A homotopy trivialization of the G-action on B, i.e., a collection $\Omega = \{\Omega_g | g \in G\}$, where Ω_g is a natural equivalence of functors of \mathbb{Z}-categories $B \to B$.
\[\Omega_g : \text{id}_B \cong A_g, \]

for \(A_g : B \to B \) the functor given by multiplication with \(g \) such that condition (vii) and (viii) below are satisfied.

We require that the following axioms are satisfied for all objects \(B \) in \(B \), all morphisms \(u, u' : B_1 \to B_2 \), \(v : B_2 \to B_3 \) in \(B \), all \(n \in \mathbb{Z} \), and all \(g, g' \in G \):

(i) \(\text{supp}(u) = \emptyset \iff u = 0; \)
(ii) \(\text{supp}(v \circ u) \subseteq \text{supp}(v) \cdot \text{supp}(u); \)
(iii) \(\text{supp}(u + u') \subseteq \text{supp}(u) \cup \text{supp}(u'); \)
(iv) \(\text{supp}(n \cdot u) \subseteq \text{supp}(u); \)
(v) \(\text{supp}(B) = \{ e \}; \)
(vi) \(\text{supp}(gu) = g \cdot \text{supp}(u) g^{-1}; \)
(vii) \(\Omega_{g'_{gB}} \circ \Omega_g(B) = \Omega_{g'g}(B); \)
(viii) \(\Omega_e(B) = \text{id}_B; \)
(ix) \(\text{supp}(\Omega_g(B)) = \{ g \}. \)

Remark 19.77. In Example [19.2] we actually get the structure of a strong control coefficient category over \(G \). Namely, for \(g_0 \in G \) and object \(A \) in \(\mathcal{A}[G] \) which is given by an object \(A \) in \(\mathcal{A} \), we define \(A_{g_0}(A) \) to be \(g_0A \) using by the given \(G \)-action on the objects of \(\mathcal{A} \). Given a morphism \(\phi = \sum_{g \in G} \phi_g \cdot g : A \to A' \) in \(\mathcal{A}[G] \), we define \(A_{g_0}(\phi) : g_0A \to g_0A' \) by \((g_0\phi)_g = g_0 \cdot \phi_{g^{-1}} g \). The desired homotopy trivialization \(\Omega \) is given assigning to \(g_0 \in G \) the isomorphism \(\Omega_{g_0}(A) : A \cong A_{g_0}(A) \) in \(\mathcal{A}[G] \) given by \(\Omega_{g_0}(A)_{g_0} = \text{id}_{g_0A} \) and \(\Omega_{g_0}(A)_{g_1} = 0 \) for \(g_0 \neq g_1 \).

19.8.4 Reduction to \(K_n(\mathcal{B}(H)) \)

Let \(B \) be a strong control coefficient category in the sense of Definition [19.76].

Definition 19.78 (\(\mathcal{B}(H) \)). For a subgroup \(H \subseteq G \) define \(\mathcal{B}(H) \) to be the \(\mathbb{Z} \)-subcategory of \(B \) which has the same set of objects and for which a morphism \(\phi : B \to B' \) of \(B \) belongs to \(\mathcal{B}(H) \) if \(\text{supp}(\phi) \subseteq H \) holds.

Define a functor \(I : \mathcal{B}(H) \to \mathcal{B}(G/H) \) of \(\mathbb{Z} \)-categories by sending an object \(B \) to the object \((eH, B) \) and a morphism \(\phi : B \to B' \) to the morphism \((eH, B) \to (eH, B') \) given by \(\phi \).

Proposition 19.79. The functor \(I : \mathcal{B}(H) \to \mathcal{B}(G/H) \) is an equivalence of \(\mathbb{Z} \)-categories. In particular the homomorphism

\[K_n(I) : K_n(\mathcal{B}(H)_{\oplus}) \to K_n(\mathcal{B}(G/H)_{\oplus}) \]

is bijective for all \(n \in \mathbb{N} \).
Proof. Obviously I is full and faithful. Consider an object (gH, B) in $\mathcal{B}(G/H)$. Then $\Omega_g(g^{-1}B) : g^{-1}B \cong B$ is an isomorphism in \mathcal{B} with $\text{supp}(\Omega_g(g^{-1}B)) = \{g\}$ and hence induces an isomorphism $(e, g^{-1}B) \cong (g, B)$ in $\mathcal{B}(G/H)$. This shows that any object in $\mathcal{B}(G/H)$ is isomorphic to an object in the image of I. Hence I is an equivalence.

\[\square\]

Remark 19.80. Let \mathcal{A} be a G-\mathbb{Z}-category. Recall from Example 19.2 and Remark 19.77 that the additive category $\mathcal{A}[G]$ is a strong control coefficient category over G. One easily checks for any subgroup $H \subseteq G$.

\[\mathcal{A}[H] = \mathcal{A}[G](H).\]

Hence we get from Proposition 19.69 and Proposition 19.79 for every $n \in \mathbb{Z}$ an isomorphism

\[K_n(\mathcal{A}[H]) \cong K_{n+1}(\mathcal{D}^G(G/H; \mathcal{A}[G])).\]

Example 19.81. Let R be a unital ring and let $\rho : G \to \text{aut}(R)$ be a group homomorphism. We have defined the G-\mathbb{Z}-category \mathcal{R} in Example 19.3. Denote by $R_\rho[H]$ the twisted group rings.

We conclude from Example 19.3 and Remark 19.80 that there is for every $n \in \mathbb{Z}$ an isomorphism

\[K_n(R_\rho[H]) \cong K_{n+1}(\mathcal{D}^G(G/H; R_\rho[G])).\]

19.9 Induction

Let $H \subseteq G$ be a subgroup of G. Let \mathcal{B} be a strong control coefficient category over G in the sense of Definition 19.76. We have defined the \mathbb{Z}-category $\mathcal{B}(H)$ in Definition 19.78. Obviously it inherits from \mathcal{B} the structure of a strong control coefficient category over H. Given an H-space X, we have denoted by $\text{ind}, X = G \times_H X$ the G-space given by induction with the inclusion $\iota : H \to G$, see (11.8).

Next we construct a functor of additive categories, natural in X,

\[(19.82) \quad \text{ind}_\iota : \mathcal{O}^H(X; \mathcal{B}(H)) \to \mathcal{O}^G(\text{ind}, X; \mathcal{B}).\]

Let $j : X \to \text{ind}, X$ be the ι-equivariant map sending x to (e', x). An object $B = (S, \pi, \eta, B)$ of $\mathcal{O}^H(X; \mathcal{B}(H))$ is sent to the object $\text{ind}_\iota B = (S, j \circ \pi, \eta, B)$ of $\mathcal{O}^G(\text{ind}, X; \mathcal{B})$. Obviously $\text{ind}_\iota (\mathcal{B})$ satisfies compact support over ind, X and locally finiteness over \mathbb{N} as \mathcal{B} satisfies compact support over X and locally finiteness over \mathbb{N}. For two objects $\mathcal{B} = (S, \pi, \eta, B)$ and $\mathcal{B}' = (S', \pi', \eta', B')$ and a morphism $\phi : \mathcal{B} \to \mathcal{B}'$ given by the collection $\{\phi_{s,s'} : B(s) \to B'(s') | s \in S, s' \in S'\}$ of $\mathcal{O}^H(X; \mathcal{B}(H))$, define the morphism $\text{ind}_\iota (\phi) : \text{ind}_\iota (\mathcal{B}) \to \text{ind}_\iota (\mathcal{B}')$.
and left to the reader. If we deal with the condition (19.5), the proof for the condition (19.6) is analogous. Obviously conditions finite G-support and bounded control over \mathbb{N} are satisfied for ind (ϕ). Next we give the proof of continuous control. We only deal with the condition (19.5), the proof for the condition (19.6) is analogous and left to the reader.

Consider a point (g, x) in ind, X and an open $G_{(g,x)}$-invariant neighborhood U of (g, x) in ind, X. For the sequel that $G_{(g,x)} = g' H_x g'^{-1}$ holds and the map $j: X \rightarrow \text{ind}, X$ is an open ι-equivariant embedding. We have to find an open $G_{(g,x)}$-invariant neighborhood U' of (g, x) in ind, X satisfying $U' \subseteq U$ and a natural number r' such that for all $s \in S, s' \in S'$ and $g \in \text{supp}_G((\text{ind}, \phi)_{s,s'}) = \text{supp}_H(\phi_{s,s'})$ the implication

$$(19.83) \quad g \cdot j \circ \pi(s) \in U', \eta(s) \geq r' \implies j \circ \pi'(s') \in U'$$

holds.

Suppose that $(g, x) \notin \text{im}(j)$. Then $U' = g \cdot \text{im}(j)$ is an open $G_{(g,x)}$-invariant neighborhood of (g, x) satisfying $U' \cap \text{im}(j) = \emptyset$. Then the implication (19.83) holds for trivial reasons, since $\text{supp}_G((\text{ind}, \phi)_{s,s'}) = \text{supp}_H(\phi_{s,s'}) \subseteq H$ holds and $h \cdot j \circ \pi(s)$ belongs to $\text{im}(j)$ and hence never belongs to U' for $h \in H$.

Next we treat the case $(g, x) \in \text{im}(j)$, or, equivalently, the case $g = e$. Since ϕ satisfies continuous control and $j^{-1}(U)$ is an open H_x-invariant neighborhood of x, we can find an open H_x-invariant neighborhood V' of x in X with $V' \subseteq j^{-1}(U)$ such that for all $s \in S, s' \in S'$ and $h \in \text{supp}_H(\phi_{s,s'})$ the implication

$$(19.84) \quad h \cdot \pi(s) \in U', \eta(s) \geq r' \implies \pi'(s') \in j^{-1}(U)$$

holds. Put $U' = j(V)$. Then (19.83) is satisfied for the open $G_{j(x)}$-invariant neighborhood U' of $j(x)$ in ind, X and the number r' above.

One easily checks that the functor ind, of (19.82) induces for every G-CW-pair (X, A) functors of additive categories

$$(19.84) \quad \text{ind},: \mathcal{O}^H(X, A; \mathcal{B}(H)) \rightarrow \mathcal{O}^G(\text{ind}, X, \text{ind}, A; \mathcal{B});$$

$$(19.85) \quad \text{ind},: \mathcal{T}^H(X, A; \mathcal{B}(H)) \rightarrow \mathcal{O}^G(\text{ind}, X, \text{ind}, A; \mathcal{B});$$

$$(19.86) \quad \text{ind},: \mathcal{D}^H(X, A; \mathcal{B}(H)) \rightarrow \mathcal{D}^G(\text{ind}, X, \text{ind}, A; \mathcal{B}).$$

Proposition 19.87. For every G-CW-pair (X, A) and every strong control coefficient category \mathcal{B} over G, the functor $\text{ind},$ of (19.86) induces a weak homotopy equivalence

$$K(\text{ind},): K(D^H(X, A; \mathcal{B}(H))) \xrightarrow{\simeq} K(D^G(\text{ind}, X, \text{ind}, A; \mathcal{B}')).$$

Proof. We offer two proofs, a short one using basic facts about G-homology theories, and one direct proof which illustrates the role of the condition continuous control.
We can view the functors sending an \(H \)-\(CW \)-pair to the \(\mathbb{Z} \)-graded abelian groups \(K_\ast(D^H(X, A; B(H))) \) and \(K_\ast(D^G(\text{ind}, X, \text{ind}, A; B)) \) as \(H \)-homology theories. Then we get a natural transformation of \(H \)-homology theories by

\[
K_\ast(\text{ind}) : K_\ast(D^H(X, A; B(H))) \to K_\ast(D^G(\text{ind}, X, \text{ind}, A; B)).
\]

In order to show that this is an isomorphism for every \(CW \)-pair \((X, A)\), it suffices to do this in the special case \(X = H/K \) and \(A = \emptyset \) for every subgroup \(K \subseteq H \), see Theorem \[11.6\] We have already constructed isomorphisms, see Proposition \[19.69\] and Proposition \[19.79\]

\[
K_\ast(D^H(H/K; B(H))) \cong K_{\ast - 1}((B(H))(K)) = K_{\ast - 1}(B(K)\oplus),
\]

and

\[
K_\ast(D^G(\text{ind}, H/K; B)) = K_\ast(D^G(G/K; B)) \cong K_{\ast - 1}(B(K)\oplus).
\]

Under these identifications

\[
K_\ast(\text{ind}) : K_\ast(D^H(H/K; B(H))) \to K_\ast(D^G(\text{ind}, H/K; B))
\]

becomes the identity on \(K_{\ast - 1}(B(K)\oplus) \). This finishes the first proof of Proposition \[19.87\].

Next we present the second proof. Because of Proposition \[19.27\] we can assume without loss of generality \(A = \emptyset \). It suffices to show that the functor of (19.86)

\[
\text{ind}_r : D^H(X; B(H)) \to D^G(\text{ind}_r X; B),
\]

is an equivalence of additive categories.

We first show that \(\text{ind}_r \) is full and faithful, in other words, that for two objects \(B = (S, \pi, \eta, B) \) and \(B' = (S', \pi, \eta', B') \) in \(D^H(X; B(H)) \) the map induced by \(\text{ind}_r \)

\[
(19.88) \quad \text{mor}_{D^H(X; B(H))}(B, B') \to \text{mor}_{D^G(\text{ind}_r X; B)}(\text{ind}_r(B), \text{ind}_r(B')),
\]

is bijective. The elementary proof of injectivity is left to the reader. Surjectivity is proved as follows.

Recall \(\text{ind}_r(B) = (S, j \circ \pi, \eta, B) \). Consider any element in the target of (19.88). Choose a morphism \(\phi' : (S, j \circ \pi, \eta, B) \to (S', j \circ \pi', \eta', B') \) in \(D^G(\text{ind}_r X; B) \) representing it. Next we show that we can assume without loss of generality

\[
(19.89) \quad \text{supp}_G(\phi'_s, \phi'_s') \subseteq H \text{ for } s \in S, s' \in S'.
\]

Consider \(x \in X \). Since \(\phi' \) satisfies \textit{continuous control} and \(\text{im}(j) \) is an open \(G_{j(x)} \)-invariant neighborhood of \(j(x) \) in \(\text{ind}_r X \), we conclude from Lemma \[19.10\] that there are an open \(G_{j(x)} \)-invariant neighborhood \(U'_x \)
of \(j(x) \) in \(\text{ind}, \text{X} \) with \(U'_x \subseteq \text{im}(j) \) and a natural number \(r'_x \) such that for all \(s \in S, s' \in S' \), and \(g \in \text{supp}_G(\phi'_{s,s'}) \) the implication

\[
(19.90) \quad j \circ \pi'(s) \in U'_x, \eta'(s') \geq r'_x \quad \Rightarrow \quad g \cdot j \circ \pi(s) \in \text{im}(j)
\]

holds. Since \(B' \) satisfies compact support over \(X \), there is a compact subset \(C \subseteq X \) with \(\text{im}(\pi) \subseteq C \). Since \(j(C) \subseteq \bigcup_{x \in C} U'_x \) and \(j(C) \subseteq \text{ind}, X \) is compact, there is a finite subset \(\{x_1, x_2, \ldots, x_m\} \subseteq C \) satisfying \(j(C) \subseteq \bigcup_{i=1}^{m} U'_{x_i} \). Define a natural number \(r' := \max\{r'_{x_i} | i = 1, 2, \ldots, m\} \). Then we get for all \(s \in S, s' \in S' \), and \(g \in \text{supp}_G(\phi'_{s,s'}) \) the implication

\[
(19.91) \quad \eta'(s') \geq r' \quad \Rightarrow \quad g \cdot j \circ \pi(s) \in \text{im}(j)
\]

since for any \(s' \in S' \) there exists \(i \in \{1, 2, \ldots, m\} \) with \(j \circ \pi(s') \in U'_{x_i} \) and \(r' \geq r'_{x_i} \) and we can apply the implication \((19.90)\). Since \(\phi' \) satisfies bounded control over \(N \), we can modify \(\phi' \) without changing the class which it represent in \(\mathcal{O}^{G'}(\text{ind}, X; B') \) such that for all \(s \in S, s' \in S' \) and \(g \in \text{supp}_G(\phi'_{s,s'}) \) we have \(g \cdot j \circ \pi(s) \in \text{im}(j) \). Now \((19.89)\) follows since \(g \cdot j \circ \pi(s) \in \text{im}(j) \iff g \in H \).

We conclude from \((19.89)\) that \(\phi'_{s,s'} \) belongs to \(B(H) \). Define a morphism \(\phi : B \to B' \) in \(\mathcal{O}^{H}(X; B(H)) \) by \(\phi_{s,s'} = \phi'_{s,s'} \) for \(s \in S \) and \(s' \in S' \). One easily checks that \(\phi \) satisfies finite support over \(H \), bounded control over \(N \), and continuous control, since \(\phi' \) satisfies finite support over \(G \), bounded control over \(N \), and continuous control. Hence \(\phi \) is well-defined. Its class in \(\mathcal{D}^{H}(X; B(H)) \) is mapped by construction under the map \((19.88)\) to the class in \(\mathcal{D}^{G}(\text{ind}, X; B) \) represented by \(\phi' \). This shows that the map \((19.88)\) is bijective.

It remains to show that for every object \(B = (S, \pi', \eta', B') \) in \(\mathcal{O}^{G}(\text{ind}, X; B) \) there is an object \(B = (S, \pi, \eta, B) \) in \(\mathcal{O}^{H}(X; B(H)) \) and an isomorphism \(\phi : \text{ind}(B) \cong B' \) in \(\mathcal{O}^{G}(\text{ind}, X; B) \). We put \(S = S' \) and \(\eta = \eta' \). Choose functions \(\gamma : S \to G \) and \(\pi : S \to X \) such that \(\gamma(s) \cdot j \circ \pi(s) = \pi'(s) \) holds for all \(s \in S \). Define \(B : S \to \text{ob}(B) \) by sending \(s \) to \(\gamma(s)^{-1} \cdot B'(s) \). Then we can define the desired isomorphism \(\phi \) by putting \(\phi_{s,s'} = 0 \) for \(s, s' \in S \) with \(s \neq s' \) and by \(\phi_{s,s} = \Omega_{\gamma(s)}(B(s)) : B(s) \cong B'(s) \) for \(s \in S \). The proof that \(\phi \) is well-defined is mild generalization to the proof of Lemma \((19.14)\).

This finishes the second proof of Proposition \((19.87)\).

\[\square \]

19.10 The Version with Zero Control over \(N \)

Comment 26: Add an introduction to this section.
19.10.1 Control Categories with Zero Control in the \mathbb{N}-Direction

Definition 19.92 ($D_0^G(X; \mathcal{B})$). Define $O^G_0(X)$ to be the additive subcategory of $O_G(X)$ which has the same set of objects and for which a morphism $\phi: \mathcal{B} = (S, \pi, \eta, B) \to \mathcal{B}' = (S', \pi', \eta', B')$ in $O^G(X)$ belongs to $O^G_0(X)$ if and only if the implication $\phi_{s'} s \neq 0 \implies \eta(s) = \eta(s')$

holds for all $s \in S$ and $s' \in S'$.

Let $T_0^G(X; \mathcal{B})$ be the full subcategory of $O^G_0(X)$ consisting of those objects $\mathcal{B} = (\Sigma, \pi, \eta, B)$ for which there exists a natural number n such that $B(\sigma) = 0$ holds for $\sigma \in \Sigma$ with $\eta(\sigma) \geq n$.

Define $D_0^G(X)$ to be the quotient category $O^G_0(X)/T_0^G(X)$ in the sense of Definition 18.1.

Lemma 19.93. The inclusion $T_0^G(X) \to O_0^G(X)$ is a Karoubi filtration in the sense of Definition 18.2. In particular we get a weak homotopy fibration sequence $T_0^G(X) \to O_0^G(X) \to D_0^G(X)$.

Proof. The proof of Lemma 19.17 carries directly over. Now apply Theorem 18.5 (i). \square

Exercise 19.94. Show for $m \in \mathbb{Z}$

$$K_m(D_0^{[1]}(\ast)) \cong \left(\prod_{n=0}^{\infty} K_m(B_n) \right) / \left(\bigoplus_{n=0}^{\infty} K_m(B_n) \right)$$

Let $\rho: \mathbb{N} \to \mathbb{N}$ be a function which is finite-to-one, i.e., the preimage of every element in \mathbb{N} under ρ is finite. Next we construct a functor of additive categories $V^G_\rho(X): O^G_0(X) \to O^G_0(X)$ which is essentially given by moving an object at the position n to the position $\rho(n)$ and leaving the position in X fixed. More precisely, V^G_ρ sends an object $\mathcal{B} = (S, \pi, \eta, B)$ to the object $V^G_\rho(X)(\mathcal{B}) = (\hat{S}, \hat{\pi}, \hat{\eta}, \hat{B})$ given by

$$\hat{S} = S;$$
$$\hat{\pi} = \pi;$$
$$\hat{\eta} = \rho \circ \eta;$$
$$\hat{B} = B,$$

Its definition on morphisms is the tautological one, i.e., a morphism $\phi: \mathcal{B} = (S, \pi, \eta, B) \to \mathcal{B}' = (S', \pi', \eta', B')$ is sent to the morphism $V^G_\rho(\phi)$ given by $V^G_\rho(X)(\phi)_{s'} s \neq 0 \implies \phi(s') = s$ for $s \in S$ and $s' \in S$.

We have to check that this is well-defined. Since ρ is finite-to-one, the new object $V'_\rho(X)(B)$ satisfies the conditions compact support over X and locally finiteness over \mathbb{N} as B does. For every natural number N, there exists a natural number N' such that the implication $\rho(n) \geq N' \implies n \geq N$ holds for every $n \in \mathbb{N}$, since ρ is finite-to-one. Hence the new morphism $V'_\rho(X)(\phi)$ satisfies finite G-support and continuous control as ϕ does. Obviously we have for $s \in S, s' \in S'$

$$V'_\rho(X)(\phi)_{s,s'} \neq 0 \implies \phi_{s,s'} \neq 0 \implies \eta(s) = \eta'(s')$$

$$\implies \rho \circ \eta(s) = \rho \circ \eta'(s') \implies \hat{\eta}(s) = \hat{\eta}'(s').$$

Since $V'_\rho(X)$ maps $\mathcal{T}^G_0(X)$ to $\mathcal{T}^G_0(P;B)$, it induces a functor of additive categories

\begin{equation}
V_\rho(X): D^G_0(X) \to D^G_0(X).
\end{equation}

19.10.2 Relating the K-Theory of D^G and D^G_0

We have explained in Section 19.4 that $D^G(X;B)$ yields a covariant functor $D^G: G$-CW-COMPLEXES \to ADD-CAT. One easily checks that the same construction yields a covariant functor

\begin{equation}
D^G_0: CW$-COMPLEXES \to ADD-CAT.
\end{equation}

Composition with the functor non-connective K-theory yields the covariant functors

\begin{equation}
K \circ D^G: CW$-COMPLEXES \to SPECTRA.
\end{equation}

\begin{equation}
K \circ D^G_0: CW$-COMPLEXES \to SPECTRA.
\end{equation}

By precomposing with the inclusion $\text{Or}(G) \to CW$-COMPLEXES, we get a covariant $\text{Or}(G)$-spectra

\begin{equation}
K^{D^G}: \text{Or}(G) \to SPECTRA;
\end{equation}

\begin{equation}
K^{D^G_0}: \text{Or}(G) \to SPECTRA.
\end{equation}

The main result of this section is

Theorem 19.101 (Relating the K-theory of $D^G(X)$ and $D^G_0(X)$). Define two functions $\rho_O, \rho_E: \mathbb{N} \to \mathbb{N}$ by
19.10 The Version with Zero Control over \(\mathbb{N} \)

\[
\rho_O(n) = \begin{cases}
\frac{n+2}{2} & \text{if } n \text{ is even;} \\
\frac{n+1}{2} & \text{if } n \text{ is odd.}
\end{cases}
\]

\[
\rho_E(n) = \begin{cases}
\frac{n}{2} & \text{if } n \text{ is even;} \\
\frac{n+1}{2} & \text{if } n \text{ is odd.}
\end{cases}
\]

Let \(\text{HPO} \) be the covariant functor \(G\text{-CW-COMPLEXES} \to \text{SPECTRA} \) given for a \(G\text{-CW-complex} \) by the homotopy pushout

\[
\begin{array}{ccc}
K(D_G^0(X)) & \xrightarrow{K(V_{\rho_E}(X))} & K(D_G^0(X)) \\
K(V_{\rho_O}(X)) \downarrow & & \downarrow \\
K(D_G^0(X)) & \xrightarrow{K(V_{\rho_O}(X))} & \text{HPO}(X),
\end{array}
\]

Then there exists a zigzag of weak homotopy equivalences of covariant functors \(G\text{-CW-COMPLEXES} \to \text{SPECTRA} \) from \(\text{HPO} \) to \(K \circ D^G \).

Comment 27: Is the next remark useful?

Remark 19.102. Let \(\mu_2: \mathbb{N} \to \mathbb{N} \) be the injective map sending \(n \) to \(2n \) and let \(\tau_1: \mathbb{N} \to \mathbb{N} \) be the injective map sending \(n \) to \(n+1 \). Then we get \(\rho_E \circ \mu_2 = \text{id}_\mathbb{N} \) and \(\rho_O \circ \mu_2 = \tau_1 \). This implies that the composite

\[
K \circ D^G \xrightarrow{K(V_{\mu_2})} K \circ D^G \xrightarrow{K(V_{\rho_E})} K \circ D^G
\]

is the identity and the composite

\[
K \circ D^G \xrightarrow{K(V_{\mu_2})} K \circ D^G \xrightarrow{K(V_{\rho_O})} K \circ D^G
\]

is \(K(V_{\tau_1}) \).

The remainder of this section is devoted to the proof of Theorem [19.101]. This needs some preparations.

For a subset \(J \subseteq \mathbb{N} \) define

\[
(19.103) \quad \mathcal{O}^G_J(X) \subseteq \mathcal{O}^G(X); \\
(19.104) \quad \mathcal{D}^G_J(X) \subseteq \mathcal{D}^G(X),
\]

to be the full subcategory of \(\mathcal{O}^G(X) \) and \(\mathcal{O}^G(X) \) respectively consisting of those objects \(B = (\Sigma, \pi, \eta, B) \) for which \(\text{im}(\eta) \subseteq J \) holds.

Fix a sequence of natural numbers \(0 = i_0 < i_1 < i_2 < i_3 < \cdots \) such that \(\lim_{j \to \infty} (i_j - i_{j-1}) = \infty \) holds, for instance we can take \(i_j = \frac{j(j+1)}{2} \) since then \(i_0 = 0 \) and \(i_j - i_{j-1} = j \) holds for \(j \geq 1 \). Define \(\mathbb{N}_j := \{ i \in \mathbb{N} \mid i_j \leq i \leq i_{j+1} \} \).

Put
Note that $D^G_N(X) = D^G(X)$, $N = E \cup O$, $E \cap O = I$, $I = I_O \cap I_E$, and $I_O \cap I_E = \emptyset$ hold.

Consider the following commutative diagram of additive categories whose arrows are all inclusions of full additive subcategories and which is natural in X.

(19.105) \[D^G_I(X) \quad \longrightarrow \quad D^G_E(X) \]
\[\downarrow \quad \quad \quad \downarrow \]
\[D^G_O(X) \quad \longrightarrow \quad D^G(X) \]

Lemma 19.106.

(i) The following inclusions are Karoubi filtrations

\[D^G_I(X) \rightarrow D^G_E(X); \]
\[D^G_I(X) \rightarrow D^G_O(X); \]
\[D^G_I(X) \rightarrow D^G_E(X); \]
\[D^G_I(X) \rightarrow D^G(X); \]

(ii) The functor induced on the Karoubi quotients

\[D^G_E(X)/D^G_I(X) \rightarrow D^G(X)/D^G_I(X) \]

is an equivalence of additive categories;

(iii) The diagram (19.105) is weak homotopy cocartesian.

Proof. [] We only show that the inclusion $D^G_I(X) \rightarrow D^G_E(X)$ is a Karoubi filtration, the proof for the other inclusions is an obvious variation. Consider an object $B = (\Sigma, \pi, \eta, B)$ in $O^G_E(X)$, objects $U = (\Sigma^U, \pi^U, \eta^U, B^U)$ and $V = (\Sigma^V, \pi^V, \eta^V, B^V)$ in $O^G(X)_I$, and morphisms $\phi: B \rightarrow U$ and $\psi: V \rightarrow B$ in $D^G_E(X)$. Let the morphisms $\phi: B \rightarrow U$ and $\psi: V \rightarrow B$ in $O^G_E(X)$ be representatives of ϕ and ψ. Choose a number t such that $\phi^\sigma_\tau = 0$ holds for $\sigma \in \Sigma$ and $\tau \in \Sigma^U$ with $|\eta(\sigma) - \eta_U^U(\tau)| \geq t$, and $\psi^\sigma_\rho = 0$ holds for $\rho \in \Sigma^V$ and $\sigma \in \Sigma$ with $|\eta(\sigma) - \eta^V(\rho)| \geq t$. Since $\lim_{j \to \infty} (i_j - i_j - 1) = \infty$, we can find a natural number $j_0 \geq 1$ such that $(i_j - i_j - 1) > 2t + 1$ for $j \geq j_0$ holds.
We can change the representatives \(\phi \) and \(\psi \) such that \(\phi^\sigma_\tau = \psi^\sigma_\rho = 0 \) holds for \(\sigma \in \Sigma, \tau \in \Sigma^U \) and \(\rho \in \Sigma^V \), provided that \(\pi_{\eta}(\sigma) \leq i_{\tau} \) is true. Hence we get for every natural number \(j \) the following implications for \(\sigma \in \Sigma, \tau \in \Sigma^U \), and \(\rho \in \Sigma^V \):

\[
\eta(\sigma) \in \mathbb{N}_{i_{2j}}, \pi_{\eta}^U(\tau) \in I, \phi^\tau_\tau \neq 0
\implies i_{2j} \leq \eta(\sigma) \leq i_{2j} + t \text{ or } i_{2j+1} - t \leq \eta(\sigma) \leq i_{2j+1}.
\]

\[
\eta(\sigma) \in \mathbb{N}_{i_{2j}}, \pi_{\eta}^V(\rho) \in I, \psi^\rho_\rho \neq 0
\implies i_{2j} \leq \eta(\sigma) \leq i_{2j} + t \text{ or } i_{2j+1} - t \leq \eta(\sigma) \leq i_{2j+1}.
\]

Define new objects \(B^\perp = (\Sigma^\perp, \pi^\perp, \eta^\perp, B^\perp) \) and \(B' = (\Sigma', \pi', \eta', B') \) in \(\mathcal{O}_{\mathcal{E}}(X) \) by putting

\[
\Sigma^\perp = \{ \sigma \in \Sigma \mid \eta(\sigma) < i_{2j_0} \}
\]

\[
\Pi \{ \sigma \in \Sigma \mid i_{2j} + t < \eta(\sigma) < i_{2j+1} - t, \text{ for some } j \in \mathbb{N} \text{ with } 2j \geq j_0 \};
\]

\[
\pi^\perp = \pi|_{\Sigma^\perp};
\]

\[
\eta^\perp = \eta|_{\Sigma^\perp};
\]

\[
B^\perp = B|_{\Sigma^\perp};
\]

\[
\Sigma' = \{ \sigma \in \Sigma \mid i_{2j} \leq \eta(\sigma) \leq i_{2j} + t \text{ or } i_{2j+1} - t \leq \eta(\sigma) \leq i_{2j+1}, \text{ for some } j \in \mathbb{N} \text{ with } 2j \geq j_0 \};
\]

\[
\pi' = \pi|_{\Sigma'};
\]

\[
\eta' = \eta|_{\Sigma'};
\]

\[
B' = B|_{\Sigma'}.
\]

Since \(\Sigma = \Sigma' \Pi \Sigma^\perp \), there are obvious morphisms \(i': B' \to B \) and \(i^\perp: B^\perp \to B \) in \(\mathcal{O}_{\mathcal{E}}(X) \) given by the morphisms \(\text{id}_{B'}(\sigma') \) and \(\text{id}_{B^\perp}(\sigma^\perp) \) for \(\sigma' \in \Sigma' \) and \(\sigma^\perp \in \Sigma^\perp \) such that \(i \circ i^\perp: B^\perp \to B \) is an isomorphism. Moreover, there are morphisms \(\phi': B' \to U \) and \(\psi': U \to B' \) in \(\mathcal{O}_{\mathcal{E}}(X) \) such that \(\phi \circ (i \circ i^\perp) = \phi' \circ \text{pr}^i \) and \(i' \circ \psi' = \psi \) holds, where \(\text{pr}^i: B^\perp \to B' \) is the canonical projection.

Define the object \(B'' = (\Sigma'', \pi'', \eta'', B'') \) in \(\mathcal{O}_{\mathcal{E}}(X)_I \) by putting for \(\sigma' \in \Sigma' \):

\[
\Sigma'' = \Sigma';
\]

\[
\pi'' = \pi';
\]

\[
\eta''(\sigma') = \begin{cases}
 i_{2j} & \text{if } i_{2j} \leq \eta(\sigma') \leq i_{2j} + t; \\
 i_{2j+1} & \text{if } i_{2j+1} - t \leq \eta(\sigma') \leq i_{2j+1};
\end{cases}
\]

\[
B'' = B'.
\]
We can consider B^{it} also as an object in $\mathcal{O}^G_E(X)$. Since $\Sigma^u = \Sigma'$ and $B^{it} = B'$, one easily checks that taking for $\sigma \in \Sigma'$ the identity $id_{B'(\sigma)}$ yields well-defined to one another inverse isomorphisms $u: B^{it} \to B'$ and $v: B' \to B^{it}$ in $\mathcal{O}^G_E(X)$. Define morphisms in $\mathcal{O}^G_E(X)$

\[
\begin{align*}
\phi^t & := i' \circ u: B^{it} \to B; \\
pr^t & := v \circ pr': B \to B^{it}; \\
\phi^t & := \phi' \circ u: B^{it} \to U; \\
\psi^t & := v \circ \psi': V \to B^{it}.
\end{align*}
\]

One easily checks that the images of ϕ^t, i^t, pr^t, ϕ^t and ψ^t under the projection $\mathcal{O}^G_E(X) \to D^G_E(X)$ yield the data required for a Karoubi filtration.

Next we show that for two objects $B = (\Sigma, \pi, \eta, B)$ and $B' = (\Sigma', \pi', \eta', B')$ in $\mathcal{O}^G_E(X)$ the obvious map

\[
(19.107) \quad \text{mor}_{D^G_E(X)/D^G_E(X)}(B, B') \to \text{mor}_{D^G_E(X)/D^G_E(X)}(B, B')
\]

is bijective.

We begin with the proof of surjectivity. It is based on the following construction. Consider a morphism $\phi: B \to B'$ in $\mathcal{O}^G(X)$. Since $\mathbb{N} = E \cup O$, one can construct objects B^E and B'^E in $\mathcal{O}^G_E(X)$ and B^O and B'^O in $\mathcal{O}^G_O(X)$ such that we get in $\mathcal{O}^G(X)$ identifications $B^O \oplus B^E = B$ and $B'^O \oplus B'^E = B'$. Then ϕ can be written as

\[
\phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}: B^O \oplus B^E \to B'^O \oplus B'^E.
\]

Define a morphisms in $\mathcal{O}^G(X)$ by the composite

\[
\psi: B^O \oplus B^E \xrightarrow{\left(\begin{smallmatrix} \text{id} & 0 \\ 0 & b \end{smallmatrix}\right)} B^O \oplus B'^O \xrightarrow{\left(\begin{smallmatrix} a & \text{id} \\ c & 0 \end{smallmatrix}\right)} B'^O \oplus B'^E.
\]

Then $B^O \oplus B'^O$ is an object in $\mathcal{D}^G_E(X)$, the difference $\phi - \psi$ is of the shape

\[
\begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}, \quad \text{and } d: B^E \to B'^E \text{ belongs to } \mathcal{O}^G_E(X).
\]

It remains to prove injectivity. Consider a morphism $\square: B \to B'$ in $\mathcal{D}^G_E(X)/\mathcal{D}^G_E(X)$ whose image under \square is zero. We have to show that \square itself is zero. Choose a representative ϕ in $\mathcal{D}^G_E(X)$ of \square. By assumption there is an object $U = (\Sigma^u, \pi^u, \eta^u, B^u)$ in $\mathcal{O}^G(U)$ such that $\pi \circ \pi = \phi$ holds in $\mathcal{D}^G(U)$ for appropriate morphisms $\pi: B \to U$ and $\pi: U \to B'$. In Choose a representative ϕ in $\mathcal{O}^G_E(X)$ of ϕ, and representatives μ and ν in $\mathcal{O}^G(U)$ respectively of π and π respectively. Fix a number t such that for $\sigma \in \Sigma$, $\sigma' \in \Sigma'$ and $\tau \in \Sigma^u$ the implications
19.10 The Version with Zero Control over \(\mathbb{N} \)

\[
\phi_\sigma'' \neq 0 \implies |\eta(\sigma) - \eta'(\sigma')| \leq t;
\mu_\sigma' \neq 0 \implies |\eta(\sigma) - \eta^U(\tau)| \leq t;
\nu_\sigma'' \neq 0 \implies |\eta^U(\tau) - \eta'(\sigma')| \leq t,
\]

hold. Since \(\lim_{j \to \infty} (i_j - i_{j-1}) = \infty \), we can find a natural number \(j_0 \geq 1 \) such that \((i_j - i_{j-1}) > 2t + 1 \) holds for \(j \geq j_0 \). By possibly enlarging \(j_0 \) we can additionally arrange that \(\phi_\sigma'' = \sum_{\tau \in \Sigma_U} \nu_\tau'' \circ \mu_\tau'' \) holds for \(\sigma \in \Sigma, \sigma' \in \Sigma' \) with \(\eta(\sigma), \pi_\Sigma(\sigma') \geq i_{j_0} \). Define an object \(V = (\Sigma^V, \pi^V, \eta^V, B^V) \) in \(D^G_E(X) \) by putting

\[
\Sigma^V = \{ \tau \in \Sigma^U \mid \eta(\tau) \geq i_{j_0} \text{ and } \exists n \in I \text{ with } |n - \eta^U(\tau)| \leq t \};
\pi^V = \pi_U|_{\Sigma^V};
\eta^V(\tau) = n \text{ for } \tau \in \Sigma^V \text{ and } n \in I \text{ with } |n - \eta^U(\tau)| \leq t;
B^V = B^U|_{\Sigma^V}.
\]

Define morphisms \(\alpha: B \to V \) and \(\beta: V \to B' \) in \(O^G_E(X) \) by putting for \(\sigma \in \Sigma, \sigma' \in \Sigma' \) and \(\tau \in \Sigma^V \)

\[
\alpha_\tau = \mu_\tau';
\beta_{\tau, \sigma'} = \nu_\tau''.
\]

Then \(\phi_{\sigma, \sigma'} = \sum_{\tau \in \Sigma^U} \beta_{\tau, \sigma'} \circ \alpha_\tau \) holds for \(\sigma \in \Sigma \) and \(\sigma' \in \Sigma' \) with \(\eta(\sigma), \eta(\sigma') \geq i_{j_0} \). Hence we get \(\overline{\phi} = \overline{\beta} \circ \overline{\alpha} \) in \(D^G_E(X) \). Since \(V \) belongs to \(D^G_I(X) \), we get \([\phi] = 0 \) in \(D^G_E(X)/D^G_I(X) \). Hence [19.107] is bijective.

It remains to construct for an object \(B = (\Sigma, \pi, \eta, B) \) in \(O^G(X) \) an object \(\tilde{B}' \) in \(O^G_E(X) \) and morphisms \(\tilde{i}: \tilde{B}' \to B \) and \(\tilde{r}: B \to \tilde{B}' \) in \(O^G(X) \) such that \([\tilde{r}] \circ [\tilde{i}] = \text{id}_{B'} \) and \([\tilde{r}] \circ [\tilde{i}] = \text{id}_B \) hold in \(D^G(X)/D^G_E(X) \). We define \(\tilde{B}' = (\Sigma', \pi', \eta', B') \) by

\[
\Sigma' = \{ \sigma \in \Sigma \mid \eta(\sigma) \in E \};
\pi'_B = \pi|_{\Sigma'};
\eta' = \eta|_{\Sigma'};
B' = B|_{\Sigma'},
\]

and the morphisms \(\tilde{i} \) and \(\tilde{r} \) for \(\sigma \in \Sigma \) and \(\sigma' \in \Sigma' \) by

\[
\psi_{\sigma, \sigma'} = r_{\sigma, \sigma'}^E = \begin{cases} \text{id}_{B'(\sigma')} & \text{if } \sigma = \sigma'; \\ 0 & \text{otherwise}. \end{cases}
\]

Obviously \(\tilde{r} \circ \tilde{i} = \text{id}_{B'} \) holds already in \(O^G(X) \) which implies \([\tilde{r}] \circ [\tilde{i}] = \text{id}_{B'} \) in \(D^G(X)/D^G_E(X) \). Define an object \(U = (\Sigma^U, \pi^U, \eta^U, B^U) \) in \(O^G_E(X) \) by

\[
\Sigma^U = \{ \sigma \in \Sigma \mid \eta(\sigma) \in E \};
\pi^U_B = \pi_U|_{\Sigma^U};
\eta^U = \eta_U|_{\Sigma^U};
B^U = B_U|_{\Sigma^U},
\]

and the morphisms \(\tilde{i} \) and \(\tilde{r} \) for \(\sigma \in \Sigma \) and \(\sigma' \in \Sigma' \) by

\[
\psi_{\sigma, \sigma'} = r_{\sigma, \sigma'}^U = \begin{cases} \text{id}_{B'(\sigma')} & \text{if } \sigma = \sigma'; \\ 0 & \text{otherwise}. \end{cases}
\]
Lemma 19.108. The inclusions $D^G_{I_0}(X) \to D^G_E(X)$ and $D^G_{I_k}(X) \to D^G_E(X)$ induce weak equivalences

$K(D^G_{I_0}(X)) \xrightarrow{\sim} K(D^G_E(X));$
$K(D^G_{I_k}(X)) \xrightarrow{\sim} K(D^G_E(X)).$

Proof. We give the proof only for the first map, the one for the second is completely analogous. We have already shown in Lemma 19.106 (i) that the inclusion $D^G_{I_0}(X) \to D^G_E(X)$ is a Karoubi filtration. Hence it suffices to show that $K(D^G_E(X)/D^G_{I_0}(X))$ is weakly contractible. This we will do by constructing an Eilenberg swindle as follows.

Next we define a functor of additive categories

(19.109) $SH: D^G_E(X)/D^G_{I_0}(X) \to D^G_E(X)/D^G_{I_0}(X).$

The idea is to move the objects one position to the right in the \mathbb{N}-direction, to discard the objects sitting at right endpoints of the intervals \mathbb{N}_{2j} since they would be moved outside the set E, and leaving the position in the X-direction fixed. Since the union of the right endpoints of the intervals \mathbb{N}_{2j} for $j \geq 0$ is I_0, this gives a well-defined functor. Here are more details.

An object $B = (\Sigma, \pi, \eta, B)$ of $D^G_{I_0}(X)/D^G_{I_0}(X)$ which is the same as an object in $O^G_{I_0}(X)$, is sent to the object $SH(B) = (\Sigma^{SH}, \pi^{SH}, \eta^{SH}, B^{SH})$ in $O^G_{I_0}(X)$ given by

$\Sigma^{SH} = \{ \sigma \in \Sigma \mid \eta(\sigma) \notin E \};$
$\pi^{SH} = \pi|_{\Sigma^{SH}};$
$\eta^{SH}(\sigma) = \eta(\sigma) + 1$ for $\sigma \in \Sigma^{SH};$
$B^{SH} = B|_{\Sigma^{SH}}.$

Consider a morphism $[\phi]: B = (\Sigma, \pi_\Sigma, [\pi_\rho]_\rho, B) \to B' = (\Sigma', \pi'_\Sigma, [\pi'_\rho]_\rho, B')$ in $D^G_{I_0}(X)/D^G_{I_0}(X).$ Let $\phi: B \to B'$ be a morphism in $O^G_{I_0}(X)$ representing $[\phi].$ Define a morphism $SH(\phi)$ in $O^G_{I_0}(X)$ by

$SH(\phi)^{\sigma'}_\sigma = \phi^\sigma_{\sigma'}$ for $\sigma \in \Sigma^{SH}, \sigma' \in (\Sigma')^{SH}.$
19.10 The Version with Zero Control over \mathbb{N}

Define $\text{SH}(\phi)$ to be the class $[\text{SH}(\phi)]$ of $\text{SH}(\phi)$. Notice that $\text{SH}(\phi)$ depends on the choice of $\phi \in [\phi]$. We leave it to the reader to check that $[\text{SH}(\phi)]$ depends only on $[\phi]$. Moreover, let $B \rightarrow B'$ and $[\psi] : B' \rightarrow B''$ be composable morphisms in $D^G_E(X)$. Choose representatives $\phi \in [\phi]$ and $\psi \in [\psi]$. Then it is not true that $\text{SH}(\psi) \circ \text{SH}(\phi)$ and $\text{SH}(\psi \circ \phi)$ agree, but one easily checks that the classes $[\text{SH}(\psi) \circ \text{SH}(\phi)] = [\text{SH}(\psi \circ \phi)]$ in $D^G_E(X)/D^G_{IO}(X)$ agree. Therefore the functor announced in (19.109) is well-defined.

Next we construct a natural equivalence

$$R_1 : \text{id}_{D^G_E(X)/D^G_{IO}(X)} \Rightarrow \text{SH}.$$

of functors $D^G_E(X)/D^G_{IO}(X) \rightarrow D^G_E(X)/D^G_{IO}(X)$ of additive categories.

We specify for every object B in $\mathcal{O}^G_E(X)$ morphisms $\phi : B = (\Sigma, \pi, \eta, B) \rightarrow \text{SH}(B) = (\Sigma^{\text{SH}}, \pi^{\text{SH}}, \eta^{\text{SH}}, B^{\text{SH}})$ and $\psi : \text{SH}(B) \rightarrow B$ in $\mathcal{O}^G_E(X)$ by putting for $\sigma \in \Sigma$ and $\sigma^{\text{SH}} \in \Sigma^{\text{SH}}$

$$\phi^\sigma_{\sigma^{\text{SH}}} = \begin{cases} \text{id}_B(\sigma) & \text{if } \sigma^{\text{SH}} = \sigma \\ 0 & \text{otherwise;} \end{cases}$$

$$\psi^\sigma_{\sigma^{\text{SH}}} = \begin{cases} \text{id}_B(\sigma) & \text{if } \sigma = \sigma^{\text{SH}} \\ 0 & \text{otherwise.} \end{cases}$$

We have $\phi \circ \psi = \text{id}_{\text{SH}(B)}$ in $\mathcal{O}_E^G(X)$. We do not have $\psi \circ \phi = \text{id}_B$ in $\mathcal{O}_E^G(X)$ but $[\psi \circ \phi] = [\text{id}_B]$ holds in $\mathcal{O}_E^G(X)/D^G_{IO}(X)$. Now one easily checks that the natural equivalence R_1 announced in (19.110) is well-defined.

Next we define another functor

$$S : D^G_E(X)/D^G_{IO}(X) \rightarrow D^G_E(X)/D^G_{IO}(X).$$

The informal definition is $S(B) = \bigoplus_{m=1}^{\infty} \text{SH}^m(B)$ and analogous for morphisms, where SH^m is the m-fold composite of SH. This makes sense since over a given element in \mathbb{N} this direct sum is finite. Here are the more details of the definition.

An object $B = (\Sigma, \pi, \eta, B)$ in $D^G_E(X)/D^G_{IO}(X)$ which is the same as an object in $\mathcal{O}_E^G(X)$, is sent to the object $S(B) = (\Sigma^S, \pi^S, \eta^S, B^S)$ in $D^G_E(X)$ given by

$$\Sigma^S = \prod_{j \in \mathbb{N}} \prod_{n \in \mathbb{N}} \prod_{k=i_{2j}}^{n} \eta^{-1}(k);$$

$$\pi^S = \pi|_{\Sigma^S};$$

$$\eta^S(\sigma) = n \quad \text{for } \sigma \in \prod_{k=i_{2j}}^{n} \eta^{-1}(k);$$

$$B^S = B|_{\Sigma^S}.$$
Consider a morphism \([\phi]: B \to B'\) in \(\mathcal{D}_E^G(X)/\mathcal{D}_I^G(X)\). Let the morphism
\(\phi: B = (\Sigma, \pi, \eta, B) \to B' = (\Sigma', \pi', \eta', B')\) in \(\mathcal{O}_E^G(X)\) be a representative of
\([\phi]\). Define a morphism \(S(\phi)\) in \(\mathcal{O}_E^G(X)\) by putting for \(\sigma \in \Sigma^S\) and \(\sigma' \in (\Sigma')^S\)
\[
S(\phi)^{\sigma'}_{\sigma} = \begin{cases}
\phi_{\sigma}^{\sigma'} & \text{if } \exists j \in \mathbb{N}, n, n' \in \mathbb{N} \text{ with } i_{2j} \leq \eta(\sigma) \leq n, i_{2j} \leq \pi_n(\sigma') \leq n' \\
0 & \text{otherwise.}
\end{cases}
\]

Now define \(S([\phi])\) to be \([S(\phi)]\).

Next we construct a natural equivalence

\[
R_2: \text{id}_{\mathcal{O}_E^G(X)} \oplus (\text{SH} \circ S) \xrightarrow{\cong} S
\]

of functors \(\mathcal{O}_E^G(X)/\mathcal{D}_I^G(X) \to \mathcal{O}_E^G(X)/\mathcal{D}_I^G(X)\) of additive categories. The idea comes from the formula

\[
B \oplus \text{SH}(S(B)) = B \oplus \text{SH}\left(\bigoplus_{m=0}^{\infty} \text{SH}^m(S(B)) \right)
\]

\[
= B \oplus \bigoplus_{m=1}^{\infty} \text{SH}^m(S(B)) = \bigoplus_{m=0}^{\infty} \text{SH}^m(S(B)) = S(B).
\]

Here are the some details of the construction. Note that for an object
\(B = (\Sigma, \pi, \eta, B)\) in \(\mathcal{O}_E^G(X)\) the source of \(R_2(B)\) is given by the quadruple
\((\Sigma', \pi', \eta', B')\) and the target by the quadruple \((\Sigma^S, \pi^S, \eta^S, B^S)\) such that

\[
\Sigma' = \Sigma \amalg (\Sigma^S)^{\text{SH}}
\]

\[
= \Sigma \amalg \{ \sigma \in \Sigma^S | \eta^S(\sigma) \in E \setminus I_0 \}
\]

\[
= \left(\coprod_{j \in \mathbb{N}} \prod_{n \in i_{2j}} \eta^{-1}(n) \right) \amalg \left\{ \sigma \in \prod_{j \in \mathbb{N}} \prod_{n \in \mathbb{N}} \prod_{k=i_{2j}}^{n} \eta^{-1}(k) \mid \eta^S(\sigma) \in E \setminus I_0 \right\}
\]

\[
= \left(\prod_{j \in \mathbb{N}} \prod_{n \in i_{2j}} \eta^{-1}(n) \right) \amalg \left(\prod_{j \in \mathbb{N}} \prod_{n \in \mathbb{N}} \prod_{k=i_{2j}}^{n} \pi^{-1}_n(k) \right)
\]

\[
= \left(\prod_{j \in \mathbb{N}} \prod_{n \in i_{2j}} \eta^{-1}(n) \right) \amalg \left(\prod_{j \in \mathbb{N}} \prod_{n \in \mathbb{N}} \prod_{k=i_{2j}}^{n-1} \pi^{-1}_n(k) \right)
\]

\[
= \prod_{j \in \mathbb{N}} \prod_{n \in \mathbb{N}} \prod_{k=i_{2j}}^{n} \eta^{-1}(k)
\]

\[
= \Sigma^S.
\]
Notice that any element $\sigma \in \Sigma'$ belongs to Σ. Moreover, under the identification $\Sigma' = \Sigma^S$ above we have $B'(\sigma) = B^S(\sigma) = B(\sigma)$ for $\sigma \in \Sigma'$. So we can define an isomorphism in $\mathcal{O}^G_{\Sigma}(X)$

$$R'_2(B): B \oplus (SH \circ S)(B) = (\Sigma', \pi', \eta', B') \rightarrow S(B) = (\Sigma^S, \pi^S, \eta^S, B^S)$$

by putting $R'_2(B)^{\sigma_0}_{\sigma_1} = \text{id}_{B(\sigma_0)}$ if $\sigma_0 = \sigma_1$ and $R'_2(B)^{\sigma_0}_{\sigma_1} = 0$ if $\sigma_0 \neq \sigma_1$ for $\sigma_0 \in \Sigma'$ and $\sigma_1 \in \Sigma^S$. Now define $R_2(B)$ by $[R'_2(B)]$. We leave it to the reader to check that the natural equivalence announced in (19.112) is well-defined.

Putting R_1 and R_2 together yields a natural equivalence of functors of additive categories $\mathcal{D}^G_{\Sigma}(X)/\mathcal{D}^G_{O}(X) \rightarrow \mathcal{D}^G_{\Sigma}(X)/\mathcal{D}^G_{O}(X)$

$$R: \text{id}_{\mathcal{D}^G_{\Sigma}(X)/\mathcal{D}^G_{O}(X)} \oplus S \xrightarrow{\simeq} S.$$

Theorem 6.36 implies that the spectrum $K(\mathcal{D}^G_{\Sigma}(X)/\mathcal{D}^G_{O}(X))$ is weakly contractible. This finishes the proof of Lemma 19.108.

Define injective function $\rho_I, \rho_{I_O}, \rho_{I_E}: \mathbb{N} \rightarrow \mathbb{N}$

$$\rho_I(j) = i_{j+1};$$
$$\rho_{I_O}(j) = i_{2j+2};$$
$$\rho_{I_E}(j) = i_{2j+1}.$$

By construction they induce bijections from \mathbb{N} to I, I_E, and I_O respectively.

Lemma 19.113. Let J be I, I_O or I_E. Then the functor $V_J(X): \mathcal{D}^G_0(X) \rightarrow \mathcal{D}^G_J(X)$ of (19.95) induces an isomorphism of additive categories

$$V_J(X): \mathcal{D}^G_0(X) \xrightarrow{\cong} \mathcal{D}^G_J(X).$$

Proof. We only treat the case $J = I$, the other cases are completely analogous. The functor $V_I(X)$ is bijective on the set of objects since the function $\mathbb{N} \rightarrow I$ sending j to i_{j+1} is a bijection. Hence it remains to show for two objects $B = (S, \pi, \eta, B)$ and $B' = (S', \pi', \eta', B')$ in $\mathcal{O}^G_0(X)$ that the map induced by $V_I(X)$

$$\text{mor}_{\mathcal{D}^G_0(X)}(B, B') \rightarrow \text{mor}_{\mathcal{D}^G_0(X)}(V_I(X)(B), V_I(X)(B'))$$

is bijective. It is obvious that it is injective. Hence we give only more details for the proof of surjectivity. Consider a morphism $[\psi]: V_I(X)(B) \rightarrow V_I(X)(B')$ in $\mathcal{D}^G_I(X)$. Choose a representative $\psi: V_I(X)(B) \rightarrow V_I(X)(B')$ in $\mathcal{O}^G_I(X)$. There is a natural number n such that the implication $\Psi_s^i \neq 0 \Rightarrow \tilde{\eta}(s) - \tilde{\eta}'(s') \leq n$ holds for $s \in S$ and $s' \in S'$. Choose a natural number $j_0 \geq 1$ such that $i_j - i_{j-1} > n$ holds for $j \geq j_0$. Then the implication $\Psi_s^i \neq 0 \Rightarrow \tilde{\eta}(s) = \tilde{\eta}'(s')$ holds for $s \in S$ and $s' \in S'$ with $\tilde{\eta}(s), \tilde{\eta}'(s') \geq i_{j_0}$. We can additionally arrange without changing $[\psi]$ that $\psi_s^i = 0$ holds for $\eta(s) \leq i_{j_0} + n$. Then
the implication $\psi_s^s \neq 0 \implies \tilde{\eta}(s) = \tilde{\eta}(s')$ holds for $s \in S$ and $s' \in S'$. Since $\tilde{\eta}(s) = \tilde{\eta}(s') \implies \eta(s) = \eta'(s')$, we can construct a morphism $\phi : B \to B'$ in $O^C(X)$ satisfying $F'_i(X)(\phi) = \psi$. Note that ϕ satisfies continuous control as ψ satisfies continuous control and for every natural number N there is a natural number N' such that for all $j \in \mathbb{N}$ the implication $j \geq N' \implies i_j \geq N$ holds. This implies that $[\psi]$ is in the image of the map above. This finishes the proof of Lemma 19.113.

Next we define functors of additive categories, natural in X,

\begin{align*}
(19.114) & \quad R_O(X) : D^G_O(X) \to D^G_{I^G}(X); \\
(19.115) & \quad R_E(X) : D^G_E(X) \to D^G_{I^G}(X),
\end{align*}

satisfying

\begin{align*}
(19.116) & \quad R_O(X)|_{D^G_{I^G}(X)} = \text{id}_{D^G_{I^G}(X)}; \\
(19.117) & \quad R_E(X)|_{D^G_{I^G}(X)} = \text{id}_{D^G_{I^G}(X)}.
\end{align*}

We only explain the construction of $R_O(X)$, the one for $R_E(X)$ is completely analogous. It will be induced by the following functor of additive categories

$$R'_O(X) : O^G_O(X) \to O^G_{I^G}(X)$$

whose definition we describe next. An object $B = (S, \pi, \eta, B)$ is sent by $R'_O(X)$ to the object $\tilde{B} = (\tilde{S}, \tilde{\pi}, \tilde{\eta}, \tilde{B})$ given by

- $\tilde{S} = S$;
- $\tilde{\eta} = \eta$;
- $\tilde{\eta}(s) = i_{2j+2}$ if $\eta(s) \in \mathbb{N}_{2j+1}$;
- $\tilde{B} = B$.

The idea is to move an object with position in \mathbb{N}_{2j+1} to the right endpoint of \mathbb{N}_{2j+1}, namely to i_{2j+2}, whereas nothing is changed concerning the X-direction. Obviously \tilde{B} satisfies the conditions compact support over X and locally finiteness over \mathbb{N} since B does and \mathbb{N}_{2j+1} is finite. The definition on morphisms is the tautological one. If $\phi : B = (S, \pi, \eta, B) \to B' = (S', \pi', \eta', B')$ is given by the collection $\{\phi_{s,s'} : s \in S, s' \in S'\}$, define $R'_O(\phi)$ by the same collection. Obviously $R_O(\phi)$ satisfies finite G-support as ϕ does. Since ϕ satisfies bounded control over \mathbb{N}, we can find a natural number n such that for $s \in S$ and $s' \in S'$ the implication $\phi_{s,s'} \neq 0 \implies |\eta(s) - \eta'(s')| \leq n$ holds. Choose a natural number m such that $i_{2j+1} - i_{2j} > n$ holds for $j \geq m$. If $\eta(s) \in \mathbb{N}_{2j+1}$ for $j \geq m$, we conclude $\eta'(s') \in \mathbb{N}_{2j+1}$ and hence $\tilde{\eta}(s) = \tilde{\eta}'(s')$. Put $l = i_{2m} + n$. Then we have for $s \in S$ and $s' \in S'$ the implication $\phi_{s,s'} \neq 0 \implies |\tilde{\eta}(s) - \tilde{\eta}'(s')| \leq l$. This shows that $R'_O(\phi)$ satisfies bounded
control over \(\mathbb{N} \). Since \(\phi \) satisfies continuous control and for every natural number \(N \) there exists a natural number \(N' \) satisfying \(\bar{\eta}(s) \geq N' \implies \eta(s) \geq N \) for \(s \in S \) and \(\bar{\eta}(s') \geq N' \implies \eta'(s') \geq N \) for \(s' \in S' \), continuous control holds also for \(R_\phi (\phi) \).

Obviously \(R'_O(X) \) induces the identity on \(\mathcal{O}^G_{I_E}(X) \) and sends \(\tau^G_O(X) \) to \(\tau^G_E(X) \). Hence \(R'_O \) induces the desired functor \(R_O \) announced in (19.114) and satisfying (19.116).

Lemma 19.118. The functors \(R_O(X) \) of (19.114) and \(R_E(X) \) of (19.115) induces weak equivalences, natural in \(X \),

\[
\begin{align*}
K(R_O(X)) : K(D^G_O(X)) & \xrightarrow{\sim} K(D^G_E(X)); \\
K(R_E(X)) : K(D^G_E(X)) & \xrightarrow{\sim} K(D^G_O(X)).
\end{align*}
\]

Proof. Because of (19.116) and (19.117) it suffices to show that the inclusions \(D^G_E(X) \to D^G_I(X) \) and \(D^G_I(X) \to D^G_E(X) \) induce weak homotopy equivalences on \(K \)-theory. This has already been done, see Lemma 19.108. \(\Box \)

Proof of Theorem 19.101. Consider the following diagram of additive categories, natural in \(X \),

\[
\begin{array}{ccc}
D^G_O(X) & \xrightarrow{V_{\rho_O}(X)^{-1} \circ R_O(X)} & D^G_I(X) & \to D^G_E(X) \\
\downarrow V_{I_E(X)}^{-1} & & \downarrow V_I(X)^{-1} & \downarrow V_{I_O(X)}^{-1} \circ R_E(X) \\
D^G_I(X) & \xleftarrow{V_{\rho_I}(X)} & D^G_E(X) & \xrightarrow{V_{\rho_E}(X)} & D^G_O(X)
\end{array}
\]

where the upper two horizontal arrows are the inclusions, the functors \(V_{\rho_O}(X) \) and \(V_{\rho_E}(X) \) have been defined in (19.95), the isomorphisms of additive categories \(V_{I_E}(X) \), \(V_I \), and \(V_{I_O}(X) \) come from Lemma 19.113, the functors \(R_O(X) \) and \(R_E(X) \) have been defined in (19.114) and (19.115). If we apply the \(K \)-theory functor, we obtain a commutative diagram of spectra, natural in \(X \)

\[
\begin{array}{ccc}
K(D^G_O(X)) & \xrightarrow{\sim} & K(D^G_I(X)) & \xrightarrow{\sim} & K(D^G_E(X)) \\
\downarrow \approx & & \downarrow \approx & & \downarrow \approx \\
K(D^G_I(X)) & \xleftarrow{K(V_{\rho_O}(X))} & K(D^G_E(X)) & \xrightarrow{K(V_{\rho_E}(X))} & K(D^G_O(X))
\end{array}
\]

whose horizontal arrows are weak homotopy equivalences by Lemma 19.118. It induces a weak homotopy equivalence from the homotopy pushout \(\text{HPO}(X) \) of the upper row to the lower row, natural in \(X \). We have already constructed a weak homotopy equivalences from \(\text{HPO}(X) \) to \(K(D^G(X)) \), natural in \(X \), in Lemma 19.106 (iii). This finishes the proof of Theorem 19.101. \(\Box \)
19.11 The Proof of the Axioms of a G-Homology Theory for \mathcal{D}_0^G

The main result of this chapter is

Theorem 19.119 (The algebraic K-groups of $\mathcal{D}_0^G(X,A)$ yield a G-homology theory). Let \mathcal{B} be a control coefficient category in the sense of Definition 19.1.

Then we obtain a G-homology theory with values in \mathbb{Z}-modules in the sense of Definition 11.1 by the covariant functor from the category of G-CW-pairs to the category of \mathbb{Z}-graded abelian groups sending (X,A) to $K_*(\mathcal{D}_0^G(X,A;\mathcal{B}))$.

First we start with G-homotopy invariance. Here the proof for \mathcal{D}_G of Lemma 19.30 does not carry over since we there we are shifting in the N-direction and the construction of the natural equivalence in the relevant Eilenberg-swindle cannot be done with zero-control in the N-direction. Therefore we have to construct a different Eilenberg-swindle, where we do not move the objects in the N-direction.

Proposition 19.120. The inclusion $X \times \{0\} \to X \times [0,1]$ induces a weak homotopy equivalence

$$K(\mathcal{D}_0^G(X \times \{0\})) \to K(\mathcal{D}_0^G(X \times [0,1])).$$

Proof. We define a functor of additive categories

$$(19.121) \quad \text{SH}: \mathcal{O}_0^G(X \times [0,1]) \to \mathcal{O}_0^G(X \times [0,1])$$

as follows.

Consider an object $\mathcal{B} = (S, \pi, \eta, B)$ in $\mathcal{O}_0^G(X \times [0,1])$. In the sequel let $\pi_X: S \to X$ and $\pi_{[0,1]}: S \to [0,1]$ be the maps for which $\pi = \pi_X \times \pi_{[0,1]}$. We define $\text{SH}(\mathcal{B})$ to be the object $(\text{SH}(S), \text{SH}(\pi), \text{SH}(\eta), \text{SH}(B))$ given by

$$\text{SH}(S) = \{(s,n) \in S \times \mathbb{N} \mid n \leq \eta(s) \cdot \pi_{[0,1]}(s)\};$$

$$\text{SH}(\pi)(s,n) = \begin{cases} \pi(s) & \text{if } \eta(s) = 0; \\ (\pi_X(s), \pi_{[0,1]}(s) - \frac{n}{\eta(s)}) & \text{if } \eta(s) \geq 1; \end{cases}$$

$$\text{SH}(\eta)(s,n) = \eta(s);$$

$$\text{SH}(B)(s,n) = B(s).$$

The idea is to shift an object $\mathcal{B}(s)$ from position $\pi_{[0,1]}(s)$ to position $\pi_{[0,1]}(s) - \frac{1}{\eta(s)}$ if $\eta(s) \geq 1$ and $\pi_{[0,1]}(s) - \frac{1}{\eta(s)} \geq 0$, to forget it if $\eta(s) \geq 1$ and $\pi_{[0,1]}(s) - \frac{1}{\eta(s)} < 0$, and to leave it at $\pi_{[0,1]}(s)$ if $\eta(s) = 0$, whereas $\pi_X(s)$ and $\eta(s)$ are unchanged. Then take the infinite direct sum over $k \in \mathbb{N}$ for the k-fold
composition. So here we are shifting in the direction of $[0,1]$ and not in the direction of \mathbb{N}.

We have to check that is well-defined. Since $\text{im}(\text{SH}(\pi)) \subseteq \text{im}(\pi_X) \times [0,1]$ and \mathbf{B} satisfies compact support over $X \times [0,1]$, $\text{SH}(\mathbf{B})$ satisfies compact support over $X \times [0,1]$. Since \mathbf{B} satisfies locally finiteness over \mathbb{N}, the same is true for $\text{SH}(\mathbf{B})$, as we get for $m \in \mathbb{N}$

$$\text{SH}(\eta)^{-1}(m) = \{(s, n) \mid \eta(s) = m, n \leq \eta(s) \cdot \pi_{[0,1]}(s)\} \subseteq \bigcup_{s \in \eta^{-1}(m)} \{m \in \mathbb{N} \mid n \leq m\}.$$

The definition on morphisms is the tautological one. If the morphism $\phi: \mathbf{B} = (S, \pi, \eta, \mathbf{B}) \to \mathbf{B}' = (S', \pi', \eta', \mathbf{B}')$ is given by the collection $\{\phi_{s,s'}: \mathbf{B}(s) \to \mathbf{B}'(s') \mid s \in S, s' \in S'\}$, then define $\text{SH}(\phi)$ by the collection $\{\text{SH}(\phi(s,n),(s',n')) \mid (s,n) \in \text{SH}(S), (s',n') \in \text{SH}(S')\}$, where

$$\text{SH}(\phi(s,n),(s',n')) = \begin{cases} \phi_{s,s'} & \text{if } n = n', \\ 0 & \text{otherwise.} \end{cases}$$

We have to check that this is well-defined. Since ϕ satisfies finite G-support and $\text{SH}(\phi(s,n),(s',n'))$ is zero or $\phi_{s,s'}$, $\text{SH}(\phi)$ satisfies finite G-support. If $\text{SH}(\phi(s,n),(s',n')) \neq 0$ holds, then $\phi_{s,s'} \neq 0$ and hence we get $\text{SH}(\eta(s,n)) = \eta(s) = \eta'(s') = \text{SH}(\eta')(s',n')$. The more complicated part is to show that $\text{SH}(\phi)$ satisfies continuous control what we do next. We only deal with the implication (19.5). The proof for the other implication (19.6) is completely analogous.

Consider $(x,t) \in X \times [0,1]$ and an open $G_{(x,t)}$-invariant neighborhood U of (x,t) in $X \times [0,1]$. Choose an open G_x-invariant neighborhood V of x in X and $\epsilon > 0$ such that $V \times I_{3\epsilon}(t) \subseteq U$ holds, where $I_t(t) = (t - \epsilon, t + \epsilon) \cap [0,1]$. Since ϕ satisfies continuous control, we can find $\delta(x,t,\epsilon) > 0$ with $\delta(x,t,\epsilon) \leq \epsilon$, $r'(x,t,\epsilon) \in \mathbb{N}$, and an open G_x-invariant neighborhood $V'(x,t,\epsilon)$ of x in X such that $V(x,t,\epsilon) \subseteq V$ and $\delta(x,t,\epsilon) \leq \epsilon$ hold and we have for every $s \in S$, $s' \in S'$ and $g \in G$ the implication

$$(19.122) \quad g\pi_X(s) \in V'(x,t,\epsilon), \pi_{[0,1]}(s) \in I_{\delta(x,t,\epsilon)}(t), \eta(s) \geq r'(x,t,\epsilon) \Rightarrow \pi'_X(s') \in V, \pi'_{[0,1]}(s') \in I_t(t).$$

Since $[0,1]$ is compact, we can find a finite subset $\{t_1, t_2, \ldots, t_l\} \subseteq [0,1]$ satisfying $\bigcup_{i=1}^l I_{\delta(x,t_i,\epsilon)}(t_i) = [0,1]$. Put

$$r' = \max\{r'(x,t_i,\epsilon) \mid i = 1, 2 \ldots, l\};$$

$$V' = \bigcap_{i=1}^l V'(x,t_i,\epsilon).$$
Then r' is a natural number and V' is an open G_x-invariant neighborhood of x in X.

Now we are ready to prove the implication (19.5) for $\text{SH}(\phi)$. Consider $(s, n) \in \text{SH}(S)$, $(s', n') \in \text{SH}(S')$, and $g \in \text{supp}_G(\text{SH}(\phi)(s, n), (s', n'))$. We want to show

$$g \text{SH}(\pi)(s, n) \in V' \times I_\delta(t), \text{SH}(\eta)(s, n) \geq r' \implies \text{SH}(\pi')(s', n') \in U.$$

As $\text{SH}(\phi)(s, n, (s', n')) = \phi_{s,s'}$, we get $g \in \text{supp}_G(\phi_{s,s'})$ and $\text{SH}(\phi)(s, n, (s', n')) \neq 0$. Choose $i \in \{1, 2, \ldots, l\}$ with $\pi_{[0,1]}(s) \in I_{\delta(x, t_i, \epsilon)}(t_i)$. As $V' \subseteq V'(x, t_i, \epsilon)$ and $r'(x, t_i, \epsilon) \leq r'$ hold, we get $\pi'_X(s') \in V$ and $\pi'_{[0,1]}(s') \in I_\delta(t_i)$ from (19.122).

Since $\delta' \leq \delta(x, t_i, \epsilon) \leq \epsilon$ holds and we have $\pi'_{[0,1]}(s) \in I_{\delta(x, t_i, \epsilon)}(t_i)$ and $\pi'_{[0,1]}(s') \in I_\delta(t_i)$, we conclude from the triangle inequality $|\pi_{[0,1]}(s) - \pi'_{[0,1]}(s')| \leq 2\epsilon$. Since $\text{SH}(\phi)(s, n, (s', n')) = \phi_{s,s'} \neq 0$, we have $n = n'$ and $\eta(s) = \eta'(s')$. Hence we get for $\eta(n) \geq 1$

$$|\text{SH}(\pi'_{[0,1]})(s, n) - \text{SH}(\pi'_{[0,1]})(s', n')|$$

$$= |(\pi_{[0,1]}(s) - \frac{n}{\eta(s)}) - (\pi'_{[0,1]}(s') - \frac{n'}{\eta'(s')})|$$

$$= |\pi_{[0,1]}(s) - \pi'_{[0,1]}(s')|$$

$$\leq 2\epsilon.$$

If $\eta(s) = 0$, we get $|\text{SH}(\pi'_{[0,1]})(s, n) - \text{SH}(\pi'_{[0,1]})(s', n')| = |\pi_{[0,1]}(s) - \pi'_{[0,1]}(s')| \leq 2\epsilon$. Hence we get for $(s, n) \in \text{SH}(S)$, $(s', n') \in \text{SH}(S')$, and $g \in \text{supp}_G(\text{SH}(\phi)(s, n), (s', n'))$ satisfying $g \text{SH}(\pi)(s, n) \in V' \times I_\delta(t)$ and $\text{SH}(\eta)(s, n) \geq r'$

$$\text{SH}(\pi')(s, n') \in V;$$

$$|\text{SH}(\pi'_{[0,1]})(s, n) - \text{SH}(\pi'_{[0,1]})(s', n')| \leq 2\epsilon.$$

The latter implies using $\text{SH}(\pi)(s, n) \in I_\delta(t)$ and the triangle inequality $\text{SH}(\pi'_{[0,1]})(s', n') \in I_{3\delta}(t) \subseteq U$. Hence we get

$$\text{SH}(\pi')(s', n') \in V \times I_{3\delta}(t) \subseteq U.$$

This finishes the proof that $\text{SH}(\phi)$ is a well-defined morphisms. One easily checks that SH is a functor of additive categories.

Consider an object $B = (S, \pi, \eta, B)$ in $O_G(0, X \times [0, 1])$. Next we define two morphisms in $O_G(0, X \times [0, 1])$

$$T_0(B) : B \oplus \text{SH}(B) \to \text{SH}(B);$$

$$T_1(B) : \text{SH}(B) \to B \oplus \text{SH}(B).$$

Recall that $B \oplus \text{SH}(B) = (S \amalg \text{SH}(S), \pi \amalg \text{SH}(\pi), \eta \amalg \text{SH}(\eta), B \amalg \text{SH}(B))$. For $s \in S$ and $(s', n') \in \text{SH}(S)$ we define
19.11 The Proof of the Axioms of a G-Homology Theory for \mathcal{D}_0^G

$$T_0(B)_{s,(s',n')} = \begin{cases} \text{id}_{B(s)} & \text{if } s' = s \text{ and } n' = 0; \\ 0 & \text{otherwise.} \end{cases}$$

For $(s, n) \in \text{SH}(B)$ and $(s', n') \in \text{SH}(B)$ define

$$T_0(B)_{(s,n),(s',n')} = \begin{cases} \text{id}_{B(s)} & \text{if } s' = s \text{ and } n' = n + 1; \\ 0 & \text{otherwise.} \end{cases}$$

We have to check that this is well-defined. Note that $\text{supp}_G(T_0(B))$ is either empty or $\{e\}$. In particular the condition finite G-support is satisfied. For $s \in S$ and $(s', n') \in \text{SH}(S)$ we have $T_0(B)_{s,(s',n')} \neq 0 \implies s = s'$ and hence $\eta(s) = \eta(s') = \text{SH}(\eta)(s', n')$. For $(s, n) \in S$ and $(s', n') \in \text{SH}(S)$ we have $T_0(B)_{(s,n),(s',n')} \neq 0 \implies s = s'$ and hence $\text{SH}(\eta)(s, n) = \eta(s) = \eta(s') = \text{SH}(\eta)(s', n')$. It remains to show continuous control. We only deal with the implication [19.5]. The proof for the other implication [19.6] is completely analogous.

Consider $(x, t) \in X \times [0, 1]$ and an open $G_{(x,t)}$-invariant neighborhood U of (x, t) in $X \times [0, 1]$. Choose an open G_x-invariant neighborhood V of x in X and $\epsilon > 0$ such that $V \times I_{2\epsilon}(t) \subseteq U$ holds. Choose a natural number r' satisfying $r' \geq 1/\epsilon$. Then $U' := V \times I_{r'}(t)$ is an open $G_{(x,t)}$-invariant open neighborhood of (x, t) in $X \times [0, 1]$ with $U' \subseteq U$. Consider $s \in S$, $(s', n') \in \text{SH}(S)$, and $g \in \text{supp}_G(T_0(B))_{s,(s',n')}$. We conclude $s = s'$ and $n' = 0$ and hence $\pi(s) \in \text{SH}(\pi)(s', n')$. We conclude $\text{SH}(\pi)(s', n') \subseteq U' \subseteq U$. Consider $(s, n) \in S$, $(s', n') \in \text{SH}(S)$, and $g \in \text{supp}_G(T_0(B))_{(s,n),(s',n')}$. We conclude $g \text{SH}(\pi)(s) \subseteq U'$ and $\text{SH}(\eta)(s, n) \geq r'$ hold. Then $g = e$ and $T_0(B)_{(s,n),(s',n')} \neq 0$. This implies $s' = s$ and $n' = n + 1$. We get $\text{SH}(\pi)_X(s, n) = \pi_X(s) = \pi_X(s') = \text{SH}(\pi)_X(s', n')$ and hence $\text{SH}(\pi)_X(s', n') \subseteq U'$. Moreover

$$|\text{SH}(\pi)_{[0,1]}(s, n) - \text{SH}(\pi')_{[0,1]}(s', n')|$$

$$= |\left(\pi_{[0,1]}(s) - \frac{n}{\eta(s)}\right) - \left(\pi_{[0,1]}(s') - \frac{n'}{\eta(s')}\right)|$$

$$= \left|\left(\pi_{[0,1]}(s) - \frac{n}{\eta(s)}\right) - \left(\pi_{[0,1]}(s) - \frac{n + 1}{\eta(s)}\right)\right|$$

$$= \frac{1}{\eta(s)}$$

$$\leq \frac{1}{r'}$$

$$\leq \epsilon.$$
\[T_1(B)_{(s,n),s'} = \begin{cases} \text{id}_{B(s)} & \text{if } s' = s \text{ and } n = 0; \\ 0 & \text{otherwise.} \end{cases} \]

For \((s,n) \in \text{SH}(B)\) and \((s',n') \in \text{SH}(B)\) define

\[T_0(B)_{(s,n),(s',n')} = \begin{cases} \text{id}_{B(s)} & \text{if } s' = s, n \geq 1, \text{ and } n' = n - 1; \\ 0 & \text{otherwise.} \end{cases} \]

We omit the proof that \(T_1(B)\) is well-defined since it is very similar to the one for \(T_0(B)\). Roughly speaking, \(T_0(B)\) shifts to the right in \([0,1]\), where \(T_1(B)\) shifts to the left.

Obviously \(T_0(B) \circ T_1(B) = \text{id}_{\text{SH}(B)}\). It is not true that \(T_1(B) \circ T_0(B) = \text{id}_{B \oplus \text{SH}(B)}\). At least we can show that \(\text{id}_{B \oplus \text{SH}(B)} - T_1(B) \circ T_0(B)\) factorizes as a composite

\[(19.123) \quad \text{id}_{B \oplus \text{SH}(B)} - T_1(B) \circ T_0(B) : B \oplus \text{SH}(B) \to B'_0 \to B \oplus \text{SH}(B) \]

for an object \(B'_0\) in \(\mathcal{O}_G^G(X \times \{0\})\) as follows.

We define a kind of subobject \(B_0 = (S_0, \pi_0, \eta_0, B_0)\) of \(\text{SH}(B)\) by

\[
\begin{align*}
S_0 &= \{(s,n) \in S \times \mathbb{N} \mid \eta(s) \geq 1, n \leq \eta(s) \cdot \pi_{[0,1]}(s) < n + 1; \\
\pi_0(s,n) &= (\pi_X(s), \pi_{[0,1]}(s) - \frac{n}{\eta(s)}); \\
\eta_0(s,n) &= \eta(s); \\
\text{SH}(B)(s,n) &= B(s).
\end{align*}
\]

Note that \(S_0 \subseteq \text{SH}(B)\). Actually, for a given \(s \in S\) with \(\eta(s) \geq 1\) the element of the shape \((s,n) \in \text{SH}(S)\) belongs to \(S_0\) if and only if \((s,n+1)\) does not belong to \(\text{SH}(S)\) anymore. The maps \(\eta_0\) and \(B_0\) are obtained by restricting \(\text{SH}(\pi)\), \(\text{SH}(\eta)\), and \(\text{SH}(B)\) to \(S_0\). There is an obvious subobject \(B^\perp\) of \(\text{SH}(B)\) such that \(B_0 \oplus B^\perp = \text{SH}(B)\). Moreover, there is an obvious factorization

\[\text{id}_{B \oplus \text{SH}(B)} - T_1(B) \circ T_0(B) : B \oplus \text{SH}(B) \to B_0 \to B \oplus \text{SH}(B). \]

Hence it suffices to show that \(B_0\) is isomorphic in \(\mathcal{O}_G^G(X \times [0,1])\) to an object \(B'_0 = (S'_0, \pi_0, \eta_0, B'_0)\) which belongs to \(\mathcal{O}_G^G(X \times \{0\})\). We define \(B'_0\) by \(S'_0 = S_0\), \(\eta'_0 = \eta_0\), and \(B'_0 = B_0\) and by putting \(\pi'_0(s,n) = (\pi_X(s),0)\). In order to show that \(B_0\) and \(B'_0\) are isomorphic in \(\mathcal{O}_G^G(X \times [0,1])\) we verify the criterion occurring in Lemma \[19.14\].

Consider \((x,t) \in X \times [0,1]\) and an open \(G_{(x,t)}\)-invariant neighborhood \(U\) of \((x,t)\) in \(X \times [0,1]\). Choose an open \(G_x\)-invariant neighborhood \(V\) of \(x\) in \(X\) and \(\epsilon > 0\) such that \(V \times I_{2\epsilon}(t) \subseteq U\) holds. Choose a natural number \(r'\) with \(r' \geq \frac{1}{\epsilon}\). Put \(U' = V \times I_{\epsilon}(t)\). Next we prove the implication for \(s \in S_0 = S'_0\)

\[(19.124) \quad \pi_0(s) \in U', \eta_0(s) \geq r' \implies \pi'_0(s) \in U. \]
From \(\pi_0(s) \in U' \) we get \((\pi_0)_X(s) \in V\) and \((\pi_0)_{[0,1]}(s) \in I_t(t)\). By definition we have

\[
(\pi_0)_{[0,1]}(s) = \pi_{[0,1]}(s) - \frac{n}{\eta(s)} > 0 = (\pi'_0)_{[0,1]}(s) > \pi_{[0,1]}(s) - \frac{n + 1}{\eta(s)}.
\]

This implies

\[
|((\pi_0)_{[0,1]}(s) - (\pi'_0)_{[0,1]}(s))| \leq \frac{1}{\eta_0(s)} = \frac{1}{\eta_0(s)} \leq r' \leq \epsilon.
\]

Since \((\pi_0)_{[0,1]}(s) \in I_t(t)\), we conclude from the triangle inequality \((\pi'_0)_{[0,1]}(s) \in I_2(t)\). Since \((\pi_0)_X(s) \in V\) and \((\pi_0)_X(s) = (\pi'_0)_X(s)\), we get \((\pi'_0)_X(s) \in V\). This implies \((\pi'_0)(s) \in V \times I_2(t) \subseteq U\). This finishes the proof of (19.124).

The proof of the other implication

\[
\pi'_0(s) \in U', \eta_0(s) \geq r' \implies \pi_0(s) \in U.
\]

is completely analogous. Thus we obtain the desired factorization (19.123).

One easily checks that \(SH\) induces a functor of additive categories

\[
\overline{SH}: \mathcal{D}_G^C(\times [0,1], \times \{0\}) \rightarrow \mathcal{D}_G^C(\times [0,1], \times \{0\})
\]

and \(T_0(B)\) and \(T_1(B)\) induces to one another inverse isomorphisms \(T_0(B): B \oplus \overline{SH}(B) \xrightarrow{\cong} \overline{SH}(B)\) and \(T_1(B): \overline{SH}(B) \xrightarrow{\cong} B \oplus \overline{SH}(B)\). The collection of the \(T_0(B)\) defines a natural equivalence of functors of additive categories

\[
T_0: \text{id}_{\mathcal{D}_G^C(\times [0,1], \times \{0\})} \oplus \overline{SH} \xrightarrow{\cong} \overline{SH}.
\]

We conclude from Theorem 6.36 (iii) and Proposition 19.27 that the inclusion \(X \times \{0\} \rightarrow X \times [0,1]\) induces a weak homotopy equivalence

\[
K(\mathcal{D}_G^C(\times \{0\})) \rightarrow K(\mathcal{D}_G^C(\times [0,1])).
\]

This finishes the proof of Proposition 19.120. \(\square\)

Exercise 19.125. Show that the proof of the homotopy invariance for \(K(\mathcal{D}_G^C(\times \{0\}))\) of Proposition 19.120 can easily be modified to a new proof of the \(G\)-homotopy invariance for \(K(\mathcal{D}_G^C(\times \{0\}))\).

Comment 28: Check the solution.

Proof of Theorem 19.119. The rest of the proof of Theorem 19.119 is completely analogous to the proof of Theorem 19.26; one just has to check that all constructions respect the zero-control condition appearing in the definition of \(\mathcal{D}_G^C\). **Comment 29:** Check this. \(\square\)
19.12 Control structures

In this section we give a more axiomatic and more general approach to controlled categories by introducing control structures.

Definition 19.126 (Control structure). A control structure \(\mathcal{E} \) on a \(G \)-space \(X \) is a collection of subsets of \(X \times X \) satisfying the following conditions:

(i) **Subsets**
 For \(E \in \mathcal{E} \) and \(E' \subseteq E \) we have \(E' \in \mathcal{E} \);

(ii) **Finite unions**
 For \(E, E' \in \mathcal{E} \) we have \(E \cup E' \in \mathcal{E} \);

(iii) **Opposite**
 For \(E \in \mathcal{E} \) we have \(E^\text{op} := \{(x, x') \mid (x', x) \in E\} \in \mathcal{E} \);

(iv) **Composites**
 For \(E, E' \in \mathcal{E} \) we have \(E' \circ E \in \mathcal{E} \), where for \(E, E' \subseteq X \times X \) we set
 \[
 E' \circ E := \{(x, x'') \mid \exists x' \in X \text{ with } (x, x') \in E, (x', x'') \in E'\};
 \]

(v) **Enlarging**
 For all \(E \in \mathcal{E} \) and all finite subsets \(F \subseteq G \) we have
 \[
 F \cdot E := \{(gx, gx') \mid (x, x') \in E, g \in F\} \in \mathcal{E}.
 \]

Example 19.127 (The \(G \)-control structure given by continuous control). Define the \(G \)-control structure \(\mathcal{E}^{cc} \) on a \(G \)-space \(X \) by those subsets \(E \subset X \times X \) with the property that for every \(x \in X \) and every open \(G_x \)-invariant neighborhood \(U \) of \(x \) there exists an open \(G_x \)-invariant neighborhood \(U' \) of \(x \) in \(X \) with \(U' \subseteq U \) such that for every pair \((x_1, x_2) \) in \(E \) the following two implications

(19.128) \[x_1 \in U' \implies x_2 \in U; \]
(19.129) \[x_2 \in U' \implies x_1 \in U, \]
hold.

Exercise 19.130. Show that \(\mathcal{E}^{cc} \) satisfies the axioms appearing in Definition 19.126.

Remark 19.131 (\(O^G(X; \mathcal{E}, \mathcal{B}) \)). Let \(X \) be a \(G \)-CW-complex coming with a \(G \)-control structure \(\mathcal{E} \) and let \(\mathcal{B} \) be a control coefficient category in the sense of Definition [19.1]. We can generalize the definition of the additive category \(O^G(X) \) of Definition [19.4] to the definition of an additive category \(O^G(X; \mathcal{E}, \mathcal{B}) \) by leaving everything unchanged except the condition continuos control which is replaced by the following condition
• \mathcal{E}-control

We require for a morphism $\phi: B \to B'$

$$\text{supp}_{X \times X}(\phi) \in \mathcal{E},$$

where $\text{supp}_{X \times X}(\phi)$ is the subset of $X \times X$ given by \{(g\pi(s), \pi(s')) | s \in S, s' \in S', g \in \text{supp}_G(\phi_{s,s'})\}.

The axioms for a control structure are designed such that this definition makes sense.

We conclude from Lemma 19.10 (ii) that $O^G(\mathcal{E}_{cc}, B)$ agrees with $O^G(X)$.

There are obvious definitions of additive categories

$$\mathcal{T}^G(X; \mathcal{E}, B) \subseteq O^G(X; \mathcal{E}, B);$$

$$\mathcal{D}^G(X; \mathcal{E}, B) := O^G(X; \mathcal{E}, B)/\mathcal{T}^G(X; \mathcal{E}, B),$$

which reduce to $\mathcal{T}^G(X)$ and $\mathcal{D}^G(X)$ in the special case $\mathcal{E} = \mathcal{E}_{cc}$. These constructions can be extended to G-CW-pairs (X, A) in the obvious way.

Exercise 19.132. Show that the composition in $O^G(X; \mathcal{E}, B)$ is compatible with \mathcal{E}-control.

19.13 Notes

Comment 30: Check the following remark carefully!

Remark 19.133 (Dropping G_x-invariance in the definition of continuous control). One may discard in the definition of continuous control the property G_x-invariance. More precisely, instead of considering an open G_x-invariant neighborhood U of x and asking for a suitable open G_x-invariant neighborhood U' of x, one may consider just an open neighborhood U of x and just ask for an open neighborhood U' of x. All other axioms are unchanged in Definition 19.4.

It turns out that all the results and constructions above remain true in this new setting. The proofs carry over word by word, just drop G_x-invariance everywhere.

Hence we obtain for a G-CW-pair (X, A) new additive categories

$$\tilde{O}^G(X, A; B) = \tilde{O}^G(X, A)$$

$$\tilde{\mathcal{T}}^G(X, A; B) = \tilde{\mathcal{T}}^G(X, A)$$

$$\tilde{\mathcal{D}}^G(X, A; B) = \tilde{\mathcal{D}}^G(X, A)$$
such that $K_\ast(\hat{D}^G(\cdot))$ is a G-homology theory which is naturally equivalent to the G-homology theory $H^G_\ast(\cdot; \mathcal{K}(\mathcal{B}(\cdot)))$ by Proposition 19.73. This implies that the G-homology theories $K_\ast(D^G(\cdot))$ and $K_\ast(\hat{D}^G(\cdot))$ are naturally equivalent.

Note that there is no direct comparison between the additive categories $\hat{D}^G(X,A)$ and $D^G(X,A)$ in the sense that we cannot define a functor of additive categories from one to the other.

Obviously $\hat{T}^G(X,A;B)$ and $T^G(X,A;B)$ agree.

Exercise 19.137. Suppose that the G-CW-complex X admits a (not necessarily G-invariant) metric d. (This is the case if and only if X is locally compact). Show that we can replace in the definition of the category $\hat{D}^G(X,A;B)$ the condition continuous control by requiring that for every $\epsilon > 0$ there exist $\delta > 0$ such that for every $x \in X$, $s \in S$, $s' \in S'$ and $g \in \text{supp}_G(\phi_{s,s'})$ the two implications

\begin{align}
(19.138) & \quad g\pi(s) \in B_\delta(x) \implies \pi'(s') \in B_\epsilon(x); \\
(19.139) & \quad g^{-1}\pi'(s') \in B_\delta(x) \implies \pi(s) \in B_\epsilon(x),
\end{align}

hold.

Comment 31: One may consider also the case where one discards bounded control over \mathbb{N} and modifies continuous control by implementing $r \in \mathbb{N}$.

Comment 32: Add a comparison to previous definitions, where G-fixed points of certain categories are taken and X is replaced by a resolution.
Chapter 20
Coverings and Flow Spaces

20.1 Introduction

20.2 Notes

Exercises

20.1. Test
Chapter 21
Transfer

21.1 Introduction

21.2 The Strategy Theorem

Comment 33: This section is under construction.

Consider a covariant functor

$$E: G\text{-CW-COMPLEXES} \to \text{SPECTRA}. $$

Given a G-CW-complex space Z, we obtain from E a new covariant functor

$$(21.1) \quad E_Z: G\text{-CW-COMPLEXES} \to \text{SPECTRA}, \quad X \mapsto E(X \times Z). $$

The canonical projection $q: X \times Z \to X$ yields a transformation of covariant functors $G\text{-CW-COMPLEXES} \to \text{SPECTRA}$.

$$(21.2) \quad \text{pr}: E_Z \to E. $$

Let $L: \text{Or}(G) \to G\text{-CW-COMPLEXES}$ be the obvious inclusion.

Theorem 21.3 (Strategy Theorem). Suppose that the following conditions hold:

(i) The covariant functor

$$E: G\text{-CW-COMPLEXES} \to \text{SPECTRA}$$

is excisive;

(ii) There exists a map of covariant $\text{Or}(G)$-spectra

$$\text{trf}: L^*E \to L^*E_Z$$

such that the composite $L^*\text{pr} \circ \text{trf}: L^*E \to L^*E$ is a weak homotopy equivalence of covariant $\text{Or}(G)$-spectra;

(iii) The projection onto the second factor $\text{pr}_2: Z \times Z \to Z$ is a homotopy equivalence of G-CW-complexes.

Then

$$H_n^G(\text{pr}; L^*E): H_n^G(Z; L^*E) \to H_n^G(\{\bullet\}, L^*E)$$
is bijective for all \(n \in \mathbb{Z} \), where \(\text{pr} : Z \to \{ \bullet \} \) is the projection. Moreover, we obtain for all \(n \in \mathbb{Z} \) a commutative diagram of isomorphisms

\[
\begin{align*}
H^G_n(Z; L^*E) & \xrightarrow{\cong} H^G_n(\{ \bullet \}; L^*E) \\
\cong & \\
\pi_n(E(Z)) & \xrightarrow{\cong} \pi_n(E(\{ \bullet \}))
\end{align*}
\]

Proof. The desired commutative diagram comes from Theorem 17.10 applied to \(E \). It remains to prove the bijectivity of \(H^G_n(\text{pr}; L^*E) : H^G_n(Z; L^*E) \to H^G_n(\{ \bullet \}; L^*E) \) for all \(n \in \mathbb{Z} \).

We have the following commutative diagram

\[
\begin{array}{ccc}
H^G_n(Z; L^*E) & \xrightarrow{H^G_n(\text{pr}; L^*E)} & H^G_n(\{ \bullet \}; L^*E) \\
\downarrow H_n(Z, \text{trf}) & & \downarrow H_n((\bullet); \text{trf}) \\
H^G_n(Z; L^*E_Z) & \xrightarrow{H^G_n(\text{pr}; L^*E_Z)} & H^G_n(\{ \bullet \}; L^*E_Z) \\
\downarrow H_n(Z; L^* \text{pr}) & & \downarrow H_n((\bullet); L^* \text{pr}) \\
H^G_n(Z; L^*E) & \xrightarrow{H^G_n(\text{pr}; L^*E)} & H^G_n(\{ \bullet \}; L^*E)
\end{array}
\]

for which the composites of the vertical arrows are in both cases isomorphisms by Lemma 11.6. Hence it suffices to show that \(H^G_n(\text{pr}; L^*E_Z) \) is bijective for all \(n \in \mathbb{Z} \). From Theorem 17.10 applied to \(E_Z \), we obtain a commutative diagram

\[
\begin{array}{ccc}
H^G_n(Z; L^*E_Z) & \xrightarrow{H^G_n(\text{pr}; L^*E_Z)} & H^G_n(\{ \bullet \}, L^*E_Z) \\
\cong & & \cong \\
\pi_n(E(Z \times Z)) & \xrightarrow{\pi_n(E(\text{pr}_2))} & \pi_n(E(Z))
\end{array}
\]

whose vertical arrows are bijective. Since \(\text{pr}_2 \) is by assumption of \(G \)-homotopy equivalence, \(H^G_n(\text{pr}; L^*E_Z) \) is bijective for all \(n \in \mathbb{Z} \).

\[\square\]

Lemma 21.4. Suppose that there is a square of covariant \(\text{Or}(G) \)-spectra

\[
\begin{array}{ccc}
E_0 & \longrightarrow & E_1 \\
\downarrow & & \downarrow \\
E_2 & \longrightarrow & E
\end{array}
\]
whose evaluation at every object in $\text{Or}(G)$ is a weak homotopy cartesian square. Let $f: X \to Y$ be a map of G-CW-complexes such that for every $i \in \{0, 1, 2\}$ and $n \in \mathbb{Z}$ the map $H^G_n(f; E_i): H^G_n(X; E_i) \to H^G_n(Y; E_i)$ is an isomorphism.

Then the map

$$H^G_n(f; E): H^G_n(X; E) \to H^G_n(Y; E)$$

is an isomorphism for every $n \in \mathbb{Z}$.

Proof. The square above induces a long exact Mayer-Vietoris sequence, natural in X.

$$\cdots \xrightarrow{\partial_{n+1}} H^G_n(X; E_0) \xrightarrow{\partial_n} H^G_n(X; E_1) \oplus H^G_n(X; E_2) \xrightarrow{\partial_n} H^G_n(X; E) \xrightarrow{\partial_{n-1}} H^G_{n-1}(X; E_0) \to \cdots$$

Now apply the Five-Lemma. \qed

Remark 21.5 (Transfer criterion for the Farrell-Jones Conjecture). Let \mathcal{A} be an additive G-category. We have defined the additive category $\mathcal{A}[G]$ in Example 19.2 and explained in Remark 19.77 that it comes with the structure of a strong control coefficient category in the sense of Definition 19.76. So we can consider the covariant $\text{Or}(G)$-spectra K^D_G of (19.99) and K^D_{0G} of (19.100). We get another covariant $\text{Or}(G)$-spectrum $K^D_{0G}E_{\text{VCY}}(G)$ by sending an object G/H to $K(D^G_0(G/H \times E_{\text{VCY}}(G)))$. Suppose that there is a map of covariant $\text{Or}(G)$-spectra

$$\text{trf}: K^D_{0G} \to K^D_{0G}E_{\text{VCY}}(G)$$

such that $\text{pr} \circ \text{trf}$ is a weak homotopy equivalence of covariant $\text{Or}(G)$-spectra. Then K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories 12.11 holds for G.

This follows by the following argument. Namely, from Theorem 10.19 and Theorem 21.3 we conclude that

$$H^G_n(\text{pr}; K^D_G): H^G_n(E_{\text{VCY}}(G); K^D_G) \to H^G_n(\{\bullet\}, K^D_G)$$

is bijective for all $n \in \mathbb{Z}$. Now Lemma 11.6 Theorem 19.101 and Lemma 21.4 imply that

$$H^G_n(\text{pr}; K^D_G): H^G_n(E_{\text{VCY}}(G); K^D_G) \to H^G_n(\{\bullet\}, K^D_G)$$

is bijective for all $n \in \mathbb{Z}$. We conclude from Remark 19.80 that the assembly map appearing in K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories 12.11 is bijective for all $n \in \mathbb{Z}$.
The analogous statement holds for the L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution \[12.16\].

21.3 Notes

Exercises

last edited on 25.09.2020
last compiled on March 21, 2022
name of texfile: ic
Chapter 22
Analytic Methods

22.1 Introduction

22.2 The Dirac-Dual Dirac Method

Next we briefly discuss the Dirac-dual Dirac method which is the key strategy in many of the proofs of the Baum-Connes Conjecture [13.9] or the Baum-Connes Conjecture [13.11] with coefficients, see for instance [433, Theorem 7.1].

A G-C^*-algebra A is called proper, if there exists a locally compact proper G-space X and a G-homomorphism $\sigma: C_0(X) \to \mathcal{B}(A)$, $f \mapsto \sigma_f$ satisfying $\sigma_f(ab) = a\sigma_f(b) = \sigma_f(a)b$ for $f \in C_0(X)$, $a, b \in A$ and for every net $\{f_i | i \in I\}$, which converges to 1 uniformly on compact subsets of X, we have $\lim_{i \in I} \|\sigma_{f_i}(a) - a\| = 0$ for all $a \in A$. A locally compact G-space X is proper if and only if $C_0(X)$ is proper as a G-C^*-algebra.

The following result is proved in Tu [869] extending results of Kasparov-Skandalis [508, 500].

Theorem 22.2 (Dirac-Dual Dirac Method). Let G be a countable (discrete) group. Let F be \mathbb{R} or \mathbb{C}. Suppose that there exist a proper G-C^*-algebra A, elements $\alpha \in KK^G_0(A, F)$, called the Dirac element, and $\beta \in KK^G_0(F, A)$, called the dual Dirac element, satisfying

$$\beta \otimes_A \alpha = 1 \in KK^G_0(F, F).$$

Then the Baum-Connes Conjecture [13.9] and the Baum-Connes Conjecture [22.1] with coefficients are true over F.

Proof. We only treat the case $F = \mathbb{C}$ and the case of trivial coefficients. The assembly map appearing in Theorem [13.9] is a retract of the bijective assembly map from Theorem [22.1]. This follows from the following commutative diagram for any cocompact G-CW-subcomplex $C \subseteq \overline{EG}$.
In order to give a glimpse of the basic ideas from operator theory, we briefly describe how to define the Dirac element \(\alpha \) in the case where \(G \) acts on a complete Riemannian manifold \(M \). Let \(T_C M \) be the complexified tangent bundle and let \(\text{Cliff}(T_C M) \) be the associated Clifford bundle. Let \(A \) be the proper \(G \)-\(C^\ast \)-algebra given by the sections of \(\text{Cliff}(T_C M) \) which vanish at infinity. Let \(H \) be the Hilbert space \(L^2(\Lambda^\ast T_C^\ast M) \) of \(L^2 \)-integrable differential forms on \(T_C M \) with the obvious \(\mathbb{Z}/2 \)-grading coming from even and odd forms. Let \(U \) be the obvious \(G \)-representation on \(H \) coming from the \(G \)-action on \(M \). For a 1-form \(\omega \) on \(M \) and \(u \in H \) define a homomorphism of \(C^\ast \)-algebras \(\rho: A \to \mathcal{B}(H) \) by \[
\rho_{\omega}(u) := \omega \wedge u + i_{\omega}(u).
\]

Now \(D = (d + d^\ast) \) is a symmetric densely defined operator \(H \to H \) and defines a bounded selfadjoint operator \(F: H \to H \) by putting \(F = \frac{D}{\sqrt{1 + D^2}} \).

Then \((U, \rho, F)\) is an even cocycle and defines an element \(\alpha \in K^G_0(M) = KK^G_0(C_0(M), \mathbb{C}) \). More details of this construction and the construction of the dual Dirac element \(\beta \) under the assumption that \(M \) has non-positive curvature and is simply connected, can be found for instance in [875, Chapter 9].

22.3 Notes

Exercises

22.1. Test
Chapter 23
Cyclic Methods

23.1 Introduction

23.2 Notes

Exercises

23.1. Test
Chapter 24
Solutions of the Exercises

Chapter 1

2.7. Check that the homomorphism $\psi: K_0(R) \to K'_0(R)$, $[P] \mapsto [P]$ is well-defined using the fact that every exact sequence $0 \to P_0 \to P_1 \to P_2 \to 0$ of finitely generated projective R-modules splits. Obviously ψ is the inverse of ϕ.

2.11. Show that the R-R-bimodule $(R^n M_n(R)) \otimes M_n(R) \otimes R^n R$ is isomorphic as R-R-bimodule to R and that the $M_n(R)$-$M_n(R)$-bimodule $(M_n(R) \otimes_R (R^n M_n(R)))$ is isomorphic as $M_n(R)$-$M_n(R)$-bimodule to $M_n(R)$.

2.16. See [775, Theorem 1.2.3 on page 8].

2.24. Consider $u \in \mathbb{Q}[[\sqrt{d}]]$. First one shows by a direct calculation that $u = a + b\sqrt{d} \in \mathbb{Q}[[\sqrt{d}]]$ is the root of a polynomial of the shape $x^2 + mx + n$ for $m, n \in \mathbb{Z}$ if and only if $u \in \mathbb{Z}[\sqrt{d}]$ in the case $d = 2, 3 \mod 4$ and if and only if $u \in \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ in the case $d = 1 \mod 4$. Then apply Gauss’s Lemma which implies that a monic polynomial in $R[x]$ which factors in $\mathbb{Q}[[\sqrt{d}]][x]$ into monic polynomials already factorizes in $R[x]$ into monic polynomials.

2.30. There exists a nowhere vanishing vector field on S^n if and only if there exists F-subbundles ξ and η in TS^n such that $TS^n = \xi \oplus \eta$ and ξ is a 1-dimensional trivial F-vector bundle. Now apply Theorem 2.28.

2.33. Let ξ be a vector bundle over Y. It suffices to construct a $C^0(X)$-isomorphism

$$\alpha(\xi): C^0(X) \otimes_{C^0(Y)} C^0(\xi) \xrightarrow{\sim} C^0(f^*\xi).$$

Given $\phi \in C^0(X)$ and $s \in C^0(\xi)$, define $\alpha(\xi)(\phi \otimes s)$ to be the section of $f^*\xi$ which sends $x \in X$ to $\phi(x) \cdot s \circ f(x) \in \xi_{f(x)} = (f^*\xi)_x$. Since $\alpha(\xi \oplus \eta)$ can be identified with $\alpha(\xi) \oplus \alpha(\eta)$ and $\alpha(\mathcal{E})$ is obviously bijective, $\alpha(\xi)$ is bijective for all F-vector bundles ξ over Y.

2.34. Because of the identification (2.32) and the homotopy invariance of the functor $K^0(X)$ we get

$$K_0(C(D^n)) \cong K^0(D^n) \cong K^0(\{\bullet\}) \cong \mathbb{Z}.$$
This follows from the fact that $Z \otimes_{\mathbb{Z}_\pi} C_*(X)$ is isomorphic as \mathbb{Z}-chain complex to $C_*(X)$.

(i) Let $f_*: P_* \to Q_*$ be an R-chain homotopy equivalence of finite projective R-chain complexes. Let cone(f_*) be its mapping cone. Since f_* induces an isomorphism on homology, the homology of cone(f_*) trivial. This implies in $K_0(R)$

$$0 = \sum_{n \geq 0} (-1)^n \cdot [\text{cone}(f_*)_n] = \sum_{n \geq 0} (-1)^n \cdot [P_{n-1} \oplus Q_n] = o(P_*) - o(Q_*)$$

(ii) By the first assertion $\tilde{o}(P_*) = 0$ if P_* is R-chain homotopy equivalent to a finite free R-chain complex. Suppose that $\tilde{o}(P_*) = 0$. An elementary R-chain complex E_* is an R-chain complex which is concentrated in two consecutive dimensions and its only non-trivial differential is given by $\text{id}: P \to P$ for some finitely generated projective R-module P. Since for every finitely generated projective R-module P there exists a finitely generated projective R-module Q such that $P \oplus Q$ is free we can find elementary R-chain complexes $E_*[1], E_*[2], \ldots, E_*[n]$ such that $Q_* := P_* \oplus \bigoplus_{i=1}^n E_*[i]$ has the property that all its R-chain modules are finitely generated free except the one in its top dimension. Obviously Q_* is R-chain homotopy equivalent to $P_$. Let d be its top dimension. Since $[Q_d] = \tilde{o}(Q_*) = \tilde{o}(P_*) = 0$, the finitely generated projective R-module Q_d is stably free, i.e., there is a finitely generated free R-module F such that $Q_d \oplus F$ is free. By adding the elementary free R-chain complex whose d-th and $(d-1)$-th R-chain module is F to Q_*, we obtain a finite free R-chain complex C_* which is R-chain homotopy equivalent to P_*. This follows from the fact that $[P_n] - [P_n] + [P_n'] = 0$ holds in $K_0(R)$ for all $n \in \mathbb{Z}$.

Recall that we have chosen a finite domination (Z, i, r) of X. Construct an extension $g: \text{cyl}(r) \cup_Z \text{cyl}(i) \cup_X \text{cyl}(i) \to X$ of $\text{id}_X \coprod_X F \cup_X F: X \coprod_X \text{cyl}(i) \cup_X \text{cyl}(i) \to X$ and a homotopy equivalence $h: Z \to \text{cyl}(r) \cup_Z \text{cyl}(i) \cup_X \text{cyl}(i)$. Now the claim follows from the commutative diagram.
2.46 Let \((B, b)\) be a functorial additive invariant for finite CW-complexes. Define a natural transformation \(T(X) : \bigoplus_{C \in \pi_0(X)} \mathbb{Z} \to B(X)\) by sending \(\{n_C \mid C \in \pi_0(X)\}\) to \(\sum_{C \in \pi_0(X)} n_C \cdot A(i_C)(a(\{\cdot\}))\), where \(i_C : \{\cdot\} \to X\) is any map whose image is contained in \(C\). Obviously it is the only possible natural transformation satisfying \(T(\{\cdot\})(\chi(\{\cdot\})) = b(\{\cdot\})\). Using the additivity and homotopy invariance one proves by induction over the number of cells for a finite CW-complex \(X\) that \(T(X)(\{\chi(C) \mid C \in \pi_0(X)\}) = b(X)\) holds. More details can be found in [57, Theorem 4.1].

2.48 (i) Fix a finitely dominated CW-complex \(Y\). Define a functor \(A\) from finitely dominated CW-complexes to abelian groups by \(A(X) := U(X \times Y)\). Define \(a(X) \in A(X)\) to be \(u(X \times Y)\). Check that \((A, a)\) is a functorial additive invariant for finitely dominated CW-complexes. Hence there exists a unique transformation \(T_Y : U(?) \to U(?) \times Y\) sending \(u(X)\) to \(u(X \times Y)\). Define \(B(Y)\) as the abelian group of transformations \(U(?) \to U(?) \times Y\) and \(b(Y) := T_Y\). Show that \((B, b)\) is a functorial additive invariant for finitely dominated CW-complexes. Hence there is a natural transformation \(S : U \to B\) satisfying \(S(Y)(u(Y)) = b(Y)\) for all finitely dominated CW-complexes \(Y\). This \(S\) gives the desired natural pairing \(P(X, Y)\).

(ii) If \(Y\) is a finite CW-complex with \(\chi(C) = 0\) for all \(C \in \pi_0(Y)\), then \(a(C) = 0\) for every \(C \in \pi_0(Y)\) by Lemma 2.18 and Theorem 2.37. Theorem 2.47 implies \(u(Y) = 0\). We conclude from (i) that \(u(X \times Y) = P(X, Y)(u(X) \otimes u(Y)) = 0\). Hence \(X \times Y\) is homotopy equivalent to a finite CW-complex by Theorem 2.37 and Theorem 2.47.

2.56 We define a functor \(F : \text{Or} \to \text{Sub} \) as follows. It sends an object \(G/H\) to the subgroup \(H\). Consider a \(G\)-map \(f : G/H \to G/K\). Choose \(g \in G\) with \(f(1H) = gK\). Since \(f\) is a \(G\)-map, we get \(hgK = hf(1H) = f(hH) = f(1H) = gK\) and hence \(g^{-1}hg \in K\) for all \(h \in H\). Hence we can define \(F(f)\) to be the class of the homomorphism \(c(g^{-1}) : H \to K, h \mapsto g^{-1}hg\). The morphism \(F(f)\) does not depend on the choice of \(g\) since any other choice of \(g\) is of the form \(gk\) for some \(k \in K\) and we have \(c((gk)^{-1}) = c(k^{-1}) \circ c(g^{-1})\) and \(c(k^{-1}) \in \text{im}(K)\).

Obviously \(F\) is bijective on objects and surjective on morphisms.
2.77 Choose an integer $n \geq 0$ and a matrix $A \in M_n(FH)$ such that $A^2 = A$ and $\text{im}(r_A : FH^n \to FH^n) \cong_{FH} V$. We compute for $h \in G$, if $l_h : V \to V$ is given by left multiplication with h

$$\chi_F(V)(h^{-1}) := \text{tr}_F(l_{h^{-1}} : V \to V) = \text{tr}_F(l_{h^{-1}} \circ r_A : FH^n \to FH^n)$$

$$= \sum_{i=1}^{n} \text{tr}_F\left(FH \to FH, \ u \mapsto h^{-1} a_i u\right) = \text{tr}_F\left(FH \to FH, \ u \mapsto h^{-1} u \left(\sum_{i=1}^{n} a_{i,i}\right)\right)$$

Write $\sum_{i=1}^{n} a_{i,i} = \sum_{k \in H} \lambda_k \cdot k$. Then we get

$$\chi_F(V)(h^{-1}) := \text{tr}_F\left(FH \to FH, \ u \mapsto h^{-1} u \left(\sum_{k \in H} \lambda_k \cdot k\right)\right)$$

$$= \sum_{k \in H} \lambda_k \cdot \text{tr}_F\left(FH \to FH, \ u \mapsto h^{-1} u k\right)$$

$$= \sum_{k \in H} \lambda_k \cdot \left|\{u \in H \mid u = h^{-1} u k\}\right|$$

$$= \sum_{k \in (h)} \lambda_k \cdot \left|\{u \in H \mid h = u k u^{-1}\}\right|$$

$$= \sum_{k \in (h)} \lambda_k \cdot |C_H(h)|$$

$$= |C_H(h)| \cdot \sum_{k \in (h)} \lambda_k$$

$$= |C_H(h)| \cdot \text{HS}_{FH}(V)(h).$$

2.81 Suppose that $\tilde{K}_0(FG)$ is a torsion group. This is equivalent to the statement that $\tilde{K}_0(FG) \otimes F$ is trivial. Lemma 2.18 and Lemma 2.79 imply that $\text{class}_F(G)_f \cong_{F} F$ and hence $\text{con}_F(G)_f$ consists only of one element. Hence every element in G of finite order is trivial.

2.83 Because of the commutative diagram appearing in the proof of Lemma 2.79, it suffices to prove the claim in the case that G is finite. In this case one computes that $\text{HS}(P)$ evaluated at the unit $e \in G$ is $\frac{\dim_F(P)}{|H|}$.

2.86 Show $\sum_{g \in G} \text{HS}_{ZG}(P)(g) = \text{HS}_{Z}(\mathbb{Z} \otimes_{ZG} P) = \dim_{\mathbb{Z}}(\mathbb{Z} \otimes_{ZG} P)$.

2.98 The list of finite groups of order ≤ 9 consists of the cyclic groups \mathbb{Z}/n for $n = 1, 2, 3, \ldots, 9$, the abelian non-cyclic groups $\mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/2 \times \mathbb{Z}/4, \mathbb{Z}/4 \times \mathbb{Z}/2, \mathbb{Z}/2 \times \mathbb{Z}/3, \mathbb{Z}/3 \times \mathbb{Z}/3$, and the following non-abelian groups $S_3 = D_6$, D_8, and Q_8. Now inspecting Theorem 2.97 gives the answer:
\(\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2, \mathbb{Z}/3 \times \mathbb{Z}/3, \mathbb{Q}_8. \)

2.100 Theorem 2.99 implies that \(K_0(FD_8) \) is \(\mathbb{Z}^n \) for some \(n \). We conclude from Theorem 2.76 that \(n = |\text{con}_F(D_8)| \). A presentation for \(D_8 \) is \(\langle x, y \mid x^4 = 1, y^2 = 1, yxy^{-1} = x^{-1} \rangle \). In particular \(D_8 \) is a semidirect product \(\mathbb{Z}/4 \times \mathbb{Z}/2 \) if \(\mathbb{Z}/4 \) is the group generated by \(x \) and \(\mathbb{Z}/2 \) the subgroup generated by \(y \). The elements \(x^2, y, xy, x^2y \) and \(x^3y \) have order 2, the elements \(x \) and \(x^{-1} \) have order four. We have one conjugacy class of elements of order 4, namely \(\langle x \rangle \) and three conjugacy classes of elements of order two, namely \(\langle x^2 \rangle, \langle y \rangle \) and \(\langle yx \rangle \). Since we also have the conjugacy class of the unit, we see \(|\text{con}_C(D_8)| = 5 \).

2.103 Recall that a hyperbolic group does not contain \(\mathbb{Z}^2 \) as subgroup. Because of Remark 2.102 it suffices to show for a torsionfree hyperbolic group \(G \) that it is cyclic if there exists an element \(g \) different from the unit element with finite \((g) \). The finiteness of \((g) \) is equivalent to the condition that the centralizer \(C_G(g) = \{ h \in G \mid hg = gh \} \) has finite index in \(G \). Since \((g) \) is infinite, hyperbolic implies that \(C_G(g) \) is virtually cyclic. Hence \(G \) is a torsionfree virtually cyclic group and therefore cyclic.

2.107 Write \(n = p_1^{n_1}p_2^{n_2} \ldots p_r^{n_r} \) for distinct primes \(p_1, p_2, \ldots, p_r \) and integers \(n_i \geq 1 \). Then Lemma 2.12 implies

\[
K_0(\mathbb{Z}/n) = \prod_{i=1}^r K_0(\mathbb{Z}/p_i^{n_i}).
\]

Since \(\mathbb{Z}/p_i^{n_i} \) is local, the claim follows from Theorem 2.106.

2.110 A counterexample is given by \(G_1 = G_2 = \mathbb{Z}/3 \) since \(\tilde{K}_0(\mathbb{Z}/3) = \{0\} \) and \(K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}/3]) \neq \{0\} \) by Theorem 2.97.

Chapter 2

3.3 Let \(f: \mathbb{R}^n \to \mathbb{R}^n \) be an \(R \)-automorphism. This is the same as a \(K \)-linear isomorphism \(V^n \to V^n \). Since \(V \) is a \(K \)-vector space with infinite countable basis, we can choose a \(K \)-isomorphism \(\alpha: \bigoplus_{k=0}^{\infty} V^n \to V \). Let \(u: \bigoplus_{k=0}^{\infty} V^n \to \bigoplus_{k=0}^{\infty} V^n \) be the \(R \)-isomorphism given by \(\oplus_{k=0}^{\infty} f \).
Let $\gamma: V^n \oplus \bigoplus_{k=0}^{\infty} V^n \to \bigoplus_{k=0}^{\infty} V^n$ be the R-automorphism which sends $v \oplus (v_0, v_1, v_2, \ldots)$ to $(v, v_0, v_1, v_2, \ldots)$. One easily checks $\gamma^{-1} \circ u \circ \gamma = f \oplus u$.

Define an R-automorphism $v: V \to R$. Now one computes $[f] + [v] = [f \oplus v] = [v]$ in $K_1(R)$ using the fact that conjugated automorphisms define the same element in $K_1(R)$. This implies $[f] = 0$.

3.37 We get from Theorem 3.6 an isomorphism $i: \mathbb{H}^\times / [\mathbb{H}^\times, \mathbb{H}^\times] \cong K_1(\mathbb{H})$.

Obviously the collection of maps μ_n defines a homomorphism $\mu: K_1(\mathbb{H}) \to \mathbb{R}$. The norm of a quaternion $z = a + bi + cj + dk$ is defined by $N(z) := \sqrt{a^2 + b^2 + c^2 + d^2}$. Let $N: \mathbb{H}^\times / [\mathbb{H}^\times, \mathbb{H}^\times] \to \mathbb{R}_{>0}$ be the induced homomorphism of abelian groups. Its restriction to $\mathbb{R}_{>0} \subseteq \mathbb{H}$ is the identity. Since $\mu_1(z) = |z|^2$ for $z \in \mathbb{H}$, it remains to prove that $N^{-1}(1) \subseteq [\mathbb{H}^\times, \mathbb{H}^\times]$. Since \mathbb{H} is connected, the claim follows.

3.18 Take the norm on $\mathbb{Z}[i]$ sending $a + bi$ to $\sqrt{a^2 + b^2}$. It yields an Euclidean algorithm. A direct calculation shows $\mathbb{Z}[i]^\times = \{1, -1, i, -i\}$. Now apply Theorem 3.17.

3.22 This follows from Theorem 3.20 and Theorem 3.21.

3.24 The map ϕ is induced by the composite

$$K_1(\mathbb{Z}/5) \xrightarrow{f} K_1(\mathbb{C}) \xrightarrow{\det} \mathbb{C}^\times \xrightarrow{\|} \mathbb{R}_{>0}.$$

Since $(1-t-t^{-1}) \cdot (1-t^2-t^{-3}) = 1$, the element $1 - t - t^{-1}$ is a unit in $\mathbb{Z}[\mathbb{Z}/5]$ and defines an element in $\text{Wh}(\mathbb{Z}/5)$. Its image under ϕ is $(1 - 2 \cdot \cos(2\pi/5))$ and hence different from 1.

3.33 Let e_* be a chain contraction for E_*. Choose for any $n \in \mathbb{Z}$ an R-homomorphism $\sigma_n: E_n \to D_n$ satisfying $p_n \circ \sigma_n = \text{id}_{E_n}$. Define $s_n: E_n \to D_n$ by $d_{n+1} \circ \sigma_{n+1} \circ e_n + \sigma_n \circ e_{n-1} \circ e_n$.

There are examples of short exact sequences of R-chain complexes whose boundary operator in the associated long homology sequence is not trivial and hence for which $H_n(p_*)$ is not surjective for all $n \in \mathbb{Z}$.

3.38 This is done by the following sequence of expansions. We describe the simplicial complexes obtained after each step:

(i) The standard 2-simplex spanned by v_0, v_1, v_2;
(ii) Three vertices v_0, v_1, v_2 and two edges $\{v_0, v_1\}$ and $\{v_0, v_2\}$;
(iii) The standard 1-simplex spanned by v_0, v_1;
(iv) The standard 0-simplex given by v_0.

626 24 Solutions of the Exercises
Choose a non-trivial element in $\text{Wh}(\mathbb{Z}/5)$, see Exercise 3.44. By Theorem 3.44 we can find an h-cobordism (W, M_0, M_1) whose Whitehead torsion is x. Hence it is non-trivial. In order to show that $(W \times S^3; M_0 \times S^3, M_1 \times S^3)$ is trivial, we have to show $\tau(i_0 \times \text{id}_{S^3}) = 0$ for $i_0 : M_0 \to W$ the inclusion. This follows from Theorem 3.34 (iv) since both $\tau(\text{id}_{S^3})$ and $\chi(S^3)$ vanish.

By definition \mathbb{RP}^3 is the lens space $L(V)$ for the cyclic group $\mathbb{Z}/2$, where V has as underlying unitary vector space C^2 and the generator s of $\mathbb{Z}/2$ acts on V by $-\text{id}$. The cellular $\mathbb{Z}[S/2]$-chain complex $C_\ast(SV)$ is concentrated in dimensions $0, 1, 2, 3$ and is given by

$$
\ldots \to 0 \to \mathbb{Z}[S/2] \xrightarrow{s-1} \mathbb{Z}[S/2] \xrightarrow{s+1} \mathbb{Z}[S/2] \xrightarrow{s-1} \mathbb{Z}[S/2] \to 0 \to \ldots.
$$

Hence $\mathbb{R}^- \otimes_{\mathbb{Z}[S/2]} C_\ast(SV)$ is the \mathbb{R}-chain complex

$$
\ldots \to 0 \to \mathbb{R} \xrightarrow{2\text{id}} \mathbb{R} \xrightarrow{0} \mathbb{R} \xrightarrow{2\text{id}} \mathbb{R} \to 0 \to \ldots.
$$

It is contractible, a chain contraction γ_\ast is given by $\gamma_0 = \gamma_2 = 1/2\text{id}$ and $\gamma_n = 0$ for $n \neq 0, 2$. Hence $(c+\gamma)_{\text{odd}} : \mathbb{R}^- \otimes_{\mathbb{Z}[S/2]} C_{\text{odd}}(SV) \to \mathbb{R}^- \otimes_{\mathbb{Z}[S/2]} C_{\text{odd}}(SV)$ is given by

$$
\begin{pmatrix}
2 & 1/2 \\
0 & 2
\end{pmatrix} : \mathbb{R}^2 \to \mathbb{R}^2
$$

This implies $\rho(\mathbb{RP}^3; V) = 4$.

We use induction over $n \geq 0$. The case $n = 0$, i.e., the trivial group, follows from Example 2.4. The induction step from n to $n+1$ is a direct consequence of Theorem 3.73 (ii) since $R[Z^n][Z]$ is isomorphic to $R[Z^{n+1}]$.

Because of Theorem 3.77 (ii), the ring $\mathbb{Z}[Z^n]$ is regular. Hence we get from Exercise 3.74 and Lemma 3.82 that $K_0(\mathbb{Z}[Z^n]) = 0$.

To show $\text{Wh}(\mathbb{Z}^n) = 0$, we use induction over $n \geq 0$. The case $n = 0$, i.e., the trivial group, follows from Example 2.4 and Theorem 3.17. The induction step from n to $n+1$ follows from Theorem 3.78 since $Z[Z^n][Z]$ is isomorphic to $Z[Z^{n+1}]$.

Obviously $2 \xrightarrow{\sim} (N_{\mathbb{Z}/2})$ sending 2 to $N_{\mathbb{Z}/2}$ is an isomorphism of rings without unit.

Theorem 3.86 together with Lemma 3.89 yields exact sequences

$$
K_1(\mathbb{Z}) \to K_1(\mathbb{Z}/n) \to K_0((n)) \to K_0(\mathbb{Z}) \to K_0(\mathbb{Z}/n);
$$

$$
K_1(\mathbb{Z}[S/2]) \to K_1(\mathbb{Z}) \to K_0((N_{\mathbb{Z}/2})) \to K_0(\mathbb{Z}[S/2]) \to K_0(\mathbb{Z}),
$$
since the ring homomorphism \(\mathbb{Z}[\mathbb{Z}/2] \to \mathbb{Z} \) sending \(a + b t \) to \(a - b \) induces an isomorphism of rings \(\mathbb{Z}[\mathbb{Z}/2]/(N\mathbb{Z}/2) \cong \mathbb{Z} \). Because of Theorem 3.6 and Theorem 3.17 the determinant induces isomorphisms

\[
\det: K_1(\mathbb{Z}) \cong \{\pm 1\};
\]

\[
\det: K_1(\mathbb{Z}/n) \cong \mathbb{Z}/n^\times.
\]

The map \(K_k(\mathbb{Z}/2) \to K_k(\mathbb{Z}) \) is surjective for \(k = 0, 1 \) because its composition with \(K_k(\mathbb{Z}) \to K_k(\mathbb{Z}/2) \) is the identity. The map \(K_0(\mathbb{Z}) \to K_0(\mathbb{Z}/n) \) is injective since its composition with the map \(K_0(\mathbb{Z}/k) \to \mathbb{Z}, [P] \mapsto |P| \) is injective by Theorem 2.4. This implies

\[
K_0((\mathbb{Z}/2)) \cong \begin{cases} 0 & \text{if } n = 2; \\ (\mathbb{Z}/n)^\times/\{\pm 1\} & \text{if } n \geq 3; \end{cases}
\]

\[
K_0((N\mathbb{Z}/2)) = \{0\};
\]

\[
\tilde{K}_0(\mathbb{Z}/2)) = \{0\}.
\]

3.94 Because of Remark 3.93 it suffices to show for each two-sided ideal \(I \subseteq F \) that \(e(F, I) = \text{SL}(F, I) \). This is trivial if \(I = 0 \). If \(I = F \), this follows from Theorem 3.17.

3.98 Consider \(k \in \mathbb{Z} \) with \((k, |G|) = 1 \). Choose \(l \in \mathbb{Z} \) with \(kl = 1 \mod |G| \). Choose a generator \(t \in G \). Define elements \(u, v \in \mathbb{Z}G \).

\[
u = 1 + t + t^2 + \cdots + t^{k-1};
\]

\[
v = 1 + t^k + t^{2k} + \cdots + t^{(l-1)k}.
\]

Then \((t - 1) \cdot (t^k - 1) \cdot uv = uv \) holds in \(\mathbb{Z}G \). One easily checks that \((t - 1) \cdot (t^k - 1) \cdot w = 0 \iff w \in (N_G) \) for \(w \in \mathbb{Z}G \). Hence \(\pi \in \mathbb{Z}G/(N_G) \) is a unit and maps to \(\mathbb{Z} \) under the map \(j_1: \mathbb{Z}G/(N_G) \to \mathbb{Z}/|G| \). Now argue as in the proof of Rim’s Theorem in Section 3.8.

3.100 Since \(\tilde{K}_0(\mathbb{Z}/2)) = 0 \), see Theorem 2.97, we can assume without loss of generality \(|G| \geq 3 \).

Suppose \(d = 1 \). Then \(G \setminus X \) is a connected finitely dominated 1-dimensional CW-complex. Since its homology is finitely generated and it is homotopy equivalent to a 1-dimensional CW-complex \(Y \) with precisely one 0-cell, the CW-complex \(Y \) is finite.

Suppose that \(d \geq 2 \). Then \(d \) is odd by Theorem 3.99. The unit sphere \(S \) in \(\mathbb{C}^{(d+1)/2} \) with the \(G \)-action for which the generator acts by multiplication with \(\exp(2\pi i/|G|) \) is a free \(d \)-dimensional \(G \)-homotopy representation such that \(G \setminus S \) is compact and hence finite. By elementary obstruction theory
there exists a G-map $X \to S$. Now apply Theorem 2.37, Lemma 3.99 and Exercise 3.98.

3.108. Obviously the image of the map $\text{dirlim}_{H \in \text{Sub}_{\mathbb{P}(G \times \mathbb{Z})}} K_1(RH) \to K_1(R[G \times \mathbb{Z}])$ is contained in the image of the map $K_1(RG) \to K_1(R[G \times \mathbb{Z}])$. Theorem 3.69 implies $K_0(\mathbb{Z}G) = \{0\}$ if $K_1(RG) \to K_1(R[G \times \mathbb{Z}])$ is surjective.

If R is a commutative integral domain, $K_0(R)$ and hence $K_0(\mathbb{Z}G)$ cannot be zero. Namely, if F is its quotient field, the homomorphism $K_0(R) \to \mathbb{Z}, [P] \mapsto \dim_F(F \otimes_R P)$ is a well-defined surjective map.

3.115. This follows from Theorem 3.112 and Theorem 3.113 (iv).

3.120. A counterexample is given by $G_1 = G_2 = \mathbb{Z}/3$ since $\text{Wh}(\mathbb{Z}/3) = \{0\}$ and $\text{Wh}(\mathbb{Z}/3 \times \mathbb{Z}/3) \neq \{0\}$ by Theorem 3.113.

Chapter 3

4.4. Apply Remark 4.3 to the obvious pullback of rings

\[
\begin{array}{ccc}
R \times S & \xrightarrow{pr_R} & R \\
\downarrow^{pr_S} & & \downarrow \\
S & \to & \{0\}
\end{array}
\]

Or, if one does not like the ring $\{0\}$ consisting of one element, use Lemma 3.9 and the Bass-Heller-Swan decomposition 4.2.

4.8. This follows by induction over k using Theorem 4.6.

4.10. The exact Mayer-Vietoris sequence appearing in Example 4.9 yields for a prime p the exact sequence

\[
K_1(\mathbb{Z}[\mathbb{Z}]) \oplus K_1(\mathbb{Z}[\exp(2\pi i/p)][\mathbb{Z}]) \to K_1(F_p[\mathbb{Z}]) \to \tilde{K}_0(\mathbb{Z}/p \times \mathbb{Z}) \to \tilde{K}_0(\mathbb{Z}[\exp(2\pi i/p)]) \to 0
\]

We have $\tilde{K}_0(\mathbb{Z}[\exp(2\pi i/3)]) = \{0\}$ by Theorem 2.90 and Example 2.91. Hence it suffices to show that the map $K_1(\mathbb{Z}[\exp(2\pi i/3)][\mathbb{Z}]) \to K_1(F_3[\mathbb{Z}])$ is surjective. Because of the Bass-Heller-Swan decomposition 4.2 it suffices to prove the surjectivity of $K_i(\mathbb{Z}[\exp(2\pi i/3)])$ to $K_i(F_3)$ for $i = 0, 1$. The case $i = 0$ follows from the fact that $K_0(F_3)$ is generated by $[F_3]$. It remains to treat $i = 1$. Let $f: \mathbb{Z}[\exp(2\pi i/3)] \to F_3$ be the ring homomorphism which is uniquely determined by the property that it sends $\exp(2\pi i/3)$ to 1. Because of Theorem 3.17 it suffices to show that for every unit u in F_3 we
can find a unit \(u' \) in \(\mathbb{Z}[\exp(2\pi i/3)] \) which is mapped to \(u \) under \(f \). Since \(\pm \exp(2\pi i/3) \) is a unit in \(\mathbb{Z}[\exp(2\pi i/3)] \) and \(f(\pm \exp(2\pi i/3)) = \pm 1 \), we conclude \(K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) = 0 \) for \(k \geq 0 \).

Now all other claims follow from Theorem 4.12.

4.12 The pullback of rings appearing in Example 4.11 yields a pullback of rings

\[
\begin{array}{c}
\mathbb{Z}[\mathbb{Z}/6 \times \mathbb{Z}^k] \\
i_1 \\
i_2 \\
\downarrow j_2 \\
\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k] \\
\end{array} \quad \begin{array}{c}
i_1 \otimes j_2 \\
j_1 \\
\downarrow j_2 \\
\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k] \quad \begin{array}{c}
i_1 \otimes j_2 \\
(F_2 \times F_4)[\mathbb{Z}^k] \\
\end{array}
\end{array}
\]

where \(j_2 = j_1 \). Put \(j := j_1 = j_2 \). We obtain from Remark 4.3 the exact sequence

\[
K_1(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \oplus K_1(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \xrightarrow{j_1 \otimes j_2} K_1((F_2 \times F_4)[\mathbb{Z}^k])
\]

\[
\to K_0(\mathbb{Z}[\mathbb{Z}/6 \times \mathbb{Z}^k]) \to K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k] \oplus K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k])
\]

\[
\xrightarrow{j_1 \otimes j_2} K_0((F_2 \times F_4)[\mathbb{Z}^k]) \to K_{-1}(\mathbb{Z}[\mathbb{Z}/6 \times \mathbb{Z}^k]) \to \cdots
\]

The following facts follow from Theorem 3.77 [i], Exercise 4.4 Exercise 4.10 and, Theorem 4.6. We have \(K_n(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) = K_n((F_2 \times F_4)[\mathbb{Z}^k]) = \{0\} \) for \(n \leq -1 \) and \(K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) = \{0\} \). The map \(j_1 \oplus j_2 : K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \oplus K_0(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \to K_0((F_2 \times F_4)[\mathbb{Z}^k]) \) can be identified with the map \(j_2 \oplus j_3 : K_0(\mathbb{Z}[\mathbb{Z}/3]) \oplus K_0(\mathbb{Z}[\mathbb{Z}/3]) \to K_0((F_2 \times F_4)[\mathbb{Z}^k]) \) which in turn can be identified the map \(\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \) sending \((a, b)\) to \((a + b, a + b)\). The map \(j_3 \oplus j_5 : K_1(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \oplus K_1(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \to K_1((F_2 \times F_4)[\mathbb{Z}^k]) \) can be identified with the direct sum of the map \(j_2 \oplus j_3 : K_1(\mathbb{Z}[\mathbb{Z}/3]) \oplus K_1(\mathbb{Z}[\mathbb{Z}/3]) \to K_1((F_2 \times F_4)[\mathbb{Z}^k]) \) which in turn can be identified the map \(\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \) sending \((a, b)\) to \((a + b, a + b)\). The map \(j_3 \oplus j_5 : K_1(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \oplus K_1(\mathbb{Z}[\mathbb{Z}/3]) \to K_1((F_2 \times F_4)[\mathbb{Z}^k]) \) can be identified with the direct sum of the map \(j_2 \oplus j_3 : K_1(\mathbb{Z}[\mathbb{Z}/3]) \oplus K_0(\mathbb{Z}[\mathbb{Z}/3]) \to K_0((F_2 \times F_4)[\mathbb{Z}^k]) \).

In order to prove

\[
K_n(\mathbb{Z}[\mathbb{Z}^k \times \mathbb{Z}/6]) \cong \begin{cases}
\mathbb{Z}^{k+1} & \text{for } n = 0; \\
\mathbb{Z} & \text{for } n = -1; \\
0 & \text{for } n \leq -2,
\end{cases}
\]

it remains to show that the map \(j_5 : K_1(\mathbb{Z}[\mathbb{Z}/3 \times \mathbb{Z}^k]) \to K_1((F_2 \times F_4)[\mathbb{Z}^k]) \) is surjective.

Recall that we have used the identification of rings \(F_2 \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}/3] \cong F_2 \times F_4 \) and because of Lemma 3.39 and Theorem 3.17 the determinant induces an isomorphism \(K_1(F_2 \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}/3]) \cong (F_2 \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}/3])^\times \). Hence it suffices to show that for every unit \(u \) in \(F_2 \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}/3] \) we can find a unit \(u' \) in \(\mathbb{Z}[\mathbb{Z}/3] \) which is mapped under the obvious projection \(pr : \mathbb{Z}[\mathbb{Z}/3] \to F_2 \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}/3] \) to \(u \). There are three units in \(F_2 \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}/3] \cong F_2 \times F_4 \), namely, \(1 \otimes 1, 1 \otimes t, \) and \(1 \otimes t^2 \). Obviously they are images of units under \(pr \).
We conclude $N^pK_n(Z[6 \times Z^k])$ for $n \leq 0$, $p \geq 1$ and $k \geq 0$ from Theorem 4.2 since $K_0(Z[6]) \oplus K_{-1}(Z[6])^{k-1} \cong Z^k \cong K_0(Z[k \times 6])$, $K_{-1}(Z[6]) \cong K_{-1}(Z[k \times 6])$ and $K_n(Z[6]) = \{0\}$ for $n \leq -1$ holds.

4.14 This follows from Lemma 4.13 since the assumptions imply that $K_m(R) \to K_m(R[Z^k])$ induced by the inclusion $R \to R[Z^k]$ is bijective.

4.18 Because of Theorem 4.6 it suffices to prove that RG is regular, provided that R is regular, G is a finite group and the order of every element of G is invertible in R. Since R is Noetherian and G is finite, RG is Noetherian. Let M be any finitely generated R-module. Then the RG-module M is a direct summand in the RG-module $M' := RG \otimes_R M$, where g acts on $x \otimes m$ by $gx \otimes m$. So M' does not see the G-action on M. The injection $M \to M'$ is given by $m \mapsto \frac{1}{|G|} \sum g \in G g \otimes g^{-1}m$ and the retraction $M' \to M$ by $g \otimes m \mapsto gm$. Let P_t be a finite projective resolution of the R-module M. Then P_t' is a finite RG-resolution of M'. Since M is a direct RG-summand in M', it possesses a finite projective RG-resolution as well.

Chapter 4

5.5 This follows from Lemma 3.11, Theorem 3.12 and Definition 5.1.

5.7 This follows from Theorem 5.6 and the fact that $H_2(E(R))$ is the kernel of the universal central extensions $\phi^R : St(R) \to E(R)$ of perfect group $E(R)$.

5.16 Obviously the matrices $d_{1,2}(u)$ and $d_{1,3}(v)$ represent the trivial element in $K_1(R)$. Hence they belong to $E(R)$ by Lemma 3.11 and Theorem 3.12. Let $d_{1,2}(u)$ and $d_{1,3}(v)$ be fixed preimages of $d_{1,2}(u)$ and $d_{1,3}(v)$ under the canonical map $\phi^R : St(R) \to E(R)$. Then any other lifts are of the form $d_{1,2}(u) \cdot x$ and $d_{1,3}(v) \cdot y$ for elements in the center of $St(R)$. One easily checks $[d_{1,2}(u), d_{1,3}(v)] = [d_{1,2}(u) \cdot x, d_{1,3}(v) \cdot y]$.

5.19 We get $K_2(Z) \cong Z/2$ with generator $\{-1, -1\}$ from Theorem 5.17 (vi).

5.22 We obtain $Wh(Z[n]) = 0$ for $n = 1, 2, 3, 4$ from Section 5.8. By Theorem 3.112 the Whitehead group $Wh(Z[n])$ vanishes if and only if $n = 1, 2, 3, 4$. Theorem 2.97 (iii) implies $K_0(Z[6]) = 0$ for $n = 1, 2, 3, 4$. We conclude $K_i(Z[6]) = 0$ for $n = 1, 2, 3, 4$ and all $i \leq -1$ from Theorem 4.21 (iii) and (iv). We conclude $K_{-1}(Z[6]) \neq 0$ from Example 4.11. Hence the answer is $n = 1, 2, 3, 4$.
Chapter 5

6.1. Let Z be acyclic. Since $H_0(Z)$ is the free abelian group with $\pi_0(Z)$ as Z-basis, Z is path connected. Since the classifying map $f : Z \to B\pi$ for $\pi = \pi_1(Z)$ is 2-connected, it induces by the Hurewicz Theorem an isomorphism $H_1(Z) \to H_1(\pi)$ and an epimorphism $H_2(Z) \to H_2(\pi)$.

6.7. If P_1 and P_2 are two perfect subgroups of G, then the subgroup $\langle P_1, P_2 \rangle$ generated by $P_1 \amalg P_2$ is again a perfect subgroup of G.

6.8. Recall that $E(R) = [GL(R), GL(R)]$ by Lemma 3.11. We know already because of Theorem 5.6 that $E(R) = [GL(R), GL(R)]$ is perfect since only a perfect group possesses a universal central extension. Since the image of a perfect subgroup under an epimorphism of groups is perfect and the only perfect subgroup of the abelian group $GL(R)/[GL(R), GL(R)]$ is the trivial group, every perfect subgroup of $GL(R)$ is contained in $E(R)$.

6.10. Since $BGL(R)$ and hence $BGL(R)^+$ is path connected, this follows directly from the definitions in the case $n = 0$. If $n = 1$, this follows from Theorem 3.12, Theorem 6.5 (iv), and Exercise 6.8.

6.22. This follows by induction over k from Theorem 4.2, Theorem 4.21 (i) and Theorem 6.21.

6.26. We conclude from Example 2.4 and Theorem 3.17 that the sequence looks like
\[
\{\pm 1\} \xrightarrow{j_1} \mathbb{Q}^\times \xrightarrow{\partial_1} \bigoplus_p \mathbb{Z} \xrightarrow{i_0} \mathbb{Z} \xrightarrow{j_0} \mathbb{Z} \to 0,
\]
where p runs through all prime numbers, that j_1 is the inclusion and that j_0 the identity. Hence the map i_0 is the zero map. The map ∂_1 sends a rational number of the shape $\pm p_1^{n_1} \cdot p_2^{n_2} \cdot \ldots \cdot p_k^{n_k}$ for pairwise distinct primes p_1, p_2, \ldots, p_k and integers n_1, n_2, \ldots, n_k to the element $(n_p)_p$ whose entry for $p = p_i$ is n_i for $i = 1, 2, \ldots, k$ and is 0 for any prime p which is not contained in $\{p_1, p_2, \ldots, p_k\}$.

6.30. From the analogue of the sequence (6.27) for K^{top} and the assumption that k is odd, we conclude
\[
K_n^{top}(\mathbb{R}; \mathbb{Z}/k) \cong \begin{cases}
\mathbb{Z}/k & n \equiv 0 \mod 4; \\
\{0\} & n \equiv 1, 2, 3 \mod 4.
\end{cases}
\]
We know $K_n(\mathbb{R}) = \{0\}$ for $n \leq -1$ from Theorem 4.6. Now the sequence (6.27) and Theorem 6.29 imply...
Generators for $K_0(A)$ are isomorphism classes of objects. Relations are $[P_1] + [P_2] = [P_1 \oplus P_2]$ for any objects P_1, P_2.

The generators of $K_1(A)$ are conjugacy classes of objects of A. Relations are $[g \circ f] = [g] + [f]$ for any automorphisms f, g of the same object and $\begin{bmatrix} f_1 & f_2 \\ 0 & f_3 \end{bmatrix} = [f_1] + [f_3]$ for any automorphisms $f_i: P_i \to P_i$ for $i = 1, 2$ and any morphism $f_0: P_2 \to P_1$.

The functor S induces homomorphism $S_i: K_i(A) \to K_i(A)$ for $i = 1, 2$. The existence of the natural transformation T implies that the two homomorphisms $S_i + \text{id}_{K_i(A)}$ and S_i coincide. Hence $\text{id}_{K_i(A)}$ is the zero-homomorphism which means $K_i(A) = 0$.

6.38 Let A be the additive category of countably generated projective R-modules. Let S be the functor sending an object P to $(P \oplus P \oplus \cdots)$. Then we obtain a natural transformation $T: \text{id} \oplus S \to S$ by rebracketing, i.e. $(P \oplus P \oplus \cdots) = P \oplus (P \oplus P \oplus \cdots)$. Hence A is flasque and we can apply Theorem 6.36 (iii).

6.46 Because of Conjecture 6.44 it suffices to construct the corresponding sequence for $H_*(A; K)$:

$$\cdots \to H_n(BG_0; K(R)) \to H_n(BG_1; K(R)) \oplus H_n(BG_2; K(R))$$
$$\quad \to H_{n-1}(BG_0; K(R))$$
$$\quad \to H_{n-1}(BG_1; K(R)) \oplus H_{n-1}(BG_2; K(R)) \to \cdots$$

One can arrange that BG_i is a sub CW-complex of BG and $BG = BG_1 \cup BG_2$ and $BG_0 = BG_1 \cap BG_2$. Now the desired sequence above is the associated Mayer-Vietoris sequence.

6.47 Because of Conjecture 6.44 it suffices to construct the corresponding sequence for $H_*(A; K)$:

$$\cdots \to H_n(BG; K(R)) \xrightarrow{\text{id} - \phi_*} H_n(BG; K(R)) \to H_n(B(G \rtimes \phi Z); K(R))$$
$$\quad \to H_{n-1}(BG; K(R)) \xrightarrow{\text{id} - \phi_*} H_{n-1}(BG; K(R)) \to \cdots$$

The automorphism ϕ induces a homotopy equivalence $B\phi: BG \to BG$. The mapping torus of $B\phi$ is a model for $B(G \rtimes \phi Z)$. Now the desired long exact
sequence is the Wang sequence associated to the fibration $BG \to B(G \times \phi Z) \to S^1$.

6.51 If R is regular, then $R[t]$ is regular. There is an obvious identification $(R[t])G = (RG)[t]$. Hence we obtain a commutative diagram

$$
\begin{array}{ccc}
H_n(BG; K(R)) & \xrightarrow{\otimes} & K_n(RG) \\
\downarrow & & \downarrow \\
H_n(BG; K(R[t])) & \xrightarrow{\otimes} & K_n((RG)[t])
\end{array}
$$

where the vertical arrows are induced by the canonical inclusions $R \to R[t]$ and $RG \to (RG)[t]$. The horizontal arrows are bijective by assumption. Since R is regular, the left vertical arrow is bijective because of Theorem 6.16 (ii) and the Atiyah-Hirzebruch spectral sequence. Hence also the right vertical arrow is bijective. This implies $NK_n(RG) = 0$ for all $n \in \mathbb{Z}$.

6.54 Consider the following commutative diagram

$$
\begin{array}{ccc}
\text{Nil}_n & \xrightarrow{i_* \oplus j_*} & K_n(RG_0) \oplus K_n(RG_1) \oplus K_n(RG_2)
\\
& \xrightarrow{(k_0)_* \oplus (k_1)_*} & \ker(p_n) \xrightarrow{p_n} K_n(RG) \xrightarrow{\partial_n} NK_n \\
& \xrightarrow{i_* \oplus j_*} & \text{Nil}_{n-1} \oplus \text{Nil}_{n-1} \oplus NK_n \\
0 & \xrightarrow{j_* \circ (1, -1)} & K_{n-1}(RG_0) \oplus K_{n-1}(RG_1) \oplus K_{n-1}(RG_2)
\\
& \xrightarrow{(k_0)_* \oplus (k_1)_*} & K_{n-1}(RG)
\end{array}
$$

Here Nil_n stands for the n-homotopy group of $\text{Nil}(RG_0; RG_1, RG_2)$, NK_n stands for $NK_n(RG_0; RG_1, RG_2)$, the letters i and π denote obvious inclusions or projections. The map i_* is the one induced by i and analogously for f_*, j_*, $(j_1)_*$, $(j_2)_*$, $(k_0)_*$, and $(k_1)_*$. The middle column is the long exact sequence associated to the homotopy cartesian square appearing in Theorem 6.52 with boundary operator ∂_n. Theorem 6.52 implies that the two
horizontal short sequences are (split) exact and the diagram (without the dashed arrows) commutes.

Now an easy diagram chase shows that exists dotted arrows uniquely determined by the property that the diagram remains commutative.

Define the desired long exact Mayer-Vietoris sequence by the homomorphism \(\alpha' : K_0(RG_1) \oplus K_n(RG_2) \to \ker(p) \) which is the restriction of \(\alpha \), the homomorphism \(\beta \), and the homomorphism \((j_1)_* \oplus (j_2)_* : K_n(RG) \to K_n(RG_1) \oplus K_n(RG_2)\). We leave it to the reader to check using the diagram above that this sequence is indeed exact.

6.64 There is an obvious projection \(\text{pr} : R \to R_0 \). Since \(\text{pr} \circ i = \text{id}_{R_0} \) for the inclusion \(i : R_0 \to R \), it suffices to prove that \(i_n \circ \text{pr}_n : KH_n(R) \to KH_n(R) \) is surjective. Define a map \(\varphi : R \to R[t] \) by sending \(r_n \in R_n \) to \(r_n \cdot t^n \). For \(k = 0, 1 \) let \(\text{ev}_k : R[t] \to R \) be the ring homomorphism given by putting \(t = 0 \) for \(k = 0 \) and \(t = 1 \) for \(k = 1 \). Then \(\text{ev}_0 \circ \varphi = \text{id}_R \) and \(\text{ev}_k \) is bijective for \(k = 0, 1 \) by homotopy invariance. Hence \((\text{ev}_0)_n \) and \(\varphi_n \) are isomorphisms. Since \(\text{ev}_0 \circ \varphi \) agrees with \(i \circ \text{pr} \), the claim follows.

Chapter 6

7.6 The composite of two cofibrations is again a cofibration. The same is true for weak equivalences. Hence \(coC \) and \(wC \) are indeed subcategories of \(C \).

Axioms (i), (ii) and (iv) appearing in Definition 7.4 are obviously satisfied.

Consider chain maps \(i_* : A_* \to B_* \) and \(f_* : A_* \to C_* \) of finite projective \(R \)-chain complexes such that \(i_n : A_n \to B_n \) is split injective for all \(n \in \mathbb{Z} \). Define \(D_* \) to be the cokernel of the chain map \(i_* \oplus f_* : A_* \to B_* \oplus C_* \). Then we obtain a short exact sequence of finite projective \(R \)-chain complexes

\[
0 \to A_* \xrightarrow{i_* \oplus f_*} B_* \oplus C_* \xrightarrow{\text{pr}_*} D_* \to 0
\]

since for every \(n \geq 0 \) the sequence of \(R \)-modules

\[
0 \to A_n \xrightarrow{i_n \oplus f_n} B_n \oplus C_n \xrightarrow{\text{pr}_n} D_n \to 0
\]

is split exact because \(i_n \) is split injective. One easily checks that we obtain a pushout of finite projective \(R \)-chain complexes

\[
\begin{array}{ccc}
A_* & \xrightarrow{i_*} & B_* \\
\downarrow f_* & & \downarrow \text{pr}_* \mid_{B_*} \\
C_* & \xrightarrow{\text{pr}_* \mid_{C_*}} & D
\end{array}
\]

such that the lower horizontal arrow is a cofibration. Hence axiom (iii) is true.

Axiom (v) follows from the long exact homology sequences associated to a short exact sequence of \(R \)-chain complexes and the Five-Lemma.

7.18 This follows the property of the map \(i \) of (7.13) that \(\pi_n(i) \) is bijective for \(n \geq 1 \), from Remark 7.14 and from Theorem 7.17 since \(K_n(\mathbb{Z}) \) vanishes for \(n \leq -1 \) and is \(\mathbb{Z} \) for \(n = 0 \).
We obtain from the fibration \([7.19]\) the exact sequence
\[
\pi_1(BG_+ \wedge A(\mathcal{B})) \to \pi_1(A(BG)) \to \pi_1(\text{Wh}^{\text{PL}}(BG)) \\
\to \pi_0(BG_+ \wedge A(\mathcal{B})) \to \pi_0(A(BG)).
\]

Since \(A(\mathcal{B})\) is connected, the Atiyah-Hirzebruch spectral sequence shows that \(\pi_0(\mathcal{B}) \wedge A(\mathcal{B})) \to \pi_0(BG_+ \wedge A(\mathcal{B}))\) is bijective. Since the homomorphism \(\pi_0(\mathcal{B}) \wedge A(\mathcal{B})) \to \pi_0(BG_+ \wedge A(\mathcal{B}))\) is split injective, the map \(\pi_0(BG_+ \wedge A(\mathcal{B})) \to \pi_0(A(BG))\) is injective. Using diagram \([7.20]\), we obtain a short exact sequence
\[
H_1(B\pi_1(BG); K(Z)) \to K_1(\mathbb{Z}\pi_1(BG)) \to \pi_1(\text{Wh}^{\text{PL}}(BG)) \to 0.
\]

Again by the Atiyah-Hirzebruch spectral sequence we obtain an isomorphism \(H_1(B\pi_1(BG); K(Z)) \cong G/[G, G] \times \{\pm 1\}\). Hence the image of the map \(H_1(B\pi_1(BG); K(Z)) \to K_1(\mathbb{Z}\pi_1(BG))\) is the subgroup of \(K_1(\mathbb{Z}G) = K_1(\mathbb{Z}\pi_1(BG))\) given by the trivial units \(\{\pm g \mid g \in G\}\). This implies \(\text{Wh}(G) \cong \pi_1(\text{Wh}^{\text{PL}}(BG))\).

Suppose such \(M\) exists. The long exact homotopy sequence of the fibration \([7.19]\) looks like
\[
\cdot \to \pi_n(M_+ \wedge A(\mathcal{B})) \to A_n(M) \to \text{Wh}^n_n(M) \to \cdots.
\]
The splitting \([7.25]\) yields isomorphisms
\[
A_n(M) \cong \text{Wh}^\text{Diff}_n(M) \oplus \pi_n(\Sigma^\infty M).
\]
Rationally the Atiyah-Hirzebruch sequence always collapses. Hence we obtain from Theorem \([6.24]\) and Theorem \([7.17]\) isomorphisms
\[
\pi_n(M_+ \wedge A(\mathcal{B})) \otimes_\mathbb{Q} H_n(M; \mathbb{Q}) \oplus \bigoplus_{k \geq 1} H_{n-4k-1}(M; \mathbb{Q}).
\]
Hence we obtain the long exact sequence of \(\mathbb{Q}\)-modules
\[
\cdot \to \text{Wh}^n_{n+1}(M) \otimes_\mathbb{Q} H_n(M; \mathbb{Q}) \oplus \bigoplus_{k \geq 1} H_{n-4k-1}(M; \mathbb{Q}) \\
\to H_n(M; \mathbb{Q}) \oplus \text{Wh}^n_{n} \text{Diff}_n(M) \otimes_\mathbb{Q} \text{Wh}^n_{n} \text{PL}_n(M) \otimes_\mathbb{Q} \cdots
\]
Since by assumption the map \(\text{Wh}^n_{n} \text{Diff}_n(M) \otimes_\mathbb{Q} \text{Wh}^n_{n} \text{PL}_n(M) \otimes_\mathbb{Q}\) is bijective for \(n \geq 0\), we obtain for every \(n \geq 0\) isomorphisms
\[
H_n(M; \mathbb{Q}) \oplus \bigoplus_{k \geq 1} H_{n-4k-1}(M; \mathbb{Q}) \cong H_n(M; \mathbb{Q}).
\]
This implies for every \(n \geq 0 \) and \(k \geq 1 \) that \(H_{n-4k-1}(M; \mathbb{Q}) = 0 \), a contradiction to \(H_0(M; \mathbb{Q}) = \mathbb{Q} \).

Chapter 7

8.6. It is straightforward to check that \(e(P) \) is a well-defined \(R \)-homomorphism, compatible with direct sums and natural. It remains to show that it is bijective for a finitely generated projective \(R \)-module \(P \). Let \(Q \) be another finitely generated projective \(R \)-module. Since \(e(P \oplus Q) \) is up to isomorphism \(e(P) \oplus e(Q) \), the map \(e(P \oplus Q) \) is bijective if and only if both \(e(P) \) and \(e(Q) \) are bijective. Since we can find \(Q \) such that \(P \oplus Q \cong \mathbb{R}^n \), it suffices to consider the case \(P = \mathbb{R} \) which follows from a direct computation.

8.14. Let \(b_i(M) := \dim_k(H_i(M; \mathbb{R})) \) be the \(i \)-th-Betti number. Poincaré duality implies \(b_i(M) = b_{4k-i}(M) \) for all \(i \geq 0 \). We conclude directly from the definition of the signature that \(\text{sign}(M) \equiv b_{2k}(M) \mod 2 \). We get modulo 2

\[
\chi(M) \equiv \sum_{i=0}^{4k} (-1)^i \cdot b_i(M)
\]

\[
\equiv \sum_{i=0}^{2k-1} (-1)^i \cdot b_i(M) + b_{2k}(M) + \sum_{i=2k+1}^{4k} (-1)^i \cdot b_i(M)
\]

\[
\equiv \sum_{i=0}^{2k-1} (-1)^i \cdot b_i(M) + b_{2k}(M) + \sum_{i=2k+1}^{4k} (-1)^i \cdot b_{4k-i}(M)
\]

\[
\equiv \sum_{i=0}^{2k-1} (-1)^i \cdot b_i(M) + b_{2k}(M) + \sum_{i=0}^{2k-1} (-1)^i \cdot b_i(M)
\]

\[
\equiv b_{2k}(M)
\]

\[
\equiv \text{sign}(M).
\]

8.16

(i) If \(n \) is odd, then \(\dim(\mathbb{C}P^n) \) is not divisible by four and hence \(\text{sign}(\mathbb{C}P^n) = 0 \).

If \(n \) is even, then the intersection pairing of \(\mathbb{C}P^n \) looks like \(\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) \((a, b) \mapsto ab\) and hence \(\text{sign}(\mathbb{C}P^n) = 1 \).

(ii) Since \(STM \) is the boundary of the total space \(DTM \) of the disk tangent bundle, Theorem 8.15 (i) implies \(\text{sign}(STM) = 0 \).

(iii) We get \(\text{sign}(M) = 0 \) from assertions (v) and (vi) of Theorem 8.15.

8.22. Note in the situation under consideration that \(\epsilon = 1 \) and the involution on \(Z \) is the trivial involution. Hence the projection \(\text{pr}: R \to Q_\epsilon(R) \) is the
identity. We conclude from Remark \[8.20\] that \((P, \lambda)\) admits a quadratic refinement if and only if there exists a map \(\mu: P \to \mathbb{Z}\) such that \(\mu(nx) = n^2 \mu(x)\) holds for all \(n \in \mathbb{Z}\) and \(x \in P\), \(\mu(x + y) - \mu(x) - \mu(y) = \lambda(x, y)\) is true for all \(x, y \in P\) and \(\lambda(x, x) = 2 \cdot \mu(x)\) is valid for all \(x \in P\). Obviously the existence of \(\mu\) implies \(\lambda(x, x)\) to be even for all \(x \in P\). Suppose that \(\lambda(x, x)\) is even for all \(x \in P\). Then we can define \(\mu(x) := \lambda(x, x)/2\) and \(\mu\) has all desired properties.

8.26 Show that the diagonal in \(P \oplus P\) is a Lagrangian for the non-degenerate \(\epsilon\)-quadratic form \((P \oplus P, \psi \oplus -\psi)\) and then apply Lemma \[8.25\]

8.27 This follows from Lemma \[8.11\] Remark \[8.23\] and Lemma \[8.25\]

8.30 A non-degenerate quadratic form on \(V\) is a map \(\mu: V \to \mathbb{F}_2\) such that \(\mu(0) = 0\), we obtain a non-degenerate symmetric pairing \(\lambda: V \times V \to \mathbb{F}_2\) by \(\lambda(p, q) = \mu(p + q) + \mu(p) + \mu(q)\) and that \(\lambda(p, p) = 0\) for all \(p \in V\), see Remark \[8.20\]. Fix a basis \(\{e_1, e_2\}\) for \(V\). Then \(\lambda(e_i, e_j) = 1\) for \(i \neq j\) since \(\lambda\) is non-degenerate and we know already \(\lambda(e_1, e_1) = \lambda(e_2, e_2) = \lambda(e_1 + e_2, e_1 + e_2) = 0\) and \(\lambda(e_1, e_2) = \lambda(e_2, e_1)\). This implies that either \(\mu(e_1) = \mu(e_2) = \mu(e_1 + e_2) = 1\) or that precisely one of the elements \(\mu(e_1), \mu(e_2), \mu(e_1 + e_2)\) is 1. By possibly replacing the basis \(\{e_1, e_2\}\) by the basis \(\{e_1, e_1 + e_2\}\) or \(\{e_2, e_1 + e_2\}\) we can arrange that either \(\mu(e_1) = \mu(e_2) = \mu(e_1 + e_2) = 1\) or \(\mu(e_1) = \mu(e_2) = 0\) and \(\mu(e_1 + e_2) = 1\). The first one has Arf invariant 1, the second 0. Hence there are up two isomorphism precisely two non-degenerate quadratic forms on \(V\).

8.43 By the definition of the selfintersection number it suffices to show \(\mu(f) \neq 0\) in \(Q_\ell(\mathbb{Z}\pi)\). The map \(\mathbb{Z}\pi \to \mathbb{Z}/2\) sending \(\sum_{g \in \pi} n_g \cdot g\) to \(\sum_{g \in G} \pi g\) induces a map of abelian groups \(Q_\ell(\mathbb{Z}\pi) \to \mathbb{Z}/2\). Since the set of double points consists of precisely one element, it sends \(\mu(f)\) to \(1\) and hence \(\mu(f) \neq 0\).

8.44 Consider the inclusion \(i: S^1 \to S^1 \times S^1\) onto the first factor. One easily changes it locally by adding a kink to an immersion \(j: S^1 \to S^1 \times S^1\) in general position with exactly one double point such that \(i\) and \(j\) are homotopic. By Exercise \[8.43\] \(i\) and \(j\) are not regularly homotopic.

8.51 Denote by \(C^{n-*}(\tilde{X})_{\text{untw}}\) the \(\mathbb{Z}\pi\)-chain complex which is analogously defined as \(C^{n-*}(\tilde{X})\), but now with respect to the untwisted involution. Its \(n\)-th homology \(H_n(C^{n-*}(\tilde{X})_{\text{untw}})\) depends only on the homotopy type of \(X\). If \(X\) carries the structure of a Poincaré complex with respect to \(w: \pi_1(X) \to \{\pm 1\}\), then the Poincaré \(\mathbb{Z}\pi\)-chain homotopy equivalence induces a \(\mathbb{Z}\pi\)-isomorphism \(H_n(C^{n-*}(\tilde{X})_{\text{untw}}) \cong \mathbb{Z}^w\). Thus we rediscover \(w\) from \(H_n(C^{n-*}(\tilde{X})_{\text{untw}})\).
8.59. This follows from fact that two embeddings $M \to \mathbb{R}^{n+m}$ for large enough m are diffeotopic.

8.68. It suffices to show that f is l-connected for $l = k + 1, k + 2, \ldots$. By assumption this holds for $l = k + 1$. In the induction step f is l-connected for some $l \geq k + 1$ and we have to show that f is $(l+1)$-connected, i.e., $\pi_{l+1}(f) = 0$. By Lemma 8.63 (ii) which applies also to the case, where M is only a finite Poincaré complex, it suffices to show that $K_l(M) = 0$. By Lemma 8.63 (i) which applies also to the case, where M is only a finite Poincaré complex, it suffices to show $K_{n-l}(M) = 0$. Since f is $(k+1)$-connected and $n - l \leq k$, $K_{n-l}(M) = 0$ vanishes by Lemma 8.63 (ii).

8.74. Let $f: M \to S^{4k+2}$ be any map of degree one. Choose an embedding $i: M \to \mathbb{R}^{4k+2+m}$ for large enough m. Then the given stable trivialization of the tangent bundle defines a trivialization of the normal bundle. It can be viewed as bundle map $\tilde{f}: \mu \to \mathbb{R}^m$ covering f. Thus we obtain a normal map of degree one (\tilde{f}, f). It defines a surgery obstruction $\sigma(\tilde{f}, f) \in L_{4k+2}(\mathbb{Z})$. Since $L_{4k+2}(\mathbb{Z})$ is isomorphic to $\mathbb{Z}/2$, this is the same as an element $\alpha(M) \in \mathbb{Z}/2$. It is independent by the choice of f and \tilde{f} and depends only on the stably framed bordism class of M since by a theorem due to Hopf the homotopy class of f is uniquely determined by its degree and the surgery obstruction is a invariant under normal bordism.

8.99. Because of Theorem 8.98 (ii) we can assume that $F: W \to X \times [0, 1]$ is a simple homotopy equivalence. We conclude from Theorem 3.34 (iii) that both inclusions $M \to W$ and $N \to W$ are simple homotopy equivalence. By Theorem 3.44 there exists a diffeomorphism $W \to M \times [0,1]$. Hence the restriction of this diffeomorphism to N is a diffeomorphism $N \to M \times \{1\} = M$.

8.105. This follows from the various Rothenberg sequence since the $\mathbb{Z}/2$-Tate cohomology of any $\mathbb{Z}[\mathbb{Z}/2]$-module is annihilated by multiplication with 2.

8.109. Since $\text{Wh}(\mathbb{Z})$, $\widetilde{K}_0(\mathbb{Z})$, and $K_n(\mathbb{Z})$ for $n \leq -1$ vanish, see Example 2.4, Theorem 3.17 and Theorem 4.6, the decoration does not matter by Theorem 8.104. We conclude from (8.107) and the computations of $L_n(\mathbb{Z})$ in Theorem 8.28, Theorem 8.31 and Theorem 8.81.

$$L_n(\mathbb{Z}) \cong L_{n-1}(\mathbb{Z}) \oplus L_n(\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & n \equiv 0, 1 \mod 4; \\ \mathbb{Z}/2 & n \equiv 2, 3 \mod 4. \end{cases}$$
8.112 We conclude from Conjectures 3.107, 4.17, and 8.111 and Theorem 8.104 that the decoration does not matter. If \(g = 0 \), \(\pi_1(F_g) \) is trivial and hence \(L_n^{(-\infty)}(\mathbb{Z}[\pi_1(F_g)]) = L_n^{(-\infty)}(\mathbb{Z}) \). Suppose \(g \geq 1 \). Then \(F_g \) itself is a model for \(B\pi_1(F_g) \). Because of Conjecture 8.111 we get

\[
H_n(F_g; L_n^{(-\infty)}(\mathbb{Z}[\pi_1(F_g)])) \cong L_n^{(-\infty)}(\mathbb{Z}[\pi_1(F_g)]).
\]

Now we use the Atiyah-Hirzebruch spectral sequence to compute \(H_n(F_g; L_n^{(-\infty)}(\mathbb{Z})) \). This is rather easy since \(F_g \) is 2-dimensional, the edge homomorphism which describes \(H_n(\{\bullet\}; L^{(-\infty)}) \to H_n(F_g; L^{(-\infty)}) \) is split injective and \(L_n^{(-\infty)}(\mathbb{Z}) \) is \(\mathbb{Z} \) if \(n \equiv 0 \mod 4 \), \(\mathbb{Z}/2 \) if \(n \equiv 0 \mod 4 \) and \(\{0\} \) otherwise. The result is

\[
L_n^{(-\infty)}(\mathbb{Z}[\pi_1(F_g)]) \cong \begin{cases}
\mathbb{Z} \oplus \mathbb{Z}/2 & n \equiv 0 \mod 4 \\
\mathbb{Z}^{2^g} & n \equiv 1 \mod 4 \\
\mathbb{Z} \oplus \mathbb{Z}/2 & n \equiv 2 \mod 4 \\
(\mathbb{Z}/2)^{2^g} & n \equiv 3 \mod 4 .
\end{cases}
\]

8.139 Because of Poincare duality it suffices to show \(f_\ast(L(M) \cap [M]_Q) = L(N) \cap [N]_Q \). But this follows from the Novikov Conjecture 8.134 because of Remark 8.138 since we can put \(N = BG \).

8.145 This follows from the long exact homotopy sequence associated to a fibration.

8.146 Let \(C \subseteq \pi_1(X) \) be any finite cyclic subgroup. Since the universal covering \(\tilde{X} \) is a model for \(E\pi_1(X) \), it is also a model for \(EC \) after restricting the group action. Hence \(C \setminus \tilde{X} \) is a finite dimensional CW-model for \(BC \). This implies that the group homology \(H_n(C) \) of \(C \) is trivial in dimensions \(n > \text{dim}(X) \). It is known that the homology of \(C \) is \(C \) in all odd dimensions. Hence \(C \) must be trivial. This shows that \(\pi_1(X) \) is torsionfree.

8.148 The top homology group \(H_n(M; \mathbb{F}_2) \) with \(\mathbb{F}_2 \)-coefficients of any closed \(n \)-dimensional manifold \(M \) is known to be isomorphic to \(\mathbb{F}_2 \). If \(M \) is simply connected and aspherical it is homotopy equivalent to the one-point-space \(\{\bullet\} \). This implies \(n = 0 \) and hence \(M = \{\bullet\} \) for a simply-connected aspherical manifold.

8.149 See [595, Lemma 3.2].

8.158 See Example 3.59.
8.159 Let \(k \) and \(n \) be natural numbers such that at least one of them is even. Then \(S^k \) and \(S^n \) are topologically rigid but \(S^k \times S^n \) is not. See Remark 8.157.

8.170 Let \(G_k \) be a \(n_k \)-dimensional Poincaré duality group for \(k = 0, 1 \). Let \(P_k^0 \) be a \(n_k \)-dimensional finite projective \(\mathbb{Z}[G_k] \)-resolution of the trivial \(\mathbb{Z}[G_k] \)-module \(\mathbb{Z} \). Then \(P_k^0 \otimes \mathbb{Z} \) is a \((n_0 + n_1) \)-dimensional finite projective \(\mathbb{Z}[G_0 \times G_1] \)-resolution of the trivial \(\mathbb{Z}[G_0 \times G_1] \)-module \(\mathbb{Z} \). The obvious chain map given by the tensor product over \(\mathbb{Z} \) and the obvious identification \(\mathbb{Z}[G_0] \otimes \mathbb{Z}[G_1] = \mathbb{Z}[G_0 \times G_1] \)

\[
\text{hom}_{\mathbb{Z}[G_0]}(P_k^0, \mathbb{Z}[G_0]) \otimes \text{hom}_{\mathbb{Z}[G_1]}(P_1^1, \mathbb{Z}[G_1]) \\
\cong \text{hom}_{\mathbb{Z}[G_0 \times G_1]}(P_k^0 \otimes \mathbb{Z} P_1^1, \mathbb{Z}[G_0 \times G_1])
\]

is an isomorphism of \(\mathbb{Z} \)-cochain complexes. Since \(\text{hom}_{\mathbb{Z}[G_0]}(P_k^0, \mathbb{Z}[G_0]) \) is a free \(\mathbb{Z} \)-cochain complex whose cohomology is concentrated in dimension \(n_k \) and given there by \(\mathbb{Z} \), there exists a \(\mathbb{Z} \)-chain homotopy equivalence from \([n_k](\mathbb{Z}) \) which is the \(\mathbb{Z} \)-chain complex concentrated in dimension \(n_k \) and having \(\mathbb{Z} \) as \(n_k \)-th chain module, to \(\text{hom}_{\mathbb{Z}[G_0]}(P_k^0, \mathbb{Z}[G_0]) \). Hence \(\text{hom}_{\mathbb{Z}[G_0 \times G_1]}(P_k^0 \otimes \mathbb{Z} P_1^1, \mathbb{Z}[G_0 \times G_1]) \) is \(\mathbb{Z} \)-chain homotopy equivalent to \([n_0](\mathbb{Z}) \otimes [n_1](\mathbb{Z}) \cong [n_0 + n_1](\mathbb{Z}) \). This implies that \(H^n(\text{hom}_{\mathbb{Z}[G_0 \times G_1]}(P_k^0 \otimes \mathbb{Z} P_1^1, \mathbb{Z}[G_0 \times G_1])) \) is \(\mathbb{Z} \) in dimension \((n_0 + n_1) \) and trivial otherwise. Hence \(G_0 \times G_1 \) is a \((n_0 + n_1) \)-dimensional Poincaré duality group.

8.184 This follows from Theorem 8.163, Theorem 12.24 (ii), and Theorem 15.1 (i).
9.21 Without loss of generality we can assume that $K_j^H(Y, B)$ is torsionfree for all $j \in \mathbb{Z}$. Now check that we obtain two G-homology theories on pairs of finite proper G-CW-complexes (X, A) by putting

$$
\mathcal{H}_G^*(X, A) := \bigoplus_{i+j=n} K_i^G(X, A) \otimes \mathbb{Z} K_j^H(Y, B);
$$

$$
\mathcal{K}_G^*(X, A) := K_G^*(X, A) \otimes \mathbb{Z} K_H^0((X, A) \times (Y, B)).
$$

(When one wants to check the exactness of the long exact sequence of a pair for \mathcal{H}_G^*, we need that assumption that $K_j^H(Y, B)$ is torsionfree and hence the functor $- \otimes \mathbb{Z} K_j^H(Y, B)$ is exact for all $j \in \mathbb{Z}$). The external multiplication defines a natural transformation $T^*_G : \mathcal{H}_G^* \to \mathcal{K}_G^*$ of G-cohomology theories for pairs of finite proper G-CW-complexes. One checks that $T^*_G(G/H) : \mathcal{H}_G^*(G/H) \to \mathcal{K}_G^*(G/H)$ is bijective for all finite subgroups $H \subseteq G$. Now prove by induction over the number of equivariant cells using the Five-Lemma, the long exact sequence of a pair, excision and G-homotopy invariance that $T^*_G(X, A)$ is bijective for all pairs of finite proper G-CW-complexes (X, A) and all $n \in \mathbb{Z}$.

9.23 This follows from the long exact sequence of the pair (DE, SE), the Thom isomorphisms (9.22) and the commutativity of the following diagram which is a consequence of the naturality of the product

$$
\begin{array}{ccc}
K_G^*(X) & \xrightarrow{-\cup e(p)} & K_G^*(X) \\
\downarrow{K_G^*(p_{DE})} & \cong & \cong \downarrow{K_G^*(p_{DE})} \\
K_G^*(DE) & \xrightarrow{-\cup K_G^*(j)(\lambda E)} & K_G^*(DE) \\
\downarrow{id} & \cong & \downarrow{K_G^*(j)} \\
K_G^*(DE) & \xrightarrow{-\cup \lambda E} & K_G^*(DE, SE) \\
\end{array}
$$

9.29 If G contains an element g of order ≥ 3, then show $||xx^*|| \neq ||x||^2$ for $x = g + 1 - g^{-1}$. If G contains an element g of order 2, then show $||xx^*|| \neq ||x||^2$ for $x = g + i \in L^1(G; \mathbb{C})$. Finally one checks directly that $L^1(G; F)$ is a C^*-algebra if G is trivial or if G has order 2 and $F = \mathbb{R}$.

9.35 Since \mathcal{K} is the colimit colim$_{n \to \infty} M_n(\mathbb{C})$, we conclude from Morita equivalence and the compatibility with colimits over directed systems that the obvious inclusion of C^*-algebras $\mathbb{C} \to \mathcal{K}$, induces an isomorphisms $K_0(\mathbb{C}) \cong K_* (\mathcal{K})$. The C^*-algebra \mathcal{B} is contractible, i.e., the zero homomorphism is homotopic to the identity $\mathcal{B} \to \mathcal{B}$, a homotopy is given by $F_t(x) = F(tx)$. Homotopy invariance implies the vanishing of $K_*(\mathcal{B})$. Now the long exact
sequence of the ideal $K \subseteq B$ yields an isomorphism $K_n(B/K) \cong K_{n-1}(K)$ for all $n \in \mathbb{Z}$. To finish the calculation, one directly proves that $K_n(\mathbb{C})$ is \mathbb{Z} for $n = 0$ and trivial for $n = 1$ and applies Bott periodicity.

9.45 Since G is by assumption is finite, $H_n(BG; \mathbb{Q})$ is \mathbb{Q} if $n = 0$ and is trivial for $n \neq 0$. We conclude from the Chern characters (9.1) and (9.7) that $\dim_{\mathbb{Q}}(K_0(BG) \otimes_{\mathbb{Z}} \mathbb{Q}) = \dim_{\mathbb{Q}}(K_0(BQ) \otimes_{\mathbb{Z}} \mathbb{Q}) = 1$. We have $K_0(C^*_r(G)) \cong \text{Rep}_{\mathbb{C}}(G)$ and $K_0(C^*_r(G)) \cong \text{Rep}_{\mathbb{R}}(G)$. Now use the obvious fact that $\dim_{\mathbb{Q}}(\text{Rep}_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Q}) = 1 \iff \dim_{\mathbb{Q}}(\text{Rep}_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Q}) = 1 \iff G = \{1\}$ holds.

9.47 Let $c : S^1 \to S^1$ be the automorphism of S^1 sending $z \in S^1$ to z^{-1}. Let T_c be the mapping torus. One easily checks that T_c is a model for BG. Elementary considerations about homology theories lead to the so called Wang sequence

$$\cdots \to K_n(S^1) \xrightarrow{\partial_n+1} K_n(S^1) \xrightarrow{id-K_n(c)} K_n(S^1) \xrightarrow{K_n(i)} K_n(T_c) \xrightarrow{\partial_n} K_{n-1}(S^1) \xrightarrow{id-K_{n-1}(c)} K_{n-1}(S^1) \xrightarrow{K_{n-1}(i)} \cdots .$$

We know that $K_n(S^1) \cong \mathbb{Z}$ for all $n \in \mathbb{Z}$. Elementary considerations about homology theories imply that $K_n(c) = -id_{K_n(S^1)}$ for odd n and $K_n(c) = id_{K_n(S^1)}$ for even n. Hence the Wang sequence reduces to

$$\cdots \to \mathbb{Z} \xrightarrow{2id} \mathbb{Z} \xrightarrow{K_1(i)} K_1(T_c) \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{K_0(i)} K_0(T_c) \to \mathbb{Z} \xrightarrow{2id} \mathbb{Z} \to \cdots .$$

This implies

$$K_n(C^*_r(G)) \cong K_n(T_c) \cong \begin{cases} \mathbb{Z} & \text{if } n \text{ is even;} \\ \mathbb{Z} \oplus \mathbb{Z}/2 & \text{if } n \text{ is odd.} \end{cases}$$

9.62 Obviously $\text{hom}_{(1)}(F, i^*F) \cong F$. Since $i_*F = C_0(G,F)$, all homomorphisms of G-C^*-algebras from i_*F to F are zero and hence $\text{hom}_{C}(i_*F,F)$ vanishes.

9.71 Put $G = \mathbb{Z}/p$. Since p is an odd prime, we have $\dim_{\mathbb{R}}(V) = \dim_{\mathbb{R}}(V^G) \equiv 0 \mod 2$ and hence $\dim(SV) = \dim(SV^G) \equiv 0 \mod 2$. Since $\dim(SV) = d - 1$, we get $K_n(SV) = K_n(SV^G) = K_n(S^{d-1})$ for all $n \in \mathbb{Z}$. Since $\text{Rep}_{\mathbb{C}}(G) \cong \mathbb{Z}p$, we get $\text{im}(\theta_G) = \mathbb{Z}[1/p]$ and $\text{im}(\theta_{(1)}) \cong \mathbb{Z}[1/p]^{p-1}$. We conclude from Theorem 9.69.
\[Z[1/p] \otimes \mathbb{Z} K_n^{Z/p}(SV) \]
\[\cong Z[1/p] \otimes \mathbb{Z} K_n(SV^G/C_GG) \oplus Z[1/p]^{p-1} \otimes \mathbb{Z} K_n(SV/C_G\{1\}) \]
\[\cong Z[1/p] \otimes \mathbb{Z} K_n(S^{d-1}) \oplus Z[1/p]^{p-1} \otimes \mathbb{Z} K_n(SV/G). \]

The Atiyah-Hirzebruch spectral sequence converges to \(K_n(SV/G) \) and has as \(E^2 \)-term \(E^2_{r,s} = H_r(SV/G; K_s(\{\bullet\})) \). Since \(|G| \) is a \(p \)-power, we get a \(\mathbb{Z}[1/p] \)-isomorphism \(Z[1/p] \otimes \mathbb{Z} H_r(SV/G) \cong Z[1/p] \otimes \mathbb{Z}[1/p]G H_r(SV) \). Since \(p \) is odd, the \(G \)-operation on \(H_1(SV) \) is trivial. Hence we get a \(Z[1/p] \)-isomorphism

\[Z[1/p] \otimes \mathbb{Z} E^2_{r,s} \cong Z[1/p] \otimes \mathbb{Z} H_r(SV; K_s(\{\bullet\})) \]
\[\cong \begin{cases} Z[1/p] & \text{if } r = 0, d - 1 \text{ and } s \text{ is even;} \\ 0 & \text{otherwise.} \end{cases} \]

Hence \(Z[1/p] \otimes \mathbb{Z} E^2_{r,s} \) is a finitely generated free \(Z[1/p] \)-module for each \((r, s) \) and we conclude from the isomorphism \[9,1\] for each \(n \in \mathbb{Z} \)

\[\sum_{r+s=n} \text{rk}_{Z[1/p]}(Z[1/p] \otimes \mathbb{Z} E^2_{r,s}) = \text{rk}_{Z[1/p]}(Z[1/p] \otimes \mathbb{Z} K_n(SV/G)). \]

This implies that all differentials in the Atiyah-Hirzebruch spectral sequence are trivial after inverting \(p \) and we get

\[Z[1/p] \otimes \mathbb{Z} K_n(SV/G) \cong \begin{cases} Z[1/p] & \text{if } d \text{ is even;} \\ Z[1/p]^2 & \text{if } d \text{ is odd and } n \text{ is even;} \\ 0 & \text{if } d \text{ is odd and } n \text{ is odd.} \end{cases} \]
\[\cong Z[1/p] \otimes \mathbb{Z} K_n(S^{d-1}). \]

Now the claim follows from

\[Z[1/p] \otimes \mathbb{Z} K_n^{Z/p}(SV) \cong Z[1/p] \otimes \mathbb{Z} K_n(S^{d-1}) \oplus Z[1/p]^{p-1} \otimes \mathbb{Z} K_n(SV/G) \]
\[\cong Z[1/p] \otimes \mathbb{Z} K_n(S^{d-1}) \oplus Z[1/p]^{p-1} \otimes \mathbb{Z} K_n(S^{d-2}) \]
\[\cong Z[1/p]^p \otimes \mathbb{Z} K_n(S^{d-1}). \]

\[9.74 \] The abelian group \(K_1(C(X)) \) is not finitely generated because of Theorem \[3.117\] whereas as \(K_1(C(X)) \cong K^1(X) \) is finitely generated.

Chapter 9

\[10.6 \] Define the \(n \)-skeleton of \(\tilde{X} \) to be \(p^{-1}(X_n) \). Use the facts that a covering over a contractible space such as \(D^n \) is trivial and a covering is a local homeomorphism.
The Euler characteristic of a compact CW-complex can be computed by counting cells. Each equivariant cell in $X - X^{\mathbb{Z}/p}$ contributes p (non-equivariant) cells.

Choose an irrational number θ. Let $\phi: S^1 \to S^1$ be the homeomorphism given by multiplication with the complex number $\exp(2\pi i \theta)$. The space S^1 with the associated \mathbb{Z}-action is free but not proper.

Suppose that there is a free smooth \mathbb{Z}/p-action on S^{2n}. By Remark 10.13 we obtain a free \mathbb{Z}/p-CW-structure on S^{2n}. By a previous exercise we get the contradiction

$$0 \equiv \chi(\emptyset) \equiv \chi((S^{2n})^{\mathbb{Z}/p}) \equiv \chi(S^{2n}) \equiv 2 \mod p.$$
10.47 Since H is infinite and countable, its cardinality is \aleph_0. We conclude $\text{gd}(H) = 1$ from Remark 10.46. Theorem 10.45 implies that $\text{gd}(H \rtimes \mathbb{Z}) \leq 2$. Since $H \rtimes \mathbb{Z}$ is finitely generated and does not contain a finitely generated free group of finite index, we cannot have $\text{gd}(H \rtimes \mathbb{Z}) \leq 1$.

10.54 The universal covering on M is the hyperbolic space and hence contractible. Therefore N is a model for BG. Since $H_\ast(BG;\mathbb{Z}) \cong \mathbb{Z}$ for $w: G = \pi_1(N) \to \{\pm\}$ given by the first Stiefel-Whitney class of N, we conclude $\text{cd}(G) = \text{dim}(N) = \text{gd}(G)$. Since G is hyperbolic and hence satisfies conditions (M) and (NM), we conclude $\text{gd}(G) = \text{gd}(G)$ from Theorem 10.53 (iii).

10.60 This follows from Theorem 10.59.

Chapter 10

11.4 The desired $\mathbb{Z}/2$-pushout for the 1-skeleton is obvious and for the 2-skeleton given by

$$
\begin{array}{ccc}
\mathbb{Z}/2 \times S^1 & \xrightarrow{pr} & S^1 \\
\downarrow & & \downarrow \\
\mathbb{Z}/2 \times D^2 & \twoheadrightarrow & S^2
\end{array}
$$

where pr is the projection. Now one easily checks that $C_\ast(S^2) \otimes_{\mathbb{Z}/2} R_C$ is given by the \mathbb{Z}-chain complex concentrated in dimensions 0, 1 and 2

$$
\cdots \to \{0\} \to \{0\} \to R_C(\{1\}) \xrightarrow{c_2} R_C(\mathbb{Z}/2) \xrightarrow{0} R_C(\mathbb{Z}/2) \to \{0\} \to \cdots
$$

where c_2 is induction with the inclusion $\{1\} \to \mathbb{Z}/2$. This implies

$$
\text{H}_n^{\mathbb{Z}/2}(S^2; R_C) \cong \begin{cases}
\mathbb{Z}^2 & n = 0; \\
\mathbb{Z} & n = 1; \\
\{0\} & \text{otherwise}
\end{cases}
$$

11.7 By applying Lemma 11.5 to the skeletal filtration $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq \bigcup_{n \geq 0} X_n = X$, the claim can be reduced to finite dimensional pairs. Using the axioms of a G-homology theory, the five lemma and induction over the dimension one reduces the proof to the special case $(X, A) = (G/H, \emptyset)$.

11.11. This follows directly from the axiom about the compatibility with conjugation applied in the case \(X = \{ \bullet \} \).

11.16. The real line \(\mathbb{R} \) with the obvious action of \(D_\infty = \mathbb{Z}/2 * \mathbb{Z}/2 = \mathbb{Z} \rtimes \mathbb{Z}/2 \) is a \(D_\infty \)-CW-model for \(E D_\infty \), see Theorem 10.25. Up to conjugacy there are two subgroups \(H_0 \) and \(H_1 \) of order two in \(D_\infty \). One obtains a \(D_\infty \)-pushout

\[
D_\infty \times S^0 = D_\infty \amalg D_\infty \xrightarrow{\text{pr}_0 \amalg \text{pr}_1} D_\infty / H_0 \amalg D_\infty / H_1
\]

where \(\text{pr}_0 \) and \(\text{pr}_1 \) are the obvious projections and \(i \) is the obvious inclusion. Hence the associated long exact Mayer-Vietoris sequence reduces to

\[
0 \to K_0^{D_\infty}(ED_\infty) \to R_\mathbb{C}(\{1\}) \oplus R_\mathbb{C}(\{1\}) \to K_0^{D_\infty}(ED_\infty) \to 0
\]

where \(f \) sends \((v, w)\) to \((v + w, i_*(v), -i_*(w))\) for \(i_* \) the map induced by the inclusion \(\{1\} \to \mathbb{Z} / 2 \). This implies

\[
K_0^{D_\infty}(ED_\infty) \cong \begin{cases} \mathbb{Z}^3 & \text{n even;} \\ \{0\} & \text{n odd.} \end{cases}
\]

11.33. One easily checks that for a given group \(G \) and every subgroup \(H \subseteq G \) and every \(n \in \mathbb{Z} \) the map \(H_n^G(G/H; \mathbf{t}) : H_n^G(G/H; \mathbf{E}) \to H_n^G(G/H; \mathbf{F}) \) can be identified with the map \(\pi_n(t(G/H)) : \pi_n(E(t(G/H))) \to \pi_n(F(t(G/H))) \) and hence is bijective by assumption. Now apply Lemma 11.6.

11.44. The argument appearing in the solution of Exercise 11.16 yields a long exact Mayer-Vietoris sequence

\[
\cdots \to K_0(R) \oplus K_0(R) \to K_0(R) \oplus K_0(R[\mathbb{Z}/2]) \oplus K_0(R[\mathbb{Z}/2]) \\
\to H_0^{D_\infty}(ED_\infty; K_R) \to K_{-1}(R) \oplus K_{-1}(R) \\
\to K_{-1}(R) \oplus K_{-1}(R[\mathbb{Z}/2]) \oplus K_{-1}(R[\mathbb{Z}/2]) \to \cdots
\]

Since the obvious map \(K_n(R) \to K_n(R[\mathbb{Z}/2]) \) is split injective, we obtain for \(n \in \mathbb{Z} \) isomorphisms

\[
K_n(R[\mathbb{Z}/2]) \oplus \ker (K_n(R) \to K_n(R[\mathbb{Z}/2])) \cong H_n^{D_\infty}(ED_\infty; K_R).
\]
If $n \leq -1$, then $K_n(R[Z/2]) = 0$ for $R = Z, C$ by Theorem 4.15 and Theorem 4.21. Hence

$$H_n^D(ED_{\infty}; K_R) \cong \{0\} \quad \text{for} \quad n \leq -1$$

The map $K_0(Z) \to K_0(Z[Z/2])$ is bijective by Example 2.91 and $K_0(Z) = \mathbb{Z}$ by Example 2.4. Hence

$$H_n^D(ED_{\infty}; K_Z) \cong {\mathbb{Z}}.$$

Since $K_0(CH) \cong RC(H)$ for a finite group H, one easily checks

$$H_n^D(ED_{\infty}; K_C) \cong {\mathbb{Z}}^3.$$

11.46 Since X/G has no odd-dimensional cells, X has no odd dimensional equivariant cells. Moreover, if X/G is finite, then X has only finitely many equivariant cells. We conclude for any coefficients system M that the Bredon homology $H_p(X; M)$ vanishes, if p is odd, or if p is larger than the dimension of X. If X has only finitely many equivariant cells and $M(G/H)$ is a finitely generated free abelian groups for any finite subgroup $H \subseteq G$, then $H_p(X; M)$ is finitely generated free abelian for all $p \in \mathbb{Z}$. Since $K^G_q(G/H) = 0$ for odd q and is a finitely generated free abelian group for even q for every finite subgroup $H \subseteq G$, and all isotropy groups of X are by assumption finite, we conclude for the E^2-terms of the equivariant Atiyah-Hirzebruch spectral sequence of Theorem 11.45 that $E^2_{p,q} = 0$ if $p + q$ is odd. If X has only finitely many equivariant cells, then $E^2_{p,q}$ is finitely generated free if $p + q$ is even and vanishes for large enough q. Now the claim follows from this spectral sequence.

11.51 Consider the long exact sequence of the pair $(EG \times_G X, EG \times_G X^G)$ and of the pair $(X/G, X^G/G) = (X/G, X^G)$ and the map between them induced by the projection $(EG \times_G X, EG \times_G X^G) \to (X/G, X^G/G)$, and use the fact that (X, X^G) is relatively free and hence $H_n(EG \times_X X, EG \times_X X^G) \to H_n(X/G, X^G/G)$ is bijective.

11.55 From Theorem 11.54 we get a natural isomorphism of spectral sequences from the equivariant Atiyah-Hirzebruch spectral sequence converging to $BH^G(X)$ to the equivariant Atiyah-Hirzebruch spectral sequence converging to $H^G_n(X)$. One easily checks that all the differentials in the equivariant Atiyah-Hirzebruch spectral sequence converging to $BH^G(X)$ vanish.

11.56 For every finite group $H \subseteq G$ the group $W_G H$ is finite and hence $\mathbb{Q}[W_G H]$ is semi-simple. Therefore every $\mathbb{Q}[W_G H]$-module is flat. Because of Theorem 11.54 it suffices to show that for every finite subgroup $H \subseteq G$ and
every \(n \in \mathbb{Z} \) the map

\[
H_p(C \mathcal{G} H \setminus \mathcal{F} \subseteq G; \mathbb{Q}) : H_p(C \mathcal{G} H \setminus E \mathcal{F}(G)^H; \mathbb{Q}) \to H_p(C \mathcal{G} H \setminus E \mathcal{F}(G)^H; \mathbb{Q})
\]

is bijective. This is obviously true if \(H \not\in \mathcal{F} \). Suppose \(H \in \mathcal{F} \). Then the claim follows from fact that both \(C_*(E \mathcal{F}(G)^H) \otimes_{\mathbb{Z}} \mathbb{Q} \) and \(C_*(E \mathcal{F}(G)^H) \otimes_{\mathbb{Z}} \mathbb{Q} \) are projective \(\mathbb{Q}[C \mathcal{G} H] \)-resolutions of the trivial \(\mathbb{Q}[C \mathcal{G} H] \)-module \(\mathbb{Q} \) which implies that

\[
C_*(E \mathcal{F}(G)^H) \otimes_{\mathbb{Z}} \mathbb{Q} \to C_*(E \mathcal{F}(G)^H) \otimes_{\mathbb{Z}} \mathbb{Q} \to C_*(E \mathcal{F}(G)^H) \otimes_{\mathbb{Z}} \mathbb{Q}
\]

is a \(\mathbb{Q}[C \mathcal{G} H] \)-chain homotopy equivalence and hence induces after applying \(\mathbb{Q} \otimes_{\mathbb{Q}[C \mathcal{G} H]} - \) a \(\mathbb{Q} \)-chain homotopy equivalence.

\[11.60\] The desired pairing is given by

\[
A(G) \times M(G) \to M(G), \quad ([G/H], x) \mapsto \text{ind}^G_H \circ \text{res}^H_G(x).
\]

\[11.80\] Every subgroup \(F \subseteq \text{SL}_2(\mathbb{Z}) \) is conjugated to one of the groups \(\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6 \) with generators given by the matrices

\[
\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}, \quad \begin{pmatrix}
-1 & -1 \\
1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix} \quad \text{and} \quad \begin{pmatrix}
0 & -1 \\
1 & 1
\end{pmatrix}.
\]

So we shall restrict from now on to the study of the actions of \(\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_6 \) given by the actions of the above described generators. The case \(\mathbb{Z}/4 \) has been carried out in Example \[11.79\] The computations for the other cases is analogous. We get in all cases that \(G \setminus \mathcal{E} G \) is homeomorphic to \(S^2 \). There are up to conjugacy four non-trivial finite subgroups, which are all isomorphic to \(\mathbb{Z}/2 \), in \(G \) in the case \(F = \mathbb{Z}/2 \). There up to conjugacy three non-trivial finite subgroups, which are all isomorphic to \(\mathbb{Z}/3 \) in \(G \) in the case \(F = \mathbb{Z}/3 \). In the case \(F = \mathbb{Z}/6 \) there are up to conjugacy three non-trivial finite subgroups, the first is isomorphic to \(\mathbb{Z}/2 \), the second to \(\mathbb{Z}/3 \) and the third to \(\mathbb{Z}/6 \). Hence we get in all cases \(K^G_1(\mathcal{E} G) = 0 \) and

\[
\begin{align*}
K_0^{\mathbb{Z}^2 \times \mathbb{Z}/2}(\mathcal{E} \mathbb{Z}^2 \rtimes \mathbb{Z}_2) & \cong \mathbb{Z}^6; \\
K_0^{\mathbb{Z}^2 \times \mathbb{Z}/3}(\mathcal{E} \mathbb{Z}^2 \rtimes \mathbb{Z}_3) & \cong \mathbb{Z}^8; \\
K_0^{\mathbb{Z}^2 \times \mathbb{Z}/4}(\mathcal{E} \mathbb{Z}^2 \rtimes \mathbb{Z}_4) & \cong \mathbb{Z}^3; \\
K_0^{\mathbb{Z}^2 \times \mathbb{Z}/6}(\mathcal{E} \mathbb{Z}^2 \rtimes \mathbb{Z}_6) & \cong \mathbb{Z}^1.
\end{align*}
\]

Chapter 11
12.3 If we replace in Conjecture 12.1 the family \mathcal{VCY} by \mathcal{FIN}, then the Conjecture 12.2 for \mathbb{Z} reduces to the statement that for any ring R the map induced by the projection $EZ \to \mathbb{Z}/\mathbb{Z}$

$$H^n_n(EZ; \mathbb{K}_R) \to H^n_n(\mathbb{Z}/\mathbb{Z}; \mathbb{K}_R) = K_n(R)$$

is an isomorphism. Since \mathbb{Z} acts freely on Z and $(EZ)/\mathbb{Z} = S^1$, we get an identification

$$H^n_n(EZ; \mathbb{K}_R) = H^{(1)}(S^1; \mathbb{K}_R) = K_n(R) \oplus K_{n-1}(R).$$

Under this identification the assembly map above becomes the restriction of the Bass-Heller-Swan isomorphism of Theorem 6.16

$$K_n(R) \oplus K_{n-1}(R) \oplus NK_n(R) \oplus NK_n(R) \xrightarrow{\cong} K_n(R) \oplus K_{n-1}(R).$$

This implies that $NK_n(R)$ vanishes for all $n \in \mathbb{Z}$ and all rings R, a contradiction by Example 3.66.

12.5 If we replace in Conjecture 12.4 the family \mathcal{VCY} by \mathcal{FIN}, then Conjecture 12.7 for \mathbb{Z} reduces to the statement that for any ring R with involution the map induced by the projection $EZ \to \mathbb{Z}/\mathbb{Z}$

$$H^n_n(EZ; \mathbb{L}_R^{(-\infty)}) \to H^n_n(\mathbb{Z}/\mathbb{Z}; \mathbb{L}_R^{(-\infty)}) = L_n^{(-\infty)}(R)$$

is an isomorphism. Since \mathbb{Z} acts freely on Z and $(EZ)/\mathbb{Z} = S^1$, we get an identification

$$H^n_n(EZ; \mathbb{L}_R^{(-\infty)}) = L_n^{(-\infty)}(R) \oplus L_n^{(-\infty)}(RZ).$$

Under this identification the assembly map above can be identified with the isomorphism appearing in the Shaneson splitting (8.107).

12.13 The structure of an abelian group on each set of morphisms comes from the obvious structure of an abelian group on $M_{m,n}(R)$. The direct sum of $[m]$ and $[n]$ is $[m+n]$. The direct sum on morphisms is given by taking block matrices. The zero object is $[0]$. We obtain a natural equivalence from $\mathcal{A}(R)$ to the additive category of finitely generated free R-modules by sending $[m]$ to R^m and a morphism $[m] \to [n]$ given by a (m,n)-matrix A to the R-linear map $R^m \to R^n$ given by right multiplication with A.

12.18 We only present the proof of the harder implication. Suppose that for every two objects A and B in \mathcal{A} the induced map $\text{mor}_{\mathcal{A}}(A_0, A_1) \to \text{mor}_{\mathcal{B}}(F(A_0), F(A_1))$ sending f to $F(f)$ is bijective and for each object B in \mathcal{B} there exists an object A in \mathcal{A} such that $F(A)$ and B are isomorphic in
B. Choose for any object \(B \in \mathcal{B} \) an object \(A(B) \in \mathcal{A} \) and an isomorphism \(u(B) : B \cong F(A(B)) \) in \(\mathcal{B} \). Next we define a functor \(F' : \mathcal{B} \rightarrow \mathcal{A} \) of additive categories. It sends an object \(B \) to \(A(B) \). A morphism \(f : B_0 \rightarrow B_1 \) is send to the morphism \(F'(f) : A(B_0) \rightarrow A(B_1) \) which is uniquely determined by the property that \(F(F'(f)) = u(B_1) \circ f \circ u(B_0)^{-1} \). One easily checks that \(F'(g \circ f) = F'(g) \circ F'(f) \) and \(F'(f_0 + f_1) = F'(f_0) + F'(f_1) \) holds. Consider two objects \(B_0 \) and \(B_1 \). We have to show that for the natural inclusions \(j_i : B_i \rightarrow B_0 \oplus B_1 \) for \(i = 0, 1 \) the morphism \(F'(j_0) \oplus F'(j_1) : F'(B_0) \oplus F'(B_1) \rightarrow F'(B_0) \oplus F'(B_1) \) is an isomorphism. This follows from the following diagram that commutes by definition of \(F' \) and whose lower left vertical arrow is an isomorphism since \(F \) is compatible with direct sums

\[
\begin{array}{ccc}
B_0 \oplus B_1 & \xrightarrow{\text{id}} & B_0 \oplus B_1 \\
\cong & & \cong \\
F(A(B_0)) \oplus F(A(B_1)) & \xrightarrow{F'(j_0) \oplus F'(j_1)} & F(A(B_0) \oplus B_1)) \\
\cong & & \cong \\
F(A(B_0) \oplus A(B_1)) & \xrightarrow{\text{id}} & F(A(B_0) \oplus B_1)) \\
\end{array}
\]

Hence \(F' \) is a functor of additive categories. Natural transformations of functors of additive categories \(S : F \circ F' \rightarrow \text{id}_B \) and \(T : F' \circ F \rightarrow \text{id}_A \) are determined by \(S(B) = u(B) \) and \(F(T(A)) = u(F(A)) \).

12.25 This follows from Theorem 12.24 (iii) since \(G \) is virtually cyclic if \(Q \) is virtually cyclic.

12.26 Let \(G \) be a group. It is the disjoint union of its finitely generated subgroups. Hence by Theorem 12.24 (iv) the Full Farrell-Jones Conjecture 12.23 holds for all groups if and only if it holds for all finitely generated groups. Any finitely generated group can be written as a directed colimit of finitely presented groups. Hence by Theorem 12.24 (iv) the Full Farrell-Jones Conjecture 12.23 holds for all finitely generated groups if and only if it holds for all finitely presented groups. Finally notice that group \(G \) is finitely presented if and only if it occurs as the fundamental group of a connected orientable closed 4-manifold.

12.27 This follows from Theorem 12.24 (iii) and (vii).

12.35 This follows from Lemma 12.34 by the following argument. Since \(K_W \) is finite and the image of \(\phi \) is by assumption infinite, the composite \(p_W \circ \phi : V \rightarrow Q_W \) has infinite image. Since \(Q_W \) is isomorphic to \(\mathbb{Z} \) or \(D_\infty \), the same is true for the image of \(p_W \circ \phi : V \rightarrow Q_W \). By assertion (v) of Lemma 12.34 the kernel of \(p_W \circ \phi : V \rightarrow Q_W \) is \(K_V \). Hence \(\phi(K_V) \subseteq K_W \).
Suppose that G admits a proper cocompact isometric action on \mathbb{R}. Since the action is cocompact and \mathbb{R} is not compact, the group G must be infinite. Let K be the kernel of the homomorphism $\rho: G \to \text{aut}(\mathbb{R})$ coming from the G-action. Since the action is proper, K must be finite. Let $Q \subseteq \text{aut}(\mathbb{R})$ be the image of ρ. The group of isometries of \mathbb{R} is $\mathbb{R} \times \mathbb{Z}/2$, where $\mathbb{Z}/2$ corresponds to $\{\pm 1\}$ and \mathbb{R} to translations $l_r: \mathbb{R} \to \mathbb{R}$ with elements $r \in \mathbb{R}$.

Let $r_0 := \inf\{r \in \mathbb{R} \mid r > 0, l_r \in Q\}$. Since Q acts properly, we have $r_0 > 0$ and $Q \cap \mathbb{R} \subseteq \mathbb{R}$ is the infinite cyclic group generated by r_0. Now one easily checks that Q is isomorphic to \mathbb{Z} or $\mathbb{Z} \times \mathbb{Z}/2$. Hence G is virtually cyclic. If G is virtually cyclic, then it admits an epimorphism with finite kernel onto \mathbb{Z} or $\mathbb{Z} \times \mathbb{Z}/2$ by Lemma [12.34]. These two groups and hence G admit proper cocompact isometric actions on \mathbb{R}.

Suppose that H is infinite and belongs to $\mathcal{HE}_p \cap \mathcal{VCY}_I$. Then there are exact sequences $1 \to Z \to H \xrightarrow{q} Q \to 1$ and $1 \to P \xrightarrow{i} H \to Z \to 1$, where $i: P \to H$ is the inclusion of a finite normal subgroup P, and Q is a finite p-group. The restriction $q|_P: P \to Q$ is injective since P is a finite subgroup of H and the kernel of q is infinite cyclic. Hence P is a finite p-group. Fix an element $t \in H$ whose image under the epimorphism $H \to Z$ is a generator. Then $t \in N_G P$. Let p^m be the order of Q. Consider any $x \in P$. We have $q(t^m x t^{-m}) = q(t)^p q(x) q(t)^{-p} = q(x)$. Since $q|_P: P \to Q$ is injective, we get $t^m x t^{-m} = x$. In particular $H \cong P \times_{\phi} \mathbb{Z}$ for the automorphism $\phi: P \xrightarrow{=} P$ of p-power order given by conjugation with t.

Suppose H is isomorphic to $P \times_{\phi} \mathbb{Z}$ for some finite p-group P and automorphism $\phi: P \to P$ whose order is p^m for some natural number m. Then obviously H belongs to \mathcal{VCY}_I. The exact sequence $1 \to Z \xrightarrow{p^m - \text{id}} Z \to Z/p^m \to 1$ induces an exact sequence $1 \to Z \to P \times_{\phi} Z \to P \times_{\phi} Z/p^m \to 1$. Since $P \times_{\phi} Z/p^m$ is a finite p-group, H belongs to \mathcal{HE}_p.

Because of Exercise [12.41] there exists a finite p-group P and an automorphism $\phi: P \to P$ whose order is a p-power such that G is isomorphic to $P \times_{\phi} \mathbb{Z}$. Note that a model for $E_{FIN}(G)$ is EZ considered as G-CW-complex by restriction with the canonical epimorphism $G \to Z$. We conclude from Theorem [6.55] and Remark [6.56] that

$$H_n^G(E_{FIN}(G); K_R) \to H_n^G(G/G; K_R) = K_n(RG)$$

is bijective after applying $- \otimes_{\mathbb{Z}} \mathbb{Z}[1/p]$ for all $n \in \mathbb{Z}$ if and only if we have $N_{\pm} K_n(RP; \phi)[1/p] = 0$ for all $n \in \mathbb{Z}$. This follows from Theorem [6.57].
12.44. Remark 12.12 and Theorem 12.43 imply that the projection induces an isomorphism

$$H_n^G(\text{pr}; K_F) : H_n^G(E_{\mathcal{H}\mathcal{L}\mathcal{N}}(G); K_F) \xrightarrow{\cong} K_0(FG).$$

Since FH is regular for every finite group H, the negative K-groups of FG vanish by Theorem 4.6. Hence the the equivariant Atiyah-Hirzebruch spectral sequence of Theorem 11.45 converging to $H_n^G(E_{\mathcal{H}\mathcal{L}}(G); K_F)$ is a first quadrant spectral sequence. Therefore the edge homomorphism at $(0,0)$ is an isomorphism

$$H_0^G(E_{\mathcal{H}\mathcal{L}\mathcal{N}}(G); K_0(F^−)) \xrightarrow{\cong} H_0^G(E_{\mathcal{H}\mathcal{L}\mathcal{N}}(G); K_F)$$

where the source is the 0th Bredon homology with respect to the coefficient system given by $G/H \mapsto K_0(FH)$. It can be identified with the colimit $\text{colim}_{H \in \text{Sub}_{\mathcal{H}\mathcal{L}\mathcal{N}}(G)} K_0(FH)$. Hence the various inclusions induce an isomorphism

$$\text{colim}_{H \in \text{Sub}_{\mathcal{H}\mathcal{L}\mathcal{N}}(G)} K_0(FH) \xrightarrow{\cong} K_0(FG).$$

12.52. The group G satisfies the Full Farrell Jones Conjecture 12.23 by Theorem 12.24 (ii) and (iii). Since every virtually cyclic subgroup of G is of type I, Theorem 12.24 implies that the projection pr induces for any additive G-category with involution A and all $n \in \mathbb{Z}$ an isomorphism

$$H_n^G(\text{pr}; L^{(−\infty)}_A) : H_n^G(E_{\mathcal{L}\mathcal{N}}(G); L^{(−\infty)}_A) \xrightarrow{\cong} H_n^G(G/G; L^{(−\infty)}_A) = \pi_n(L^{(−\infty)}_A(I(G))).$$

Hence we get from Remark 12.17 that the projection pr induces for all $n \in \mathbb{Z}$ an isomorphism

$$H_n^G(\text{pr}; L^{(−\infty)}_Z) : H_n^G(E_{\mathcal{L}\mathcal{N}}(G); L^{(−\infty)}_Z) \xrightarrow{\cong} H_n^G(G/G; L^{(−\infty)}_Z) = L^{(−\infty)}_n(\mathbb{Z}G).$$

Recall that we have an extension $1 \rightarrow F \rightarrow G \xrightarrow{f} \mathbb{Z}^d \rightarrow 1$ for a finite group F. Hence the restriction $f^* \mathcal{L}\mathcal{Z}^d$ with f of $\mathcal{L}\mathcal{Z}^d$ is a model for $E_{\mathcal{L}\mathcal{N}}(G)$. Hence it suffices to construct for any free \mathbb{Z}^d-CW-complex X an appropriate spectral sequence converging to $H_n^G(f^*X; L^{(−\infty)}_Z)$. Since the assignment sending X to $H_n^G(f^*X; L^{(−\infty)}_Z)$ is a \mathbb{Z}^d-homology theory in the sense of Definition 11.1 and X is assumed to be a free \mathbb{Z}^d-CW-complex, the equivariant Atiyah-Hirzebruch spectral sequence of Theorem 11.45 converges to $H_n^G(f^*X; L^{(−\infty)}_Z)$ and has as E^2-term $H_p(C_*(X) \otimes_{\mathbb{Z}^d} H_q^G(G/F; L^{(−\infty)}_Z))$. Using the induction structure on $H_*(−; L^{(−\infty)}_Z)$ and Lemma 11.12 one can identify the \mathbb{Z}^d-modules $H_q^G(G/F; L^{(−\infty)}_Z)$ and $L^{(−\infty)}_q(\mathbb{Z}F)$.

Induction with \(i : H \to G \) and restriction with \(f : H \to Z \) induces homomorphisms \(i_* : G_0(CH) \to G_0(CG) \) and \(f^* : G_0(CZ) \to G_0(CH) \). The class \([C]\) of the trivial CZ-module \(C \) is sent under \(i_* \circ f^* \) to the class of \(CG/H \). Since there exists a short exact sequence \(0 \to CZ \to CZ \to C \to 0 \), we have \([C] = 0\) in \(G_0(CZ) \).

Chapter 12

Equip \(R \) with the \(G = \mathbb{Z} \times \mathbb{Z}/k \)-action, where \(\mathbb{Z} \) acts by translation and \(\mathbb{Z}/k \) acts trivial. There is a \(G \)-pushout

\[
\begin{array}{ccc}
Z \times \{0,1\} & \xrightarrow{j} & Z \\
| & \downarrow{i} & | \\
Z \times [0,1] & \xrightarrow{} & R
\end{array}
\]

where we think of \(Z \) as the \(G \)-space \(G/(\mathbb{Z}/k) \), the map \(i \) is the inclusion and \(j \) sends \((n,0)\) to \(n \) and \((n,1)\) to \(n + 1 \). Hence \(R \) is a \(G \)-CW-complex whose isotropy groups are all finite and whose \(H \)-fixed point set is contractible for every finite subgroup \(H \subseteq G \). We conclude that \(R \) is a model for \(EG \). The Mayer-Vietoris sequence associated to the \(G \)-pushout looks like

\[
\cdots \to K^n_G(\mathbb{Z}) \oplus K^n_G(\mathbb{Z}) \xrightarrow{\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}} K^n_G(\mathbb{Z}) \oplus K^n_G(\mathbb{Z}) \to K^n_G(EG) = K^n_G(\mathbb{R}) \\
\to K^{n-1}_G(\mathbb{Z}) \oplus K^{n-1}_G(\mathbb{Z}) \xrightarrow{\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}} K^{n-1}_G(\mathbb{Z}) \oplus K^{n-1}_G(\mathbb{Z}) \to \cdots
\]

where we identify \(K^n_G(Z \times [0,1]) \cong K^n_G(Z) \) via the isomorphism induced by the projection \(Z \times [0,1] \to Z \). Since \(K^n_G(Z) \cong K^n_G(G/(\mathbb{Z}/k)) \) is \(\text{Rep}_C(\mathbb{Z}/k) \) for \(n \) even and zero for \(n \) odd, we conclude for all \(n \in \mathbb{Z} \)

\[
K^n_G(EG) \cong \text{Rep}_C(\mathbb{Z}/k) \cong \mathbb{Z}^k.
\]

We only treat the case \(F = \mathbb{C} \), the case \(F = \mathbb{R} \) is analogous. Since \(H \) and \(G \) are torsionfree and satisfy the Baum-Connes Conjecture \(13.9 \) they also satisfy the Baum-Connes Conjecture for torsionfree groups \(9.44 \) by Remark \(13.14 \). Hence it suffices to show that the homomorphism \(K_n(Bf) : K_n(BH) \to K_n(BG) \) is bijective for all \(n \in \mathbb{Z} \). This follows from the Atiyah-Hirzebruch spectral sequence converging to \(K_n(BH) \)
and $K_n(BG)$, since $H_n(Bf;\mathbb{Z}) : H_n(BH;\mathbb{Z}) \rightarrow H_n(BG;\mathbb{Z})$ is bijective for all $n \in \mathbb{Z}$ by assumption and hence f induces isomorphisms between the E^2-pages.

13.28 Take $G = \mathbb{Z}/2$. Consider the Atiyah-Hirzebruch spectral sequence converging to $K_{p+q}(BG)$ with E^2-term $E^2_{p,q} = H_p(BG;K_q(\{\bullet\}))$. Its E^2-term looks like

\[
\begin{array}{cccccc}
Z & \mathbb{Z}/2 & 0 & \mathbb{Z}/2 & 0 & \mathbb{Z}/2 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
Z & \mathbb{Z}/2 & 0 & \mathbb{Z}/2 & 0 & \mathbb{Z}/2 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
Z & \mathbb{Z}/2 & 0 & \mathbb{Z}/2 & 0 & \mathbb{Z}/2 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Because of the checkerboard pattern and by a standard edge argument applied to the split injection $K_*(\{\bullet\}) \rightarrow K_n(BG)$ coming from the inclusion $\{\bullet\} \rightarrow BG$, all differentials are trivial and the E^2-term is the E^∞-term. Hence $K_1(BG)$ is non-trivial. (Actually it is $\mathbb{Z}/2^\infty \cong \mathbb{Z}[1/2]/\mathbb{Z}$.) On the other hand $K_1(C^*_r(\mathbb{Z}/2))$ is trivial.

13.32 Since any group is the directed union of its finitely generated subgroups, it suffices to consider finitely generated free abelian groups and finitely generated free groups by Theorem 13.31 (iv). Since a finitely generated group abelian group is the direct product of finitely many copies of \mathbb{Z} and of a finite group, Theorem 13.31 (iii) and (vi) imply that it suffices to prove the claim for \mathbb{Z} and any finite group. The Baum-Connes Conjec-
13.11 with coefficients holds obviously for finite groups. It holds for \(\mathbb{Z} \) by Theorem 13.31 (vii).

13.33. Let \(F_g \) be the surface of genus \(g \geq 1 \). Let \(F \to F \) be the covering associated to the epimorphism \(\pi_1(F_g) \to H_1(F_g) \). Then \(\overline{F_g} \) is a non-compact 2-manifold and hence homotopy equivalent to a 1-dimensional CW-complex. Hence \(\pi_1(F_g) \) is free, \(H_1(F_g) \) is a finitely generated free abelian group and we have the exact sequence \(1 \to \pi_1(F_g) \to G \to H_1(F_g) \to 1 \). We conclude from Theorem 13.31 that \(G \) satisfies the Baum-Connes Conjecture 13.9. Since \(F_g \) itself is a model for \(BG \), we get \(K_n(F_g) \cong K_n(C^*_r(G)) \). Now an easy application of the Atiyah-Hirzebruch spectral sequence yields the claim.

13.43. Note that \(K_0(C^*_r(G)) = \mathbb{R}C(G) \). One easily checks by inspecting the definition of (9.48) of the trace for a finite dimensional complex representation \(V \) that \(\text{tr}_{C^*_r(G)} : K_0(C^*_r(G)) \to \mathbb{R} \) sends the class of \([V] \) to \(|G| - 1 \cdot \dim \mathbb{C}(V) \).

13.55. Suppose that \(F \) is \(S^2 \). Since \(M \) is spin and hence in particular orientable and any orientation preserving selfdiffeomorphism of \(S^2 \) is isotopic to the identity, \(M \) must be \(S^1 \times S^2 \) and hence carries a Riemannian metric of positive scalar curvature.

Suppose that \(F \) is not \(S^2 \). Then \(F \) and hence \(M \) are aspherical. Hence it suffices to show by Lemma 13.54 that the Baum-Connes Conjecture 13.11 with coefficients holds for \(\pi_1(M) \). The Baum-Connes Conjecture 13.11 with coefficients holds for all finitely generated free groups and for \(\mathbb{Z} \) by Theorem 13.31 (v). Hence it holds for every free group and every finitely generated abelian group by Theorem 13.31 (iii) and (iv). Let \(F \to F \) be the covering associated to the epimorphism \(\pi_1(F) \to H_1(F) \). Then \(F \) is a non-compact 2-manifold and hence homotopy equivalent to a 1-dimensional CW-complex. Hence \(\pi_1(F) \) is free. Now apply Theorem 13.31 (iii) to the short exact sequences \(1 \to \pi_1(F) \to \pi_1(M) \to \pi_1(S^1) \to 1 \) and \(1 \to \pi_1(F) \to \pi_1(F) \to H_1(F) \to 1 \).

Chapter 13

14.3. Let \(\alpha : H \to G \) be a group homomorphism. Then \(\alpha_*E_{C^*(H)}(H) \) is a \(G \)-CW-complex whose \(G \)-isotropy groups are of the shape \(\alpha(L) \) for \(L \in C(H) \) and hence all belong to \(C(G) \). This implies that there is up to \(G \)-homotopy precisely one \(G \)-map \(f : \alpha_*E_{C^*(H)}(H) \to E_{C^*(G)}(G) \). The following diagram commutes

\[
\begin{array}{ccc}
\alpha_*E_{C^*(H)}(H) & \xrightarrow{\alpha_*pr} & \alpha_*H/H = G/\alpha(H) \\
\downarrow f & & \downarrow pr \\
E_{C^*(G)}(G) & \xrightarrow{pr} & G/G
\end{array}
\]
Now apply \mathcal{H}_G^G to this diagram and combine it with the following commutative diagram coming from the induction structure applied to α

\[
\begin{array}{ccc}
\mathcal{H}_n^H(E_C(H)(H)) & \xrightarrow{\eta_n^H(pr)} & \mathcal{H}_n^H(H/H) \\
\downarrow & & \downarrow \\
\mathcal{H}_n^G(\alpha_*E_C(H)(H)) & \xrightarrow{\eta_n^G(\alpha_*pr)} & \mathcal{H}_n^G(\alpha_*H/H)
\end{array}
\]

14.7
The restriction of a G-CW-complex X to K with ϕ is a K-CW-complex ϕ^*X by Remark 10.3. For a point $x \in X$ the K-isotropy group K_x of ϕ^*X is $\phi^{-1}(G_x)$, where G_x is the G-isotropy group of X. In particular we get $\phi(K_x) = G_x$ and hence every K-isotropy group of ϕ^*X belongs to $\phi^*\mathcal{F}$. Consider a subgroup $H \subset K$. Then $(\phi^*X)^H = X^{\phi(H)}$. Now apply these assertions to $X = E_F(G)$.

14.15
Let G be any group. Denote by $pr: G \times \mathbb{Z} \to \mathbb{Z}$ the projection. The Fibered Meta-Isomorphism Conjecture 14.8 predicts that the assembly map

\[
H_n(pr; K_R): H_n^{G \times \mathbb{Z}}(E_{pr^*FLN}(G \times \mathbb{Z}); K_R)
\]

\[
\to H_n^{G \times \mathbb{Z}}(G \times \mathbb{Z}/G \times \mathbb{Z}; K_R) = \mathcal{K}_n(R[G \times \mathbb{Z}])
\]

is bijective for all $n \in \mathbb{Z}$. A model for $E_{pr^*FLN}(G \times \mathbb{Z})$ is $pr^*E\mathbb{Z}$. Since \mathbb{Z} acts freely on $E\mathbb{Z}$ and $(E\mathbb{Z})/\mathbb{Z} = S^1$, the left side of the map above can be identified with

\[
H_n^{G \times \mathbb{Z}}(E_{pr^*FLN}(G \times \mathbb{Z}); K_R) = H_n^{G \times \mathbb{Z}}(pr^*E\mathbb{Z}; K_R)
\]

\[
= H_n^G(G/G \times S^1)
\]

\[
= H_n(G/G; K_R) \oplus H_{n-1}(G/G; K_R)
\]

\[
= K_n(RG) \oplus K_{n-1}(RG).
\]

Under this identification the assembly map above becomes the restriction of the Bass-Heller-Swan isomorphism of Theorem 6.16

\[
K_n(RG) \oplus K_{n-1}(RG) \oplus NK_n(RG) \oplus NK_{n-1}(RG) \xrightarrow{\cong} K_n(RG[t, t^{-1}]).
\]

to $K_n(RG) \oplus K_{n-1}(RG)$. Hence the Fibered Meta-Isomorphism Conjecture 14.8 implies that for every group G and $n \in \mathbb{Z}$ we have $NK_n(RG) = 0$.

14.17
This follows from Lemma 14.16 applied to the inclusion $i: H \to G$ since $\mathcal{C}(H) = i^*\mathcal{C}(G)$.
14.34. Put $\Gamma = G \times_\phi \mathbb{Z}$. The proof is completely analogous to the one in Example 14.30 but now applied to a 1-dimensional Γ-CW-complex T which is a tree and whose 1-skeleton is obtained from the 0-skeleton by the Γ-pushout

$$
\begin{array}{ccc}
\Gamma/G \times S^0 & \xrightarrow{\gamma} & \Gamma/G \\
\downarrow & & \downarrow \\
\Gamma/G \times D^1 & \longrightarrow & T
\end{array}
$$

Here q is the disjoint union of identity $\text{id} : \Gamma/G \to \Gamma/G$ and the Γ-map $\gamma : \Gamma/G \to \Gamma/G$ sending γG to γtG for $t \in \Gamma$ a lift of the generator in \mathbb{Z}.

14.40. Put $\pi = \pi_1(X)$. Conjecture 14.39 yields a weak homotopy equivalence $E\pi_+ \wedge \pi S(\widetilde{X}) \to S(X)$ because of the identifications $X = \pi \setminus \widetilde{X}$ and $E\mathcal{T}(\pi)_+ \wedge \mathcal{R}(\pi)S_\pi \cong E\pi_+ \wedge \pi S(\widetilde{X})$.

Suppose that S is of the shape $X \mapsto X_+ \wedge H_\mathbb{Z}$ for $H_\mathbb{Z}$ the Eilenberg-spectrum of \mathbb{Z}. Recall that the homology theory associated to $H_\mathbb{Z}$ is singular homology H^n. Then

$$
\pi_n((E\pi)_+ \wedge \pi S(\widetilde{X})) \cong H_n(E\pi \times_\pi \widetilde{X});
\quad
\pi_n((B\pi)_+ \wedge \pi S(\{\bullet\})) \cong H_n(B\pi),
$$

and $H_n(E\pi \times_\pi \widetilde{X})$ and $H_n(B\pi)$ are not isomorphic in general.

In the sequel we equip $S(\{\bullet\})$ with the trivial π-action. Suppose that \widetilde{X} is contractible or S is of the shape $Y \mapsto T(H(Y))$ for some covariant functor $T : \text{GROUPOIDS} \to \text{SPECTRA}$. Then the projection $\widetilde{X} \to \{\bullet\}$ induces a π-map $f : S(\widetilde{X}) \to S(\{\bullet\})$ such that after forgetting the group action f is a weak homotopy equivalence. Hence we obtain a weak homotopy equivalence

$$
E\pi_+ \wedge \pi S(\widetilde{X}) \xrightarrow{(\text{id}_{E\pi})_+ \wedge_\pi f} E\pi_+ \wedge \pi S(\{\bullet\}) = B\pi_+ \wedge S(\{\bullet\}).
$$

If X is simply connected, then $E\pi_+ \wedge \pi S(\widetilde{X})$ is $S(X)$, and $\pi_n(S(X))$ is in general not isomorphic to $\pi_n(S(\{\bullet\}))$.

14.46. We conclude from the assumptions that for two groups $H_1, H_2 \in \mathcal{C}$ Conjecture 14.39 holds for $(H_1 \times H_2, C(H_1 \times H_2))$. Hence Theorem 14.45 (iii) applies. By assumption also Theorem 14.45 (iv) applies. Hence Conjecture 14.39 holds for $(F : H, C(F \cap H))$ if F is a free group and H is a finite group since this is true by assumption for every finitely generated free group F.

If Conjecture 14.39 is true for $(\ast_{i \in I} G_i, C(\ast_{i \in I} G_i))$, it is also true for $(G_i, C(G_i))$ for every $i \in I$ by Theorem 14.45 (i).

Suppose that Conjecture 14.39 holds for $(G_i, C(G_i))$ for every $i \in I$. Now we can proceed as in the proof of assertion (v) of Theorem 12.24 using The-
The key ingredient is to construct for a group homomorphism \(\phi: K \to G \) and a subgroup \(H \subseteq K \) a natural weak homotopy equivalence of spaces

\[
EG^K(K/H) \times G^K(K/H) p^* \phi^* Z \xrightarrow{\sim} K/H \times_K (EK \times \phi^* Z)
\]

where \(p: G^K(K/H) \to G^K(K/K) = I(K) \) is induced by the projection \(K/H \to K/K \). Because of the third isomorphism appearing in \([252, \text{Lemma 1.9}]\), it suffices to construct a map

\[
u: p_* EG^K(S/H) \times_K \phi^* Z \xrightarrow{\sim} K/H \times_K (EK \times \phi^* Z)
\]

where here and in the sequel we consider a \(K \)-space as a \(G^K(K/K) = I(K) \)-space and vice versa in the obvious way. Since \((K/H \times EK) \times_K \phi^* Z = K/H \times_K (EK \times \phi^* Z) \), it suffices to construct for every \(K \)-set \(S \) a natural \(K \)-homotopy equivalence

\[
u: p_* EG^K(S) \xrightarrow{\sim} S \times EK,
\]

since we then can define \(u = v \times_K \text{id}_{\phi^* Z} \) for \(S = K/H \). Unravelling the definition we see that the source of \(v \) is given by

\[
p_* EG^K(S) = \coprod_{s \in S} K \times EG^K(S)(s)/\sim
\]

for the equivalence relation \(\sim \) given by

\[
(k, x) \sim (k(k')^{-1}, EG^K(S)(k': s \to k's)(u)).
\]

Define a \(K \)-map \(\coprod_{s \in S} K \times EG^K(S)(s) \to S \times EG^K(K/K) \) by sending the element \((k, x) \) in the summand \(K \times EG^K(S)(s) \) belonging to \(s \in S \) to the element \((ks, EK^K(k \cdot K/K \to K/K)(u)) \). On easily checks that it is compatible with \(\sim \) and induces the desired \(K \)-map

\[
u: p_* EG^K(S) = \coprod_{s \in S} K \times EG^K(S)(s)/\sim \to S \times EK.
\]

It remains to show that \(v \) is a \(K \)-homotopy equivalence. Since the source and target of \(v \) are free \(K \)-CW-complexes, it suffices to show that \(v \) is a homotopy equivalence (after forgetting the \(K \)-action). We obtain a (non-equivariant) homeomorphism

\[
\coprod_{s \in S} EG^K(S)(s) \xrightarrow{\sim} \coprod_{s \in S} K \times EG^K(S)(s)/\sim
\]
by sending the element \(x \in E \mathcal{G}^K(S)(s) \) belong to the summand of \(s \in S \) to the element represented by \((1, s)\). Hence the both the source and the target of \(v \) have the property that each path component is contractible. Since \(v \) is a bijection on the path component, it is a homotopy equivalence.

14.60 We get \(\pi_n(A(\{\bullet\})) \cong K_n(Z) \cong 0 \) for \(n \leq -1 \) and \(\pi_0(A(\{\bullet\})) \cong K_0(Z) \cong \mathbb{Z} \) from Example 2.4, Theorem 3.17 and Theorem 7.17 (i). Now apply the Atiyah-Hirzebruch spectral sequence to \(H_nBG; A(\{\bullet\}) \) for \(n \leq 0 \).

14.68 This follows from the \(p \)-chain spectral sequence, see Subsection 11.6.2 and Theorem 14.67 by an inspection of the resulting long exact sequence. See also [606, Proposition 1.2].

14.97 Consider the commutative diagram appearing in Remark 14.95. The two vertical arrows are bijective as explained in Remark 14.95. The upper horizontal arrow is bijective by assumption. The lower horizontal arrow is bijective by Theorem 14.94. Hence the right vertical arrow is bijective.

14.98 Since \(R[G \times Z] = R[Z][G] \) and \(R[Z] \) is regular, Conjecture 14.96 is true for \(G \) and \(G \times Z \). We obtain from the Bass-Heller Swan decompositions for \(K \)-theory, see Theorem 6.16 and homotopy \(K \)-theory, see Theorem 14.74, the commutative diagram with isomorphisms as horizontal arrows

\[
\begin{array}{ccc}
K_n(RG) \oplus K_{n-1}(RG) & \oplus & NK_n(RG) \oplus NK_{n-1}(RG) \\
\begin{pmatrix} h & 0 & 0 & 0 \\ 0 & h & 0 & 0 \end{pmatrix} & \cong & h \\
KH_n(RG) \oplus KH_{n-1}(RG) & \oplus & \cong & \cong & H_n(R[G \times Z])
\end{array}
\]

where the maps denoted by \(h \) are induced by the canonical map \(K \rightarrow KH \) and bijective.

14.101 (P) \implies (I): Let \(d: G \rightarrow \prod_{i \in I} G \) be the diagonal embedding. Then \((\prod_{i \in I} G, \prod_{j \in J} \mathcal{F}_i)\) satisfies the Fibered Meta Isomorphism Conjecture 14.8 because of (P). Hence \((G, d^* \prod_{j \in J} \mathcal{F}_i)\) satisfies the Fibered Meta Isomorphism Conjecture 14.8 by Lemma 14.16. One easily checks \(d^* \prod_{i \in I} \mathcal{F}_i = \bigcap_{i \in I} \mathcal{F}_i \).

(I) \implies (P): Consider the projection \(\text{pr}_j: \prod_{i \in I} G_i \rightarrow G_j \) for \(j \in I \). We conclude from Lemma 14.16 that \((\prod_{i \in I} G_i, \bigcap_{j \in J} \text{pr}_j^* \mathcal{F}_j)\) satisfies the Fibered Meta Isomorphism Conjecture 14.8 for every \(j \in I \). Hence \((\prod_{i \in I} G_i, \bigcap_{j \in I} \text{pr}_j^* \mathcal{F}_j)\) satisfies the Fibered Meta Isomorphism Conjecture 14.8 because of (I). One easily checks \(\prod_{i \in I} \mathcal{F}_i = \bigcap_{j \in I} \text{pr}_j^* \mathcal{F}_j \).

Chapter 14
We know that L/K is a smooth manifold, which is diffeomorphic to $\mathbb{R}^{\dim(L/K)}$, and, equipped with the obvious left G action, it is a model for the classifying space for proper G-actions, see Theorem 10.24. Hence $G \backslash L/K$ is an aspherical closed smooth manifold of dimension ≥ 5. Since G satisfies the Full Farrell-Jones Conjecture 12.23 by Theorem 15.1 (ii), the claim follows from Theorem 8.163.

Let G be a group. It is the disjoint union of its finitely generated subgroups. Hence by Theorem 15.1 (iii) the Full Farrell-Jones Conjecture 12.23 holds for all groups if and only if it holds for all finitely generated groups. Any finitely generated group can be written as a directed colimit of finitely presented groups. Hence by Theorem 15.1 (ii) the Full Farrell-Jones Conjecture 12.23 holds for all finitely generated groups if and only if it holds for all finitely presented groups. Now the claim follow from Theorem 15.1 (iia) since every finitely presented group is a subgroup of U.

We obtain an embedding of rings $R \to \text{end}_S(R)$ by sending $r \in R$ to the S-homomorphism of right S-modules $l_r: R \to R$, $r' \mapsto rr'$. Since R is finitely generated free as right S-module, we obtain for some natural number k an identification of rings $\text{end}_S(R) = M_k(S)$. The inclusion of rings $R \to M_k(S)$ yields an inclusion of rings $M_n(R) \to M_n(M_k(S)) = M_{kn}(S)$. By passing to units we obtain an inclusion of groups $GL_n(R) \to GL_{kn}(S)$. Now the claim follows from Theorem 15.1 (iia).

This follows from the commutative diagram

$$
\begin{array}{ccc}
H_n(BG; K(R)) & \rightarrow & K_n(RG) \\
\downarrow \cong & & \downarrow \\
H_n(BG; KH(R)) & \rightarrow & KH_n(RG)
\end{array}
$$

whose horizontal arrows are assembly maps and whose vertical arrows are change of theory maps. Moreover, the left vertical arrow is bijective since $K_n(R) \to KH_n(R)$ is bijective for all $n \in \mathbb{Z}$ and all regular rings R, and the lower horizontal arrow is bijective because of Theorem 15.5 (ii).

This follows directly from Theorem 15.7 (iiii).

This follows from Theorem 2.68, Lemma 9.51, Lemma 9.53, Theorem 12.56, Theorem 15.1, and Theorem 15.7.

By Lemma 14.23 (ii) it suffices to prove the injectivity for any finitely generated subgroup of G since G is the directed union of its finitely generated subgroups. The relevant equivariant homology theories are (strongly) continuous by [71, Lemma 6.2].
15.22. We have $G/[G, G] = H_1(G) \cong \mathbb{Z}$, and the projection $pr: G \to H_1(G)$ induces an isomorphism on the group homology $H_n(G) \to H_n(G/[G, G])$ for all $n \in \mathbb{Z}$. This follows from Alexander-Lefschetz duality. The Atiyah-Hirzebruch spectral sequence implies that $H_n(pr; K(R)) = H_n(G; K(R)) \cong H_n(G/[G, G]; K(R))$ is bijective for all $n \in \mathbb{Z}$. Since G satisfies the Full Farrell-Jones Conjecture 12.23 by Theorem 15.1 (ii) and hence the K-theoretic Farrell-Jones Conjecture for torsionfree groups and regular rings 6.44 by Theorem 12.56 (ii), the map $K_n(RG) \to K_n(R[G/[G, G]])$ induced by pr is a bijection. Since $G/[G, G] \cong \mathbb{Z}$, we get $K_n(R[G/[G, G]]) \cong K_n(R) \oplus K_{n-1}(R)$ from the Bass-Heller-Swan decomposition for algebraic K-theory, see Theorem 6.16.

The L-theory case is treated analogously, but not replacing Theorem 6.16 by 8.107.

15.25. Show by induction over $i = 1, 2, \ldots, d$ that G_i is torsionfree and satisfies the Baum-Connes Conjecture 13.11 with coefficients using Theorem 15.7 (ii) and (iii).

15.27. We want to apply Theorem 15.1 (iii). So we need to show that K satisfies the Full Farrell-Jones Conjecture 12.23 and that for any any extension $1 \to K \to G \to \mathbb{Z} \to 1$ the group G satisfies the Full Farrell-Jones Conjecture 12.23. Since K is either the fundamental group of a closed surface or a free group, see [920, Lemma 2.1], both K and G are strongly poly-surface groups or normally poly-free groups and hence satisfy the Full Farrell-Jones Conjecture 12.23 by Theorem 15.24 or Theorem 15.26.

15.38. We only treat the K-theory case, the argument for L-theory is completely analogous. Let G be a group with a finite model for BG and let R be a regular ring. Choose M, i and r as they appear in Theorem 15.37. We obtain a commutative diagram

\[
\begin{array}{ccc}
H_n(BG; K_R) & \longrightarrow & K_n(RG) \\
\downarrow H_n(i; K(R)) & & \downarrow i_* \\
H_n(M; K_R) & \longrightarrow & K_n(R[\pi_1(M)]) \\
\downarrow H_n(p; K(R)) & & \downarrow p_* \\
H_n(BG; K_R) & \longrightarrow & K_n(RG)
\end{array}
\]

The right vertical arrows are assembly maps. The composite of the two vertical arrows of the left column and the right column are the identity. Since the middle horizontal arrow is bijective, the same is true for the upper horizontal arrow.
15.42 We conclude from Theorem 3.11 that for a natural number \(n \) the vanishing of \(\mathbb{Q} \otimes_{\mathbb{Z}} \text{Wh}(\mathbb{Z}/n) = 0 \) implies \(n = 1, 2, 3, 4, 6 \). Now apply Theorem 15.41.

Chapter 15

16.2 We get from Theorem 9.79 (i)

\[
K_n(C^*_r(\mathbb{Z}/m; \mathbb{C})) \cong \begin{cases} \mathbb{Z}^m & \text{if } n \text{ even;} \\ \{0\} & \text{if } n \text{ odd.} \end{cases}
\]

Since \(K_n(C^*_r(\mathbb{Z}/2; \mathbb{C})) \to K_n(C^*_r(\mathbb{Z}/6; \mathbb{C})) \) is split injective, the computation for \(K_n(C^*_r(SL_2(\mathbb{Z}); \mathbb{C})) \) follows.

We have \(C^*_r(\mathbb{Z}/2; \mathbb{R}) \cong \mathbb{R} \times \mathbb{R}, C^*_r(\mathbb{Z}/3; \mathbb{R}) \cong \mathbb{R} \times \mathbb{C}, \) and \(C^*_r(\mathbb{Z}/6; \mathbb{R}) \cong \mathbb{R} \times \mathbb{R} \times \mathbb{C} \times \mathbb{C} \). We get from Theorem 9.79 (ii)

\[
KO_n(C^*_r(\mathbb{Z}/2; \mathbb{R})) \cong KO_n(\mathbb{R}) \oplus KO_n(\mathbb{R});
KO_n(C^*_r(\mathbb{Z}/4; \mathbb{R})) \cong KO_n(\mathbb{R}) \oplus KO_n(\mathbb{R}) \oplus K_n(\mathbb{C});
KO_n(C^*_r(\mathbb{Z}/6; \mathbb{R})) \cong KO_n(\mathbb{R}) \oplus KO_n(\mathbb{R}) \oplus K_n(\mathbb{C}) \oplus K_n(\mathbb{C}).
\]

Since \(KO_n(C^*_r(\mathbb{Z}/2; \mathbb{R})) \to K_n(C^*_r(\mathbb{Z}/6; \mathbb{R})) \) is split injective, the computation for \(KO_n(C^*_r(SL_2(\mathbb{Z}); \mathbb{R})) \) follows by inspecting the values of \(KO_n(\mathbb{R}) \) and \(K_n(\mathbb{C}) \).

16.3 The group \(G \) contains a finitely generated free group. Hence it satisfies the Full Farrell-Jones Conjecture 12.23 by Theorem 15.1. It satisfies the Baum-Connes 13.11 with coefficients by Theorem 15.7. We conclude from Theorem 12.43 (iv) that the assembly maps

\[
H^G_0(EG; K_\mathbb{C}) \cong K_0(\mathbb{C}G);
K_n^G(EG) \cong K_n(\mathbb{C}_r(G)),
\]

are isomorphisms. Since for a finite group \(H \) we have \(K_0(\mathbb{C}H) = K_0(\mathbb{C}_r(H)) = R_\mathbb{C}(H) \) and \(K_{-1}(\mathbb{C}H) = K_1(\mathbb{C}_r(H)) = \{0\} \), we get from Example 14.30 exact sequences

\[
R_\mathbb{C}(C) \overset{i_* \oplus i_*}{\longrightarrow} R_\mathbb{C}(D_8) \oplus R_\mathbb{C}(D_8) \to K_0(\mathbb{C}G) \to 0,
\]

and

\[
0 \to K_1(\mathbb{C}_r(G)) \to R_\mathbb{C}(C) \overset{i_* \oplus i_*}{\longrightarrow} R_\mathbb{C}(D_8) \oplus R_\mathbb{C}(D_8) \to K_0(\mathbb{C}G) \to 0,
\]

where \(i: C \to D_8 \) is the inclusion. The group \(C \) has two irreducible complex representations, the trivial 1-dimensional representation \(\mathbb{C} \) and the non-trivial
1-dimensional representation \(\mathbb{C}^- \). The group \(D_8 \) has four 1-dimensional irreducible representations and one 2-dimensional irreducible representation. The homomorphism \(i_* : R_{\mathbb{C}}(C) \to R_{\mathbb{C}}(D_8) \) sends the class of \(C \) to the class of the sum of the four 1-dimensional irreducible representations and \(\mathbb{C}^- \) to the sum of two copies of the 2-dimensional irreducible representation, see \([823, \text{Subsections 3.3, 5.1 and 5.3}]\). Hence \(i_* : R_{\mathbb{C}}(C) \to R_{\mathbb{C}}(D_8) \) looks like

\[
\begin{pmatrix}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 2 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 2
\end{pmatrix} : \mathbb{Z}^2 \to \mathbb{Z}^{10}
\]

We conclude that \(i_* \) is injective and its cokernel is isomorphic to \(\mathbb{Z}^8 \oplus \mathbb{Z}/2 \).

16.5. This follows from Theorem \([11.71]\) and Theorem \([12.29]\).

16.7. This follows from Theorem \([4.21] (v)\) and Example \([16.6]\).

16.9. Since \(G \) is elementary amenable, it satisfies the \(L \)-theoretic Farrell-Jones Conjecture \([12.8]\) with coefficients in rings with involution after inverting 2 see \([124, \text{Proposition 5.2.1}]\). So we can apply Theorem \([16.8]\).

For every non-trivial finite cyclic subgroup \(C \subseteq G \) we have \(C \subseteq C_GC \subseteq \bigoplus \mathbb{Z} F \) and hence \(H_p(C_GC; \mathbb{Q}) = 0 \) for \(p \neq 0 \) and \(H_0(C_GC; \mathbb{Q}) \cong \mathbb{Q} \). Hence we get from Theorem \([16.8]\) for all \(n \in \mathbb{Z} \) an isomorphism

\[
\bigoplus_{p+q=n} H_p(G; \mathbb{Q}) \otimes_{\mathbb{Z}} L_q(\mathbb{Z}) \oplus \bigoplus_{(C) \in J,C \neq \{1\}} \mathbb{Q} \otimes_{\mathbb{Q}[W_GC]} \Theta_C \cdot (\mathbb{Q} \otimes_{\mathbb{Z}} L_n^{(j)}(\mathbb{Z}C)) \cong \mathbb{Q} \otimes_{\mathbb{Z}} L_n^{(j)}(\mathbb{Z}G).
\]

We get \(L_n^{(j)}(\mathbb{Z}C) = 0 \) for odd \(n \) from Theorem \([8.189] (\text{iv})\) since \(F \) and hence \(C \) has odd order. From the Lyndon-Serre spectral sequence applied to \(\bigoplus_{\mathbb{Z}} F \to G \to \mathbb{Z} \) we conclude \(H_*(G; \mathbb{Q}) \cong H_*(\mathbb{Z}; \mathbb{Q}) \). Hence we obtain for odd \(n \) an isomorphism

\[
\mathbb{Q} \otimes_{\mathbb{Z}} L_n^{(j)}(\mathbb{Z}) \oplus \mathbb{Q} \otimes_{\mathbb{Z}} L_{n-1}^{(j)}(\mathbb{Z}) \cong \mathbb{Q} \otimes_{\mathbb{Z}} L_n^{(j)}(\mathbb{Z}G).
\]

This implies
\[Q \otimes_{\mathbb{Z}} L_n^{(j)}(\mathbb{Z}G) \cong \begin{cases}
 \mathbb{Q} & n \equiv 1 \mod 4; \\
 \{0\} & n \equiv 3 \mod 4.
\end{cases} \]

16.15 This follows from Theorem 10.36.

16.17 This follows from Theorem 16.16 by the following facts. The group \(G \) satisfies conditions (M) and (NM) and has up to conjugacy precisely one maximal finite subgroup, see Subsection 10.6.12. It is a hyperbolic group and satisfies the Full Farrell-Jones Conjecture, see Subsection 15.8.15. Since \(m \) is odd, all virtually cyclic subgroups of \(G \) are of type I. We conclude from Section 16.3 that the infinite virtually cyclic subgroups of type I are orientable.

16.22 Since \(H_1(G) \) is the abelianization of \(G \), we obtain a short exact sequence \(\mathbb{Z} \xrightarrow{D} \bigoplus_{i=1}^{n} \mathbb{Z} \rightarrow H_1(G) \rightarrow 0 \), where \(D \) sends \(x \in \mathbb{Z} \) to \((d_1 x, d_2 x, \ldots, d_n x)\).

16.23 One easily checks that \(G \) is torsionfree and the word \(s_1 s_2 s_1 s_2^{-1} s_1^{-2} \in F \) is a commutator. Put \(R = \mathbb{C}[\mathbb{Z}/m] \). Then \(R \cong \prod_{n=1}^{m} \mathbb{C} \) is semisimple and in particular regular and we obtain from Lemma 16.21 (i) an isomorphism for \(n \in \mathbb{Z} \)

\[K_n(\mathbb{C}[\mathbb{Z}/m \times G]) \cong K_n(\mathbb{C}[\mathbb{Z}/m][G]) \]
\[\cong K_n(\mathbb{C}[\mathbb{Z}/m]) \oplus K_{n-1}(\mathbb{C}[\mathbb{Z}/m]) \oplus K_{n-2}(\mathbb{C}[\mathbb{Z}/m]). \]

We get from Example 2.4, Lemma 2.12, Theorem 3.6, Lemma 3.9, and Theorem 4.6

\[K_n(\mathbb{C}[\mathbb{Z}/m]) = \begin{cases}
 \mathbb{C}[\mathbb{Z}/m]^\times & n = 1; \\
 \mathbb{Z}^n & n = 0; \\
 0 & n \leq -1.
\end{cases} \]

16.24 The group \(G \) is solvable and torsionfree and hence satisfies Conjecture 3.107, Conjecture 4.17, and the Farrell-Jones Conjecture 8.111 for torsionfree groups for \(L \)-theory. We conclude from Theorem 8.104 that \(L_n^0(\mathbb{Z}[G]) = L_n^{(-\infty)}(\mathbb{Z}[G]) \). The group \(G \) is a one-relator groups with presentation \(\langle s_1, s_2 \mid s_1 s_2 s_1^{-1} s_2 \rangle \). The word \(s_1 s_2 s_1^{-1} s_2 \in F \) is not a commutator. Hence we get from Lemma 16.21 (vi) a short exact sequence

\[0 \rightarrow H_1(BG) \otimes_{\mathbb{Z}} L_n^{(-\infty)}(\mathbb{Z}) \rightarrow H_n(BG, \{\bullet\}; L^{(-\infty)}(\mathbb{Z})) \rightarrow \text{Tor}_1^\mathbb{Z}(H_1(BG); L_n^{(-\infty)}(\mathbb{Z})) \rightarrow 0, \]

and an isomorphism
\[L^*_m(ZG) \cong L_n^{(-\infty)}(Z) \oplus H_n(BG, \{\bullet\}; L^{(-\infty)}(Z)). \]

We have \(H_1(BG) \cong \mathbb{Z}/2 \oplus \mathbb{Z} \) and \(L_n^{(-\infty)}(Z) \cong \mathbb{Z}, 0, \mathbb{Z}/2, 0 \) for \(n \equiv 0, 1, 2, 3 \) mod 4. Hence we get

\[
L^*_m(ZG) \cong \begin{cases}
Z \oplus \mathbb{Z}/2 & n \equiv 0 \mod 4; \\
Z \oplus \mathbb{Z}/2 & n \equiv 1 \mod 4; \\
\mathbb{Z}/2 & n \equiv 2 \mod 4; \\
\mathbb{Z}/2 \oplus \mathbb{Z}/2 & n \equiv 3 \mod 4.
\end{cases}
\]

16.31. This follows from Theorem 3.112, Theorem 3.113 (iv) and Theorem 16.30 (ii).

16.35. This follows from Theorem 8.104 and the Shaneson splitting, see Theorem 8.106, if we can construct an orientable closed aspherical smooth 3-manifold \(N \) such that \(L_i^{(-\infty)}(\pi_1(M)) \) contains \(p \)-torsion for at least one \(i \in \mathbb{Z} \). Namely, then we can \(M = N \times T^{n-3} \).

If \(p = 2 \), take \(N = T^3 \). If \(p \) is odd, this follows from Example 16.34.

16.39. The \(\mathbb{Z}/3 \)-action given by \(\phi \) on \(\mathbb{Z}^2 \) is free outside the origin. Now apply Theorem 16.37 (iii) together with (16.38).

16.45. Note that \(G \) is the right angled Artin group associated to the simplicial graph \(X \) consisting of 3 vertices \(e_0, e_1, \) and \(e_2 \) and to edges \([e_0, e_1]\) and \([e_1, e_2]\). Note that \(\sigma = X \) in this case. Hence we get \(r_{-1} = 1, r_0 = 3 \) and \(r_1 = 2 \). We get from (16.42) and Theorem 16.44

\[
H_n(G) \cong \begin{cases}
\mathbb{Z} & n = 0; \\
\mathbb{Z}^3 & n = 1; \\
\mathbb{Z}^2 & n = 2; \\
\{0\} & n \geq 3,
\end{cases}
\]

\[K_n(C^*_r(G)) \cong \mathbb{Z}^3 \text{ for } n \in \mathbb{Z}, \]

and
KO_n(C^*_r(G; \mathbb{R})) \cong \begin{cases}
\mathbb{Z} & n \equiv 0 \mod (8); \\
\mathbb{Z}^3 \oplus \mathbb{Z}/2 & n \equiv 1 \mod (8); \\
\mathbb{Z}^2 \oplus (\mathbb{Z}/2)^4 & n \equiv 2 \mod (8); \\
(\mathbb{Z}/2)^5 & n \equiv 3 \mod (8); \\
\mathbb{Z} \oplus (\mathbb{Z}/2)^2 & n \equiv 4 \mod (8); \\
\mathbb{Z}^3 & n \equiv 5 \mod (8); \\
\mathbb{Z}^2 & n \equiv 6 \mod (8); \\
\{0\} & n \equiv 7 \mod (8).
\end{cases}

16.47 We can arrange without changing the isomorphism type of \((\mathbb{Z}/2)^3 \ast_{\mathbb{Z}/2} (\mathbb{Z}/2)^2\) that the inclusions of \(\mathbb{Z}/2\) into \((\mathbb{Z}/2)^2\) and \((\mathbb{Z}/2)^3\) are given by sending \(x\) to \((x, 0)\) and \((x, 0, 0)\). Hence \(G\) is isomorphic to the right-angled Coxeter group associated to the simplicial graph with vertices \(e_0, e_1, e_2, e_3\) and edges \([e_0, e_1], [e_0, e_2], [e_1, e_2], \) and \([e_2, e_3]\). Then the associated flag complex \(\Sigma\) is obtained from \(X\) by adding the 2-simplex \([e_0, e_1, e_2]\). Hence the number of the simplices of \(X\) is \(r = 10\). Now apply Theorem 16.46.

16.49 Recall from the proof of Theorem 16.48 that \(M\) is aspherical. In particular \(\pi\) is torsionfree and we get for any abelian group \(A\) using Poincaré duality and the Universal Coefficient Theorem

\[
H_n(B\pi; A) \cong H_n(M; A); \text{ for } n \geq 0; \\
H_1(B\pi; A) \cong \pi/[\pi, \pi] \otimes \mathbb{Z}; \\
H_2(B\pi; A) \cong \text{hom}_\mathbb{Z}(\pi, A); \\
H_3(B\pi; A) \cong A; \\
H_n(B\pi; A) \cong \{0\} \text{ for } n \notin \{0, 1, 2, 3\}.
\]

The independence of \(L_n^{(i)}(\mathbb{Z}\pi)\) from the decoration follows from Theorem 8.104 and from Conjectures 8.107 and 4.17, which hold for \(\pi\) by Theorem 12.56 (xii). We obtain from Theorem 16.48 (iii) an isomorphism

\[
H_n(B\pi; L_\mathbb{Z}^{(-\infty)}) \cong L_n^{(-\infty)}(\mathbb{Z}\pi).
\]

Next we apply the Atiyah-Hirzebruch spectral sequence to \(H_n(B\pi; L_\mathbb{Z}^{(-\infty)})\). Recall that \(L_n(\mathbb{Z})\) is \(\mathbb{Z}, \{0\}, \mathbb{Z}/2, \{0\}\) for \(n \equiv 0, 1, 2, 3 \mod 4\), see Theorem 8.189. Since the composite \(L_n(\mathbb{Z}) \rightarrow L_n(\mathbb{Z}\pi) \rightarrow L_n(\mathbb{Z})\) is the identity, all differentials in the Atiyah-Hirzebruch spectral sequence are trivial. Hence we obtain isomorphisms

\[
L_0(\mathbb{Z}\pi) \cong H_0(B\pi; L_0(\mathbb{Z})); \\
L_2(\mathbb{Z}\pi) \cong H_0(B\pi; L_2(\mathbb{Z})).
\]
and two short exact sequences

\[0 \to H_3(B\pi; L_2(\mathbb{Z})) \to L_3(\mathbb{Z}\pi) \to H_3(B\pi; L_0(\mathbb{Z})) \to 0; \]

\[0 \to H_1(B\pi; L_0(\mathbb{Z})) \to L_1(\mathbb{Z}\pi) \to H_3(B\pi; L_2(\mathbb{Z})) \to 0. \]

The first one splits because of \(H_3(B\pi; L_0(\mathbb{Z})) \cong \mathbb{Z}. \) In order to show that the second one splits it suffices to show that it splits after localization at 2 since \(H_3(B\pi; L_2(\mathbb{Z})) \cong \mathbb{Z}/2. \) This follows from Lemma 8.113 (i).

Chapter 16

17.11 Suppose that \(E \) is weakly \(\mathcal{F} \)-excisive. Theorem 17.10 (ii) and (iv) imply that the assignment sending \((X, A)\) to \(\text{coker}(\pi_n(\emptyset_+ \to \pi_n(E(X/A)))) \) is a \(G \)-homology theory.

Now suppose that the assignment sending \((X, A)\) to \(\text{coker}(\pi_n(E(\emptyset_+)) \to \pi_n(E(X/A))) \) is a \(G \)-homology theory. Then we get from Theorem 17.10 (iv) and (v) and from Lemma 11.6 applied to \(E^\% \to E \) that \(E \) is weakly \(\mathcal{F} \)-excisive.

Chapter 17

18.3 If \(f^{t_U} \) and \(g^{t_U} \) exists, they must satisfy \(f^{t_U} = f \circ i^{t_U} \) and \(g^{t_U} = r^{t_U} \circ g. \)

18.6 We get a weak homotopy equivalence

\[K(U) \cong \text{hofib}(K(A) \to K(A/U)) \]

from Theorem 18.5 (i). The projection \(K(A) \to * \) to the trivial spectrum \(* \) is a weak homotopy equivalence by Theorem 6.36 (iii) and hence induces a weak homotopy equivalence

\[\text{hofib}(K(A) \to K(A/U)) \cong \text{hofib}(* \to K(A/U)) = \Omega K(A/U). \]

Chapter 18

19.130 The conditions \textit{Subsets} and \textit{Opposite} are obviously satisfied.

Condition \textit{Finite unions} follows from the observation that the intersection of two open \(G_x \)-invariant neighbourhoods of \(x \) in \(X \) is again an open \(G_x \)-invariant neighbourhoods of \(x \) in \(X. \)
Next we prove the condition Composites. Consider $E, E' \in \mathcal{E}_{cc}$ Consider an open G_x-invariant neighborhood U of $x \in X$. By the definition of \mathcal{E}_{cc} we can find an open G_x-invariant neighborhood U'_1 of $x \in X$ with $U'_1 \subseteq U$ such that (19.128) hold for E'. Now we can find an open G_x-invariant neighborhood U''_1 of $x \in X$ with $U''_1 \subseteq U'_1$ such that (19.128) holds for E. Then U''_1 an open G_x-invariant neighborhood of $x \in X$ with $U''_1 \subseteq U$ such that (19.128) holds for $E' \circ E$. Analogously one constructs an open G_x-invariant neighborhood U''_2 of $x \in X$ with $U''_2 \subseteq U$ such that (19.129) holds for $E' \circ E$. Put $U''_3 = U''_1 \cap U''_2$. Then U''_3 is an open G_x-invariant neighborhood of $x \in X$ with $U''_3 \subseteq U$ such that (19.128) and (19.129) hold for $E' \circ E$. Hence $E' \circ E \in \mathcal{E}_{cc}$.

Finally we prove condition Enlarging. Consider $E \in \mathcal{E}_{cc}$ and a finite subset $F \subseteq G$. Let x be any element in X and let U be any open G_x-invariant neighborhood of $x \in X$. For $g \in F$, we get by $g^{-1}U$ an open $G_{g^{-1}x}$-invariant neighborhood of $g^{-1}x \in X$ and can choose an open $G_{g^{-1}x}$-invariant neighborhood U'_g of $g^{-1}x \in X$ such that for $(x_1, x_2) \in E$ the implications

\begin{align}
(24.1) \quad x_1 \in U'_g & \implies x_2 \in g^{-1}U; \\
(24.2) \quad x_2 \in U'_g & \implies x_1 \in g^{-1}U,
\end{align}

hold. Put

$$U' := \bigcap_{g \in F} gU'_g.$$

Then U' an open G_x-invariant neighborhood of $x \in X$ with $U' \subseteq U$. Consider $(x_1, x_2) \in E$ and $g \in F$. Then we get

$$gx_1 \in U' \implies gx_1 \in gU'_g \implies x_1 \in U'_g \implies x_2 \in g^{-1}U \implies gx_2 \in U,$$

and

$$gx_2 \in U' \implies gx_2 \in gU'_g \implies x_2 \in U'_g \implies x_1 \in g^{-1}U \implies gx_1 \in U.$$

Hence $F \cdot E \in \mathcal{E}_{cc}$.

\textbf{19.132.} Consider morphisms $\phi : B \to B'$ and $\phi' : B' \to B''$ in $O^G(X; \mathcal{E}, \mathcal{B})$. Then we get from the properties of the control coefficient category \mathcal{B}, see Definition 19.1

$$\text{supp}_{X \times X}((\phi' \circ \phi)) \subseteq \text{supp}_{X \times X}(\phi') \circ (\text{supp}_{G}(\phi') \cdot \text{supp}_{X \times X}(\phi)).$$

Since $\text{supp}_{X \times X}(\phi')$ and $\text{supp}_{X \times X}(\phi)$ belong to \mathcal{E} and $\text{supp}_{G}(\phi')$ is finite, conditions Composites and Enlarging imply $\text{supp}_{X \times X}(\phi' \circ \phi) \in \mathcal{E}$.

\textbf{19.137.} Recall that in the definition of the category $\tilde{O}^G(X, A; \mathcal{B})$ we alter the conditions (19.5) and (19.6) by dropping the property G_x-invariant for U and
So it is obvious that (19.138) implies (19.5) and (19.139) implies (19.6).

The hard part is to show the other implications which we will only do for (19.5) \(\Rightarrow\) (19.138).

Consider \(\epsilon > 0\). Choose a compact subset \(C \subseteq X\) and a finite subset \(F \subseteq G\) such that \(\text{im}(\pi) \subseteq C\) and \(\text{supp}_C(\phi_{s,s'}) \subseteq F\) holds for \(s \in S\) and \(s' \in S'\). Since (19.5) holds by assumption, we can find for every \(x \in X\) a real number \(\delta_x > 0\) and a natural number \(r_x'\) such that for \(s \in S\), \(s' \in S'\) and \(g \in \text{supp}_C(\phi_{s,s'})\) the implication \(g\pi(s) \in B_\delta(x)\) \(\Rightarrow\) \(\pi'(s') \in B_\epsilon(x)\) is true. Since \(F \cdot C \subseteq X\) is compact, there exists a finite subset \(\{x_1, x_2, \ldots, x_n\}\) of \(F \cdot C\) such that \(F \cdot C \subseteq \bigcup_{i=1}^n B_{\delta_{x_i}}(x_i)\) holds. Put

\[
r' = \max\{r'_{x_i} \mid i = 1, 2, \ldots, n\};
\]

\[
\delta = \min\{\delta_{x_i} \mid i = 1, 2, \ldots, n\}.
\]

Then (19.138) holds by the following argument. Since \(g \cdot \pi(s)\) belongs to \(F \cdot C\), we can find \(i \in \{1, 2, \ldots, n\}\) such that \(g \cdot \pi(s) \subseteq B_{\delta_{x_i}}(x_i)\) holds. Since \(\delta \leq \delta_{x_i}\) and \(r \geq r_{x_i}\), we conclude \(\pi'(s') \in B_\epsilon(x)\).

19.94 Because of Theorem 18.5 and Lemma 19.93 it suffices to show

\[
K_m(T_0^{(1)}(\{\bullet\})) \cong \bigoplus_{n=0}^\infty K_m(B_{\oplus});
\]

\[
K_m(O_0^{(1)}(\{\bullet\})) \cong \prod_{n=0}^\infty K_m(B_{\oplus}).
\]

Non-connective \(K\)-theory is compatible with infinite direct products of additive categories, by [188], see also [517, Theorem 1.2]. It is also compatible with directed unions, see for instance [616, Corollary 7.2], and hence with infinite direct sums. Since the obvious functors

\[
\bigoplus_{n=0}^\infty B_{\oplus} \cong T_0^{(1)}(\{\bullet\});
\]

\[
O_0^{(1)}(\{\bullet\}) \cong \prod_{n=0}^\infty B_{\oplus},
\]

are equivalences of additive categories, the claim follows.

19.125. The key observation is the following. Given a morphism \(\phi: B = (S, \pi, \eta, B) \to B' = (S', \pi', \eta', B')\), there exists because of bounded control over \(N\) a natural number \(n\) such that for \(s \in S\) and \(s' \in S'\) the implication \(\phi_{s,s'} \neq 0 \Rightarrow |\eta(s) - \eta'(s')| \leq n\) holds. Hence for any natural number \(r\) with \(r > n\) we conclude that
\[
\frac{1}{\eta(s)} - \frac{1}{\eta'(s')} = \frac{\eta(s) - \eta'(s')}{\eta(s) \cdot \eta(s')} \leq \frac{n}{r \cdot (r - n)}
\]
holds for \(s \in S \) and \(s' \in S' \) with \(\phi_{s,s'} \neq 0 \), provided that \(\eta(s) \geq r \) or \(\eta(s') \geq r \).
Obviously we have \(\lim_{r \to \infty} \frac{n}{r \cdot (r - n)} = 0 \).
References

References

678 References

References

702 References

References

769. J. Roe. *Index theory, coarse geometry, and topology of manifolds*. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996.

References

References

Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n</td>
<td>21</td>
</tr>
<tr>
<td>A_+</td>
<td>240</td>
</tr>
<tr>
<td>$A(G)$</td>
<td>322</td>
</tr>
<tr>
<td>$A(X)$</td>
<td>158</td>
</tr>
<tr>
<td>$\mathbf{A}(X)$</td>
<td>158</td>
</tr>
<tr>
<td>$A \rtimes_m G$</td>
<td>240</td>
</tr>
<tr>
<td>$A \rtimes_r G$</td>
<td>240</td>
</tr>
<tr>
<td>$\text{Art}(P, \psi)$</td>
<td>173</td>
</tr>
<tr>
<td>$A \rtimes_r G$</td>
<td>240</td>
</tr>
<tr>
<td>$\text{Arf}(P, \psi)$</td>
<td>173</td>
</tr>
<tr>
<td>asmb_G</td>
<td>52</td>
</tr>
<tr>
<td>BPL</td>
<td>211</td>
</tr>
<tr>
<td>BTOP</td>
<td>211</td>
</tr>
<tr>
<td>BG</td>
<td>328</td>
</tr>
<tr>
<td>$b_n^2(M)$</td>
<td>41</td>
</tr>
<tr>
<td>C</td>
<td>21</td>
</tr>
<tr>
<td>CAT</td>
<td>156</td>
</tr>
<tr>
<td>CAT$_{\text{col,weq}}$</td>
<td>156</td>
</tr>
<tr>
<td>cd(G)</td>
<td>287</td>
</tr>
<tr>
<td>cd$_R(G)$</td>
<td>287</td>
</tr>
<tr>
<td>cd$_R(M)$</td>
<td>287</td>
</tr>
<tr>
<td>$Cl(A)$</td>
<td>49</td>
</tr>
<tr>
<td>class(G, R)</td>
<td>44</td>
</tr>
<tr>
<td>class$_F(G)$</td>
<td>44</td>
</tr>
<tr>
<td>colim$_{i \in I} A_i$</td>
<td>246</td>
</tr>
<tr>
<td>colim$_C F$</td>
<td>40</td>
</tr>
<tr>
<td>cone(G)</td>
<td>307</td>
</tr>
<tr>
<td>cone(X)</td>
<td>307</td>
</tr>
<tr>
<td>cone$*(f*)$</td>
<td>65</td>
</tr>
<tr>
<td>cone(A)</td>
<td>251</td>
</tr>
<tr>
<td>cyl$*(f*)$</td>
<td>65</td>
</tr>
<tr>
<td>$C_*^{\text{Gr}}(G)(X)$</td>
<td>301</td>
</tr>
<tr>
<td>$C(X)$</td>
<td>30</td>
</tr>
<tr>
<td>$C(X, F)$</td>
<td>30</td>
</tr>
<tr>
<td>$C_0(X)$</td>
<td>245</td>
</tr>
<tr>
<td>$C_0(X, F)$</td>
<td>245</td>
</tr>
<tr>
<td>$C_b(X, F)$</td>
<td>246</td>
</tr>
<tr>
<td>$C_\mathcal{R}(G), 246$</td>
<td></td>
</tr>
<tr>
<td>$C_\mathcal{R}(G, F)$</td>
<td>246</td>
</tr>
<tr>
<td>$C_*^\mathcal{R}(G, F)$</td>
<td>246</td>
</tr>
<tr>
<td>$C_*^\mathcal{R}(X)$</td>
<td>381</td>
</tr>
<tr>
<td>C_∞^\sim</td>
<td>180</td>
</tr>
<tr>
<td>C^\ast-ALGEBRAS</td>
<td>312</td>
</tr>
<tr>
<td>conhom$_G(H, K)$</td>
<td>39</td>
</tr>
<tr>
<td>D_n</td>
<td>21</td>
</tr>
<tr>
<td>D^α</td>
<td>32</td>
</tr>
<tr>
<td>D_∞</td>
<td>21</td>
</tr>
<tr>
<td>$D(R, I)$</td>
<td>90</td>
</tr>
</tbody>
</table>
\begin{align*}
D^*(X) & , 381 \\
D(ZG) & , 50 \\
\text{Diff}(M) & , 125 \\
e(P) & , 164 \\
E G & , 243 \\
\mathbf{E} G & , 276 \\
E_f(G) & , 276 \\
E_n(i,j) & , 59 \\
\mathbb{F}_q & , 89 \\
\text{FP} & , 225 \\
\text{FP}_n & , 287 \\
\text{FP}_\infty & , 287 \\
G & , 211 \\
(g) & , 44 \\
G\text{-CW-COMPLEXES} & , 518 \\
G_0(R) & , 24 \\
G_1(R) & , 58 \\
G \wr Q & , 101 \\
\text{GL}(A) & , 250 \\
\text{GL}^+_n(A) & , 249 \\
\text{GL}^+(A) & , 250 \\
\text{GL}^+(A)_0 & , 250 \\
\text{GL}(R) & , 27 \\
\text{GL}(R, I) & , 92 \\
\text{GL}_n(R) & , 27 \\
G \times_\alpha X & , 304 \\
G \wr F & , 342 \\
\text{GROUPOIDS} & , 309 \\
\text{GROUPOIDS}^{\text{inj}} & , 309 \\
\text{GROUPOS}^{\text{inj}} & , 313 \\
gd(G) & , 290 \\
\hat{G}/O & , 211 \\
G/\mathcal{P}L & , 211 \\
G/\text{TOP} & , 211 \\
H(M) & , 192 \\
\text{HC}^{\psi_0_k}(R) & , 150 \\
\text{HH}^{\psi_0_k}(R) & , 150 \\
\text{HN}^{\psi_0_k}(R) & , 150 \\
\text{HP}^{\psi_0_k}(R) & , 150 \\
\text{HS}_{BC} & , 49 \\
\text{HS}_{BG}(P) & , 45 \\
H_*(X, R) & , 72 \\
H^G_*(\cdot; \mathbf{E}) & , 300 \\
H^*_G(\cdot; \mathbf{E}) & , 310 \\
H^G_*(\cdot; M) & , 301 \\
H^*(P) & , 165 \\
H_*(P) & , 171 \\
\text{hdim}^G_*(X) & , 290 \\
\text{hofib}(f) & , 130 \\
\text{HE} & , 124 \\
\text{HK} & , 125 \\
\text{Idem}(R) & , 27 \\
\text{Idem}_n(R) & , 27 \\
\text{ind}_\alpha X & , 304 \\
\text{ind}_\gamma & , 586 \\
\text{imm}(K) & , 39 \\
I_n & , 60 \\
\hat{i}_* & , 202 \\
\hat{j}_G^* & , 202 \\
\hat{j}_m^* & , 202 \\
\hat{j}_r^* & , 202 \\
K(A,i) & , 213 \\
K(R) & , 131 \\
K(C) & , 157 \\
K(P) & , 139 \\
K(A) & , 140 \\
\hat{A}(M) & , 389 \\
\hat{A}_x(M,u) & , 389 \\
K(P) & , 141 \\
\text{KH}(R) & , 148 \\
K_*(A) & , 248 \\
K_0(R) & , 24 \\
K_0(R) & , 25 \\
K_0^0(X) & , 31 \\
K_1(R) & , 57 \\
K_*^0(R) & , 59 \\
K_1(R) & , 64 \\
K_2(R) & , 120 \\
K_n(R) & , 131 \\
\text{KH}_n(R) & , 148 \\
K_{n+1}(M) & , 186 \\
K_{n+1}(M) & , 186 \\
K_n(C^*_G(G)) & , 486 \\
K\Omega_n(C^*_G(\mathbb{R})) & , 486 \\
\end{align*}
<table>
<thead>
<tr>
<th>Notation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^*(X, A))</td>
<td>233</td>
</tr>
<tr>
<td>(K_n(X, A))</td>
<td>236</td>
</tr>
<tr>
<td>(K^G_n(X; A: B))</td>
<td>263</td>
</tr>
<tr>
<td>(KK_n(A, B))</td>
<td>258</td>
</tr>
<tr>
<td>(KK^G_n(A, B))</td>
<td>261</td>
</tr>
<tr>
<td>(KO_n(A))</td>
<td>249</td>
</tr>
<tr>
<td>(K^*(A))</td>
<td>260</td>
</tr>
<tr>
<td>(KO^*(X; A))</td>
<td>238</td>
</tr>
<tr>
<td>(KO^G_n(X; A))</td>
<td>238</td>
</tr>
<tr>
<td>(KR^*(X; A))</td>
<td>239</td>
</tr>
<tr>
<td>(K^c)</td>
<td>236</td>
</tr>
<tr>
<td>(K^c_{\mathbb{R}})</td>
<td>238</td>
</tr>
<tr>
<td>(K^c_{\mathbb{Q}})</td>
<td>590</td>
</tr>
<tr>
<td>(K^c_{\mathbb{Z}})</td>
<td>590</td>
</tr>
<tr>
<td>(L_n(R))</td>
<td>172</td>
</tr>
<tr>
<td>(L^i_n(R))</td>
<td>199</td>
</tr>
<tr>
<td>(L_b^i_n(R))</td>
<td>202</td>
</tr>
<tr>
<td>(L_b^i_n(\mathbb{Z}, w))</td>
<td>202</td>
</tr>
<tr>
<td>(L_n^{(2)}(\mathbb{Z}, w))</td>
<td>202</td>
</tr>
<tr>
<td>(L_n(-\infty)(R))</td>
<td>202</td>
</tr>
<tr>
<td>(L_n(-\infty)(\mathbb{Z}, w))</td>
<td>202</td>
</tr>
<tr>
<td>(L_n(R))</td>
<td>202</td>
</tr>
<tr>
<td>(L_b^i_n(\mathbb{Z}, w))</td>
<td>202</td>
</tr>
<tr>
<td>(L_b^i_n(\mathbb{R}, w))</td>
<td>200</td>
</tr>
<tr>
<td>(L_n(0)(R))</td>
<td>202</td>
</tr>
<tr>
<td>(L_n(1)(R))</td>
<td>202</td>
</tr>
<tr>
<td>(L_n(2)(\mathbb{R}, w))</td>
<td>200</td>
</tr>
<tr>
<td>(L^n_{\mathbb{R}}(RG))</td>
<td>486</td>
</tr>
<tr>
<td>(L^\infty(-\infty)(A))</td>
<td>341</td>
</tr>
<tr>
<td>(L^\infty_A(R))</td>
<td>205</td>
</tr>
<tr>
<td>(l(H))</td>
<td>292</td>
</tr>
<tr>
<td>(L(V))</td>
<td>78</td>
</tr>
<tr>
<td>(L(t; k_1, \ldots, k_c))</td>
<td>78</td>
</tr>
<tr>
<td>(L^\perp_{\mathbb{R}})</td>
<td>172</td>
</tr>
<tr>
<td>(L^1(G))</td>
<td>246</td>
</tr>
<tr>
<td>(L^1(G, F))</td>
<td>246</td>
</tr>
<tr>
<td>(L^2(G))</td>
<td>246</td>
</tr>
<tr>
<td>(L^2(G, F))</td>
<td>246</td>
</tr>
<tr>
<td>(\text{map}_G(-, Y))</td>
<td>308</td>
</tr>
<tr>
<td>(M(R))</td>
<td>27</td>
</tr>
<tr>
<td>(M_n(R))</td>
<td>27</td>
</tr>
<tr>
<td>(M_{m,n}(R))</td>
<td>27</td>
</tr>
<tr>
<td>(M^*(\mathbb{R}))</td>
<td>164</td>
</tr>
<tr>
<td>(\text{[M]})</td>
<td>167</td>
</tr>
<tr>
<td>(\text{[M]}_{\mathbb{Q}})</td>
<td>214</td>
</tr>
<tr>
<td>(\text{[M]}_{\mathbb{R}})</td>
<td>167</td>
</tr>
<tr>
<td>(N_G)</td>
<td>93</td>
</tr>
<tr>
<td>(N_GH)</td>
<td>271</td>
</tr>
<tr>
<td>(\text{Nil}_n(R))</td>
<td>82</td>
</tr>
<tr>
<td>(\text{Nil}_n(R))</td>
<td>82</td>
</tr>
<tr>
<td>(NK_n(R))</td>
<td>81</td>
</tr>
<tr>
<td>(\text{NK}_{-n}(R))</td>
<td>107</td>
</tr>
<tr>
<td>(N_r K_n(RK, \phi))</td>
<td>148</td>
</tr>
<tr>
<td>(nr_{QG})</td>
<td>100</td>
</tr>
<tr>
<td>(nr_{ZG})</td>
<td>100</td>
</tr>
<tr>
<td>(nr_{ZG})</td>
<td>100</td>
</tr>
<tr>
<td>(O)</td>
<td>210</td>
</tr>
<tr>
<td>(o(X))</td>
<td>33</td>
</tr>
<tr>
<td>(\tilde{o}(X))</td>
<td>33</td>
</tr>
<tr>
<td>(o_{\text{geo}}(X))</td>
<td>35</td>
</tr>
<tr>
<td>(\text{Or}(G))</td>
<td>39</td>
</tr>
<tr>
<td>(\text{Or}_F(G))</td>
<td>39</td>
</tr>
<tr>
<td>(\bullet)</td>
<td>143</td>
</tr>
<tr>
<td>(P_d(G, S))</td>
<td>280</td>
</tr>
<tr>
<td>(P_d(X))</td>
<td>382</td>
</tr>
<tr>
<td>(p_k(M, \mathbb{Q}))</td>
<td>214</td>
</tr>
<tr>
<td>(P_{C_{0}}(G))</td>
<td>278</td>
</tr>
<tr>
<td>(P(M))</td>
<td>153</td>
</tr>
<tr>
<td>(P^{\text{diff}}_{\mathbb{R}}(M))</td>
<td>153</td>
</tr>
<tr>
<td>(\text{PL})</td>
<td>210</td>
</tr>
<tr>
<td>(P(M)_{\mathbb{R}})</td>
<td>154</td>
</tr>
<tr>
<td>(P^{\text{diff}}_{\mathbb{R}}(M))</td>
<td>154</td>
</tr>
<tr>
<td>(\text{Proj}(R))</td>
<td>25</td>
</tr>
<tr>
<td>(P(\phi))</td>
<td>169</td>
</tr>
<tr>
<td>(P(\psi))</td>
<td>170</td>
</tr>
<tr>
<td>(Q)</td>
<td>21</td>
</tr>
<tr>
<td>(Q^*(P))</td>
<td>170</td>
</tr>
<tr>
<td>(Q_{x}(P))</td>
<td>170</td>
</tr>
<tr>
<td>(R)</td>
<td>21</td>
</tr>
<tr>
<td>(\langle r \rangle)</td>
<td>24</td>
</tr>
<tr>
<td>(\text{rad}(R))</td>
<td>55</td>
</tr>
<tr>
<td>(\tau_{A})</td>
<td>27</td>
</tr>
<tr>
<td>(\tau_{F}(G))</td>
<td>101</td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>r_x</td>
<td>58</td>
</tr>
<tr>
<td>R_x</td>
<td>552</td>
</tr>
<tr>
<td>$R_F(H)$</td>
<td>45</td>
</tr>
<tr>
<td>R^\times</td>
<td>54</td>
</tr>
<tr>
<td>$R_E(X)$</td>
<td>600</td>
</tr>
<tr>
<td>$R_O(X)$</td>
<td>600</td>
</tr>
<tr>
<td>$RK_n(X; A; B)$</td>
<td>263</td>
</tr>
<tr>
<td>$SK_1(R)$</td>
<td>62</td>
</tr>
<tr>
<td>$SK_1(ZG)$</td>
<td>100</td>
</tr>
<tr>
<td>RINGS</td>
<td>312</td>
</tr>
<tr>
<td>RINGS$^{\text{inv}}$</td>
<td>312</td>
</tr>
<tr>
<td>$\text{sign}(M)$</td>
<td>167</td>
</tr>
<tr>
<td>$\text{sign}(s)$</td>
<td>166</td>
</tr>
<tr>
<td>$\text{sign}(M, u)$</td>
<td>214</td>
</tr>
<tr>
<td>S_n</td>
<td>21</td>
</tr>
<tr>
<td>S_n+</td>
<td>91</td>
</tr>
<tr>
<td>S_n^+</td>
<td>31</td>
</tr>
<tr>
<td>S_n^+</td>
<td>68</td>
</tr>
<tr>
<td>S^0_G</td>
<td>101</td>
</tr>
<tr>
<td>$SL(R)$</td>
<td>102</td>
</tr>
<tr>
<td>$SL(R, I)$</td>
<td>92</td>
</tr>
<tr>
<td>SO</td>
<td>103</td>
</tr>
<tr>
<td>SO(n)</td>
<td>103</td>
</tr>
<tr>
<td>SPACES$^+$</td>
<td>307</td>
</tr>
<tr>
<td>SPECTRA</td>
<td>307</td>
</tr>
<tr>
<td>Spec(R)</td>
<td>54</td>
</tr>
<tr>
<td>St(R)</td>
<td>120</td>
</tr>
<tr>
<td>Stn(R)</td>
<td>119</td>
</tr>
<tr>
<td>SU</td>
<td>103</td>
</tr>
<tr>
<td>SU(n)</td>
<td>103</td>
</tr>
<tr>
<td>Sub(G)</td>
<td>39</td>
</tr>
<tr>
<td>Sub$_F(G)$</td>
<td>40</td>
</tr>
<tr>
<td>swG</td>
<td>94</td>
</tr>
<tr>
<td>sw^G</td>
<td>97</td>
</tr>
<tr>
<td>TOP</td>
<td>210</td>
</tr>
<tr>
<td>T(P)</td>
<td>169</td>
</tr>
<tr>
<td>U(A)</td>
<td>250</td>
</tr>
<tr>
<td>U$_n(A)$</td>
<td>250</td>
</tr>
<tr>
<td>$U^+(A)$</td>
<td>250</td>
</tr>
<tr>
<td>vcd(G)</td>
<td>290</td>
</tr>
<tr>
<td>Vect$_F(X)$</td>
<td>31</td>
</tr>
<tr>
<td>V^0_F</td>
<td>590</td>
</tr>
<tr>
<td>Wa(Y)</td>
<td>34</td>
</tr>
<tr>
<td>W_GH</td>
<td>271</td>
</tr>
<tr>
<td>Wh(G)</td>
<td>64</td>
</tr>
<tr>
<td>Wh$^R_n(G)$</td>
<td>64</td>
</tr>
<tr>
<td>Wh$^1_R(G)$</td>
<td>64</td>
</tr>
<tr>
<td>Wh$_2(G)$</td>
<td>125</td>
</tr>
<tr>
<td>Wh$_{\text{diff}}(X)$</td>
<td>160</td>
</tr>
<tr>
<td>Wh$_{\text{PL}}(X)$</td>
<td>160</td>
</tr>
<tr>
<td>X_n</td>
<td>271</td>
</tr>
<tr>
<td>X_+</td>
<td>307</td>
</tr>
<tr>
<td>$X \wedge E$</td>
<td>308</td>
</tr>
<tr>
<td>$X \wedge Y$</td>
<td>307</td>
</tr>
<tr>
<td>Z</td>
<td>21</td>
</tr>
<tr>
<td>Z^w</td>
<td>180</td>
</tr>
<tr>
<td>Z/n</td>
<td>21</td>
</tr>
<tr>
<td>Z_p</td>
<td>236</td>
</tr>
<tr>
<td>α^*</td>
<td>262</td>
</tr>
<tr>
<td>f^*_g</td>
<td>467</td>
</tr>
<tr>
<td>$f^*_{g_1}$</td>
<td>467</td>
</tr>
<tr>
<td>Δ</td>
<td>156</td>
</tr>
<tr>
<td>$i_{x \in G}$</td>
<td>346</td>
</tr>
<tr>
<td>$\lambda_E \in K_+(DE, SE)$</td>
<td>242</td>
</tr>
<tr>
<td>ϕ^*, F</td>
<td>395</td>
</tr>
<tr>
<td>$\pi_0(X)$</td>
<td>32</td>
</tr>
<tr>
<td>$\pi_1(X)$</td>
<td>32</td>
</tr>
<tr>
<td>$\pi_1(E)$</td>
<td>307</td>
</tr>
<tr>
<td>$\eta(M)$</td>
<td>390</td>
</tr>
<tr>
<td>$\gamma^2(M) \in R$</td>
<td>390</td>
</tr>
<tr>
<td>$\rho(X; U)$</td>
<td>77</td>
</tr>
<tr>
<td>$\rho^2(M)$</td>
<td>390</td>
</tr>
<tr>
<td>$\sigma^G(X)$</td>
<td>98</td>
</tr>
<tr>
<td>Σ_A</td>
<td>251</td>
</tr>
<tr>
<td>$\Sigma^n(A)$</td>
<td>251</td>
</tr>
<tr>
<td>ΣC_*</td>
<td>63</td>
</tr>
<tr>
<td>$\sigma(f, f)$</td>
<td>197</td>
</tr>
<tr>
<td>Θ_G</td>
<td>324</td>
</tr>
<tr>
<td>θ_C</td>
<td>325</td>
</tr>
<tr>
<td>$\Theta^n_n(X, A)$</td>
<td>306</td>
</tr>
<tr>
<td>Notation</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>(\mathcal{A})</td>
<td>39</td>
</tr>
<tr>
<td>(\mathcal{A}(G))</td>
<td>551</td>
</tr>
<tr>
<td>(\mathcal{A}_0([t]))</td>
<td>424</td>
</tr>
<tr>
<td>(\mathcal{A}/U)</td>
<td>530</td>
</tr>
<tr>
<td>B</td>
<td>245</td>
</tr>
<tr>
<td>(\mathcal{B}H)</td>
<td>319</td>
</tr>
<tr>
<td>(\mathcal{B}(\mathbb{P}(G)))</td>
<td>52</td>
</tr>
<tr>
<td>(\mathcal{B}(T))</td>
<td>580</td>
</tr>
<tr>
<td>(\mathcal{B}(H))</td>
<td>584</td>
</tr>
<tr>
<td>(\mathcal{C}(G))</td>
<td>372</td>
</tr>
<tr>
<td>(\mathcal{COM})</td>
<td>269</td>
</tr>
<tr>
<td>(\mathcal{C}(\mathcal{G}))</td>
<td>39</td>
</tr>
<tr>
<td>(\mathcal{FCY})</td>
<td>39</td>
</tr>
<tr>
<td>(\mathcal{D}_G(X))</td>
<td>559</td>
</tr>
<tr>
<td>(\mathcal{D}_G(X,A))</td>
<td>561</td>
</tr>
<tr>
<td>(\mathcal{D}_G^0(X))</td>
<td>589</td>
</tr>
<tr>
<td>(\mathcal{D}_G^J(X))</td>
<td>591</td>
</tr>
<tr>
<td>(\mathcal{D}_G(X,A))</td>
<td>609</td>
</tr>
<tr>
<td>(\mathcal{E})</td>
<td>608</td>
</tr>
<tr>
<td>(\mathcal{E}_{cc})</td>
<td>608</td>
</tr>
<tr>
<td>(\mathcal{F})</td>
<td>39</td>
</tr>
<tr>
<td>(\mathcal{F}_K)</td>
<td>395</td>
</tr>
<tr>
<td>(\mathcal{F}_{LN})</td>
<td>39</td>
</tr>
<tr>
<td>(\mathcal{F}_{JKH})</td>
<td>444</td>
</tr>
<tr>
<td>(\mathcal{H}(G))</td>
<td>426</td>
</tr>
<tr>
<td>(\mathcal{H}(\mathcal{E}))</td>
<td>390</td>
</tr>
<tr>
<td>(\mathcal{H}_{G,r})</td>
<td>390</td>
</tr>
<tr>
<td>(\mathcal{G}^G(S))</td>
<td>309</td>
</tr>
<tr>
<td>(\mathcal{H}^P)</td>
<td>300</td>
</tr>
<tr>
<td>(\mathcal{H}_n^P)</td>
<td>304</td>
</tr>
<tr>
<td>(\mathcal{K})</td>
<td>245</td>
</tr>
<tr>
<td>(\mathcal{K}(M))</td>
<td>162</td>
</tr>
<tr>
<td>(\mathcal{L}(M))</td>
<td>214</td>
</tr>
<tr>
<td>(\mathcal{M})</td>
<td>49</td>
</tr>
<tr>
<td>(\mathcal{N}(G))</td>
<td>52</td>
</tr>
<tr>
<td>(\mathcal{N}_n(X,\partial X))</td>
<td>208</td>
</tr>
<tr>
<td>(\mathcal{N}_n^{PL}(X))</td>
<td>210</td>
</tr>
<tr>
<td>(\mathcal{N}_n^{TOP}(X))</td>
<td>210</td>
</tr>
<tr>
<td>(\mathcal{O}_G(X))</td>
<td>555</td>
</tr>
<tr>
<td>(\mathcal{O}_G(X,B))</td>
<td>552</td>
</tr>
<tr>
<td>(\mathcal{O}_G(X,A))</td>
<td>609</td>
</tr>
<tr>
<td>(\mathcal{O}_G^0(X))</td>
<td>589</td>
</tr>
<tr>
<td>(\mathcal{O}_G^J(X))</td>
<td>591</td>
</tr>
<tr>
<td>(\mathcal{P}(M))</td>
<td>591</td>
</tr>
<tr>
<td>(\mathcal{P}^{Diff}(M))</td>
<td>153</td>
</tr>
<tr>
<td>(\mathcal{R}(X))</td>
<td>156</td>
</tr>
<tr>
<td>(\mathcal{R}(\mathcal{F}))</td>
<td>156</td>
</tr>
<tr>
<td>(\mathcal{S}_G(X))</td>
<td>207</td>
</tr>
<tr>
<td>(\mathcal{S}_G^0(X))</td>
<td>206</td>
</tr>
<tr>
<td>(\mathcal{S}_G^{PL,h}(X))</td>
<td>210</td>
</tr>
<tr>
<td>(\mathcal{S}_G^{PL,s}(X))</td>
<td>210</td>
</tr>
<tr>
<td>(\mathcal{S}_G^{TOP,h}(X))</td>
<td>210</td>
</tr>
<tr>
<td>(\mathcal{S}_G^{TOP,s}(X))</td>
<td>210</td>
</tr>
<tr>
<td>(\mathcal{T}_G(X))</td>
<td>558</td>
</tr>
<tr>
<td>(\mathcal{T}_G^J(X))</td>
<td>609</td>
</tr>
<tr>
<td>(\mathcal{T}_R)</td>
<td>589</td>
</tr>
<tr>
<td>(\mathcal{V}(\mathcal{C}))</td>
<td>39</td>
</tr>
<tr>
<td>(\mathcal{V}(\mathcal{C}_t))</td>
<td>349</td>
</tr>
<tr>
<td>(\mathcal{Z}(\mathcal{N}(\mathcal{G})))</td>
<td>53</td>
</tr>
<tr>
<td>(</td>
<td>n</td>
</tr>
<tr>
<td>(</td>
<td>u,v</td>
</tr>
<tr>
<td>(\partial(P,\psi))</td>
<td>193</td>
</tr>
<tr>
<td>((u,v))</td>
<td>167</td>
</tr>
</tbody>
</table>

last edited on 07.06.2021
last compiled on March 21, 2022
name of texfile: ic
Index

\(\hat{A}\)-class, 389
\(\hat{A}\)-genus
 higher, 389
\(A\)-regular, 459
\(A\)-theory
 connective \(A\)-theory, 158
acyclic
 \(U\)-acyclic, 77
 map, 130
 space, 129
additive category, 138
AF-algebra, 252
Alexander trick, 75
algebra
 Roe algebra, 381
algebraic number field, 29
almost connected, 278
amenable group action, 451
annihilator of a sublagrangian, 172
Arf invariant, 173
Artinian
 module, 41
 ring, 41
aspherical, 218
assembly
 analytic Baum-Connes assembly map, 374
 assembly map for algebraic \(K\)-theory, 360
 assembly map for algebraic \(K\)-theory with coefficients in additive categories, 340
 assembly map for algebraic \(K\)-theory with coefficients in rings, 330
 assembly map for algebraic \(L\)-theory, 360
 assembly map for algebraic \(L\)-theory for rings with involution, 338
 assembly map for algebraic \(L\)-theory with coefficients in rings with involution, 337
 assembly map for algebraic \(L\)-theory with coefficients in additive categories with involution, 341
 for \(G\)-homology theories, 394
 homotopy theoretic assembly transformation, 522
asymptotic dimension, 452
balanced product of \(C\)-spaces, 308
 of a pointed \(C\)-space with a \(C\)-spectrum, 308
balanced smash product of pointed \(C\)-spaces, 308
Banach algebra, 244
Banach \(*\)-algebra, 244
 unital, 245
basis
 cellular, 66
 stable basis, 198
 stably \(U\)-equivalent, 198
 \(U\)-equivalent, 198
bordism
 normal, 183
 Bott isomorphism, 32
 Bott manifold, 387
 Bott periodicity, 253
boundary
 of a non-singular \(\epsilon\)-quadratic form, 193
 boundary amenable group, 492
 bounded control over \(\mathbb{N}\), 553
 bounded geometry, 382

719
Bass Conjecture for integral domains as coefficients, 47
Baum-Connes Conjecture, 376
Baum-Connes Conjecture for torsionfree groups, 253
Baum-Connes Conjecture with coefficients, 376
Borel Conjecture, 220
Borel Conjecture for a group G in dimension n, 220
Bost Conjecture, 379
Cannon Conjecture, 229
Cannon Conjecture in the torsion-free case, 229
Comparing algebraic and topological K-theory with coefficients for C^*-algebras, 255
Comparison of algebraic K-theory and homotopy K-theory for torsionfree groups, 150
Farrell-Jones Conjecture for $\text{Wh}_2(G)$ for torsionfree G, 126
Farrell-Jones Conjecture for $\tilde{K}_0(\mathbb{Z}G)$ and $\text{Wh}(G)$ for torsionfree G, 59
Farrell-Jones Conjecture for A-theory, 420
Farrell-Jones Conjecture for A-theory with coefficients, 120
Farrell-Jones Conjecture for $K_0(R)$ for torsionfree G and regular R, 59
Farrell-Jones Conjecture for $K_0(RG)$ and $K_1(RG)$ for regular R and torsionfree G, 59
Farrell-Jones Conjecture for $K_0(RG)$ for regular R with $\mathbb{Q} \subseteq R$, 40
Farrell-Jones Conjecture for $K_0(RG)$ for a Artinian ring R, 42
Farrell-Jones Conjecture for (smooth) pseudoisotopy, 421
Farrell-Jones Conjecture for (smooth) pseudoisotopy with coefficients, 421
Farrell-Jones Conjecture for homotopy K-theory with coefficients in additive G-categories, 120
Farrell-Jones Conjecture for homotopy K-theory with coefficients in additive G-categories with finite wreath products, 120
Farrell-Jones Conjecture for negative K-theory of the ring of integers in an algebraic number field, 115
Farrell-Jones Conjecture for negative K-theory and Artinian rings as coefficient rings, 116
Farrell-Jones Conjecture for negative K-theory and regular coefficient rings, 115
Farrell-Jones Conjecture for torsionfree groups and regular rings for K-theory, 143
Farrell-Jones Conjecture for torsionfree groups for L-theory, 205
Farrell-Jones Conjecture for torsionfree groups for homotopy K-theory, 150
Fibered Meta Isomorphisms Conjecture for a functor from spaces to spectra with coefficients, 217
Fibered Meta-Isomorphism Conjecture, 376
Fibered Meta-Isomorphism Conjecture with finite wreath products, 158
Finite Models for EG, 296
Full Farrell-Jones Conjecture, 333
Gromov-Lawson-Rosenberg Conjecture, 389
Homological Gromov-Lawson-Rosenberg Conjecture, 389
Stable Gromov-Lawson-Rosenberg Conjecture, 388
Homotopy Invariance of the L^2-Rho-Invariant for Torsionfree Groups, 590
Integral Novikov Conjecture, 380
K-theoretic Farrell-Jones Conjecture with coefficients in rings, 337
K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with finite wreath products, 343
K-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories, 546
K-theoretic Farrell-Jones Conjecture with coefficients in the ring R, 430
K-theoretic Novikov Conjecture, 369
K-theory versus homotopy K-theory for regular rings, 137
Kadison Conjecture, 256
Kaplansky Conjecture, 12
Kaplansky Conjecture for prime characteristic, 42
L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution, 344
L-theoretic Farrell-Jones Conjecture with coefficients in additive G-categories with involution with finite wreath products, 343

Index
L-theoretic Farrell-Jones Conjecture with coefficients in rings with involution, 335
L-theoretic Farrell-Jones Conjecture with coefficients in rings with involution after inverting 2, 338
L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R, 337
L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R, 337
L-theoretic Novikov Conjecture, 361
Manifold structures on aspherical Poincaré complexes, 226
Meta-Isomorphism Conjecture, 394
Meta-Isomorphism Conjecture for functors from spaces to spectra, 409
Meta-Isomorphism Conjecture for functors from spaces to spectra with coefficients, 410
Nil-groups for regular rings and torsionfree groups, 145
Novikov Conjecture, 215
Passage for L-theory from QG to RG to C*(G; R), 132
Poincaré Conjecture, 79
Strong Bass Conjecture, 47
Strong Novikov Conjecture, 380
The Farrell-Jones Conjecture for the algebraic K-theory of Hecke-Algebras, 227
Trace Conjecture for torsionfree groups, 250
Trace Conjecture, modified, 386
Unit-Conjecture, 104
Weak Bass Conjecture, 47
Zero-in-the-spectrum Conjecture, 257
conjugated F-conjugated, 45
continuous control, 553
control control structure continuous control bounded control over N, 553
continuous control, 553
control structure, 608
control coefficient category strong, 583
control coefficient category over G, 551
control structure, 608
continuous control, 608
crossed product maximal crossed product of C*-algebras, 246
reduced crossed product of C*-algebras, 246
crystallographic group of dimension n, 507
Cuntz C*-algebras, 292
CW-complex finite, 32
finitely dominated, 32
cyclic homology, 150
cyclotomic trace, 151
Dedekind ring, 28
degree one map, 181
δ-hyperbolic group, 280
metric space, 280
Dennis trace map, 199
descent homomorphisms for KK-theory, 209
dimension minimal homotopy dimension, 290
Dirac element, 617
dual, 617
Dirac-dual Dirac method, 617
direct limit of a functor to R-modules, 40
direct system of C*-algebras, 246
of groups, 54
of modules, 94
of rings, 54
directed set, 54
directed system of algebras, 246
of groups, 54
of modules, 54
of rings, 54
directly finite module, 52
disk bundle, 212
double of a ring along an ideal, 90
dual of a ring along an ideal, 90
dual chain complex, 180
Eilenberg swindle, 140
Eilenberg-MacLane space, 218
elementary (n, n)-matrix, 60
elementary collapse, 69
elementary expansion, 69
equivalence of categories, 310
equivariant Borel homology, 306
closed n-dimensional cell, 271
equivariant homology theory, 304
equivariant homology theory over a group, 332
open n-dimensional cell, 271
smooth triangulation, 273
eta-invariant, 390
Euler class, 242
exact category, 138
exact C^*-algebra, 192
functor, 138
exotic homotopy sphere, 224
exotic sphere, 76
extension central, 120
closed under extensions, 132
external multiplicative structure for equivariant topological K-theory, 240
family of subgroups, 39
filtered U-filtered, 530
stably U-filtered, 532
strongly stably U-filtered, 532
Finite G-support, 551
finite asymptotic dimension, 452
finite domination, 52
finite propagation operator, 481
finite quotient finite decomposition complexity, 486
finite resolution, 114
finitely dominated, 224
finiteness obstruction, 23
geometric, 35
unreduced, 33
flasque additive category, 140
form ϵ-quadratic, 170
ϵ-symmetric, 165
non-singular ϵ-quadratic, 170
non-singular ϵ-symmetric form, 163
standard hyperbolic ϵ-quadratic form, 174
standard hyperbolic ϵ-symmetric form, 166
U-based ϵ-quadratic forms, 199
formation ϵ-quadratic formation, 192
stably isomorphic ϵ-quadratic formations, 192
trivial ϵ-quadratic formation, 192
fractional ideal, 28
Franz' independence Lemma, 79
Fredholm operator, 237
free free unitary representation, 77
functor exact functor, 138
of additive categories, 138
functorial additive invariant for finitely dominated CW-complexes, 37
functorial additive invariant for finitely dominated CW-complexes universal, 37
fundamental class, 187
Fundamental Lemma of Homological Algebra, 87
G-CW-complex, 270
finite, 272
finite dimensional, 273
n-dimension, 273
of dimension $\leq n$, 275
of dimensional n, 274
of finite type, 272
G-homology theory, 300
G-support, 551
generalized Swan homomorphism, 97
group graph product, 519
Green functor, 524
Grothendieck group, 24
a-T-menable, 401
almost connected topological group, 278
alternating group of even permutations of the set $\{1, 2, \ldots, n\}$, 21
amenable, 401
boundary amenable, 452
CAT(0)-group, 458
crystallographic of dimension n, 507
elementary amenable, 401
finite cyclic group of order n, 21
finite dihedral group of order n, 41
finite dimensional CAT(0)-group, 458
graph product, 519
having property (RD), 449
having property (T), 462
having the Haagerup property, 491
hyperbolic, 280
hyperbolic K-amenable group, 379
infinite cyclic group, 21
infinite dihedral group, 21
infinite special orthogonal group, 103
infinite special unitary group, 103
lacunary hyperbolic, 456
p-elementary, 356
p-hyperelementary, 349
perfect, 120
Poincaré duality group of dimension n, 224
poly-(P), 85
poly-cyclic, 85
poly-free, 464
poly-Z, 85
regular, 145
regular coherent, 145
sofic, 42
strongly poly-free, 464
symmetric group of permutations of the set \{1, 2, … , n\}, 21
Thompson’s groups, 468
virtually (P), 85
virtually cyclic, 10
virtually cyclic of type I, 348
virtually cyclic of type II, 348
virtually finitely generated abelian, 85
virtually free, 85
virtually nilpotent, 85
virtually poly-cyclic, 85
Gysin sequence, 242

h-cobordism
bounded, 114
Hattori-Stallings homomorphism, 44
Hattori-Stallings rank, 45
Heisenberg group
three-dimensional, 253
three-dimensional discrete, 263
higher signature
associated to a homology class, 214
Hochschild homology, 150
homology
Borel homology, 306
Bredon homology, 300
cellular, 52
cellular, 52
complex topological K-homology, 236
continuous equivariant homology theory, 493
cyclic homology, 150
equivariant homology theory, 304
equivariant homology theory over a group, 302
G-homology theory, 300
Hochschild homology, 150
negative cyclic homology, 150
periodic cyclic homology, 150
proper equivariant homology theory, 304
proper equivariant homology theory over a group, 302
proper G-homology theory, 300
real topological KO-homology, 238
singular, 52
strongly continuous equivariant homology theory, 403
topological cyclic homology, 151
homomorphism of C^*-algebras, 244
homotopic, 245
homotopy
pointed regular homotopy, 174
regular homotopy, 174
homotopy algebraic K-theory, 148
homotopy fiber, 136
homotopy K-theory functor, 125
homotopy representation
free d-dimensional, 05
homotopy sequence
long exact homotopy sequence of a map, 130
homotopy sphere, 224
exotic, 224
homotopy stabilization of a functor from additive categories to spectra, 124
hyperbolic group, 280
metric space, 280
ideal
fractional, 23
principal fractional ideal, 28
principal ideal, 24
ideal in a C^*-algebra, 245
immersion
pointed, 174
index pairing, 260
induction
for equivariant KK-theory, 262
for equivariant spaces, 304
for equivariant topological K-theory, 240
of C^*-algebras, 262
of modules with respect to ring homomorphisms, 24
induction structure, 304
inductive limit of C^*-algebras, 246
integral domain, 24
internal multiplicative structure
for equivariant topological K-theory, 240
intersection pairing
for immersions, 175
for kernels, 188
involutive
ω-twisted involution on a group ring, 164
of rings, 164
ω-twisted involution of a group ring, 339
isotopic, 125

Jacobson radical, 55

K-theory mod k, 136
K-theory space of a category with cofibrations and weak equivalences, 157
of a ring, 131
of an exact category, 139

K-theory spectrum complex topological K-theory, 236
non-connective K-theory spectrum of a ring, 140
non-connective K-theory spectrum of an additive category, 140
over groupoids, 313
real topological K-theory, 235
K_0-group of a ring, 24
K_1-group of a ring, 57
K_2-group of a ring, 120
K_n-group of a ring for negative n, 107
K_n-group of a ring for positive n, 131
Karoubi filtration, 530
stable, 532
strongly stable, 532
Kasparov’s intersection product, 250
equivariant, 251
Kirchberg C^*-algebras, 252
KK-equivalence, 260
KK-theory of Kasparov, 258
equivariant, 261
KO-orientation of Spin bordism, 238
Kronecker product, 167

L-class, 214

L-group decorated quadratic L-groups in even dimensions, 169
decorated quadratic L-groups in odd dimensions, 200
projective quadratic L-groups, 202
quadratic L-groups in even dimensions, 172
quadratic L-groups in odd dimensions, 193

L-theory spectrum associated to a ring with decoration $(-\infty)$, 205
over groupoids, 313
L^2-Betti number, 41
L^2-eta-invariant, 390
L^2-Rho-invariant, 390
lagrangian, 172
complementary, 193
sublagrangian, 172
lattice, 160
length function, 149
having property (RD), 149
length of a finite group, 202
lens space, 78
linearization map, 159
locally compact operator, 381
Locally finiteness over \mathbb{N}, 552
locally free class group of a \mathbb{Z}-order, 49

Mackey functor, 318
manifold orientable, 182
oriented, 182
u-oriented, 182
manifold parametrized over \mathbb{R}^k, 114
map acyclic, 130
cellular, 271
linearization map, 159
of degree one, 181
mapping class group, 281, 467
mapping cone of a chain map, 65
of a map of spaces, 70
mapping cylinder of a chain map, 65
of a map of spaces, 69
marked metric graph, 282
maximal group C^*-algebra, 246
metric space hyperbolic, 280
proper, 381
uniformly contractible, 381
with bounded geometry, 382
metrically proper, 461
minimal homotopy dimension, 200
module Artinian, 41
irreducible, 41
simple, 41
stably finitely generated free, 26
stably U-based, 198
U-based, 198
Morita equivalence, 26
Mostow rigidity, 222

Nakayama’s Lemma, 55
negative cyclic homology, 150
Nil group reduced zero-th, 82
Index

zero-th, 82
Nil-spectrum
 non-connective, 146
nilpotent
 endomorphism of a module, 82
norm element of a finite group, 93
normal bordism, 183
normal map, 182
 of degree one of manifolds with boundary, 196
 of degree one, 182
 stabilization of a normal map, 182
normalizer, 271
normally bordant, 183

object of finite length, 142
object of length n, 142
operator
 compact, 245
 finite propagation operator, 381
 locally compact, 381
 pseudolocal, 381
orbit category, 39
F-restricted, 59
orientable manifold, 182
orientation
 of a manifold, 182
 orientation homomorphism of a Poincaré complex, 181
oriented manifold, 182
outer space, 281
 spine of outer space, 282

perfect group, 120
perfect radical, 131
periodic cyclic homology, 150
Pimsner-Voiculescu sequences for KK-theory, 261
plus-construction, 130
Poincaré duality group of dimension n, 224
Poincaré complex
 finite n-dimensional, 181
Poincaré pair
 finite n-dimensional, 190
 simple finite n-dimensional, 196
Poincaré $Z\pi$-chain homotopy equivalence, 183
pointed category, 155
pointed regular homotopy, 174
Pontrjagin class
 rational, 213
principal fractional ideal, 28
principal ideal domain, 24
principle

separation of variables, 480
Problem
Brown’s problem about $\text{vcd}(G) = \dim(E_G)$, 292
Congruence Subgroup Problem, 93
Identification of analytic surgery exact sequences, 135
Identification of transformations from the surgery exact sequence to its analytic counterpart, 435
Relating the dimension of E_G and E_G', 293
spherical space form problem, 93
projective class group, 24
 reduced, 25
projective resolution
 d-dimensional, 38
 finite, 38
 finite dimensional, 38
 finitely generated, 38
 free, 38
proper
 equivariant homology theory, 304
 G-C^\ast-algebra, 617
 G-space, 273
 metric space, 450
 proper equivariant homology theory, 332
 proper G-homology theory, 300
 proper metric space, 381
 pseudoisotopic, 125
 pseudoisotopy, 129, 153
 pseudoisotopy spectrum, 154
 smooth pseudoisotopy spectrum, 154
 pseudolocal
 operator, 381
 pushout
 cellular, 37

Q-construction, 139

Question
Reducing $\mathcal{V}\mathcal{A}$ to $\mathcal{V}\mathcal{A}'$ for A-theory, 421
Splitting of the relative assembly maps for $\mathcal{F}\mathcal{L}\mathcal{N} \subseteq \mathcal{V}\mathcal{C}$ for A-theory, 421
Vanishing of the resolution obstruction in the aspherical case, 228
quotient category, 559
quotients for additive categories, 559

radical, 55
 perfect, 131
 reduced group C^\ast-algebra, 246
 reduced K_1-group of a ring, 64
Index

refinement
 quadratic, 170
regular coherent
 regular coherent group, 146
 regular coherent ring, 145
regular homotopy, 174
Reidemeister torsion, 77
resolution
 finite, 141
restriction
 for equivariant $K K$-theory, 201
 for equivariant topological K-theory, 240
 ring
 Artinian, 41
 Burnside ring, 322
 Dedekind ring, 28
 directly finite, 43
 hereditary, 28
 integral domain, 24
 local, 54
 Noetherian, 38
 obtained by adjoining a unit, 91
 of integers, 29
 principal ideal domain, 24
 regular, 38
 regular coherent, 145
 semihereditary, 89
 semilocal, 55
 semisimple, 92
 stably finite, 18
 Swan ring, 123
 with involution, 164
Rips complex
 of a group, 280
 of a metric space, 382
Roe algebra, 381
Rothenberg sequence, 203
selfintersection element, 177
semisimple
 object, 142
 ring, 92
set of normal maps to a compact manifold, 205
signature
 higher, 214
 homotopy invariance of, 214
 higher signature associated to a homology class, 214
 of a closed oriented manifold, 167
 of a non-singular symmetric bilinear pairing, 166
simple
 object, 142
simple homotopy equivalence, 69
 object, 142
six-term exact sequence of an ideal, 250
 skeleton, 271
 skeleton of a category, 138
small category, 138
smash product, 307
 of a space with a spectrum, 308
smooth pseudoisotopy spectrum, 154
sofic group, 42
space
 acyclic, 129
 C-space, 308
 K-theory space of a category with cofibrations and weak equivalences, 157
 K-theory space of a ring, 131
 K-theory space of an exact category, 139
 of parametrized h-cobordisms, 162
 of stable parametrized h-cobordisms, 162
 spectrum, 307
 Ω-spectrum, 308
 complex topological K-theory spectrum, 236
 homotopy groups of a spectrum, 307
 map of spectra, 307
 non-connective K-theory spectrum of an additive category, 140
 non-connective K-theory spectrum of a ring, 140
 of a commutative ring, 455
 real topological K-theory spectrum, 238
 structure maps of a spectrum, 307
 weak equivalence of spectra, 308
sphere, 242
spherical space form problem, 32
spine of outer space, 282
stable Karoubi filtration, 532
 stably U-filtered, 532
 stably finite ring, 43
Steinberg group, 120
 n-th Steinberg group, 119
Steinberg symbol, 122
 strong control coefficient category, 583
 strongly stable Karoubi filtration, 532
 strongly stably U-filtered, 532
structure set, 207
 simple, 206
subgroup category, 39
 F-restricted, 40
support
 G-support, 551
 support function, 551
 support function, 551
surgery kernel, 186
surgery obstruction
 even-dimensional, 190
 for manifolds with boundary, 197
 for manifolds with boundary and simple homotopy equivalences, 201
 in odd dimensions, 194
surgery program, 76
surgery sequence
 for the PL-category, 211
 for the topological category, 211
suspension
 of a C^*-algebra, 251
Swan homomorphism
 generalized, 97
 Swan ring, 323
Teichmüller space, 281
tensor product of C^*-algebras
 maximal, 247
 minimal, 247
 spatial, 247
Theorem
 A criterion for 1-dimensional models for EG, 290
 A-theory is a homotopy-invariant functor, 159
 Actions on CAT(0)-spaces, 279
 Actions on simply connected non-positively curved manifolds, 270
 Actions on trees, 279
 Additivity Theorem for categories with cofibrations and weak equivalences, 163
 Additivity Theorem for exact categories, 144
 Algebraic L-theory of ZG for finite groups, 232
 Algebraic and topological K-theory mod k for R and C, 132
 Algebraic K-theory and directed colimits, 138
 Algebraic K-theory and finite products, 132
 Algebraic K-theory mod k of algebraically closed fields, 137
 Algebraic K-theory of finite fields, 138
 Bökstedt-Hsiang-Madsen Theorem, 409
 Basic properties of Whitehead torsion, 67
 Bass-Heller-Swan decomposition for middle and lower K-theory, 107
 Bass-Heller-Swan decomposition for $Wh(G \times \mathbb{Z})$, 83
 Bass-Heller-Swan decomposition for K_1 for regular rings, 86
 Bass-Heller-Swan decomposition for algebraic K-theory, 133
 Bass-Heller-Swan decomposition for homotopy K-theory, 129
 Bass-Heller-Swan decomposition for K_1, 53
 Bass-Heller-Swan decomposition lower and middle K-theory for regular rings, 109
 Bijectivity assembly map for topological cyclic homology for finite groups and the family of cyclic subgroups, 123
 Bijectivity of the L-theoretic assembly map from FIN to VCY after inverting 2, 357
 Bounded h-Cobordism Theorem, 116
 Brown’s Problem has a negative answer in general, 292
 Characterization of Dedekind domains, 28
 Cocompletion Theorem for the topological complex K-homology, 244
 Completion Theorem for complex and real K-theory, 243
 Computation of the topological K-theory of $\mathbb{Z}^n \times \mathbb{Z}/m$ for free conjugation action, 507
 Connectivity of the linearization map, 159
 Constructing G-homology theories using spectra, 409
 Constructing equivariant homology theories over a group using spectra, 333
 Constructing equivariant homology theories using spectra, 310
 Devissage, 132
 Diffeomorphism classification of lens spaces, 65
 Dimension of EG for elementary amenable groups of finite Hirsch length, 293
 Dimension of EG and extension, 291
 Dimension of EG for a discrete subgroup G of an almost connected Lie group, 291
 Dimension of EG for countable elementary amenable groups of finite Hirsch length, 291
Dimension of EG and EG for groups acting on CAT(0)-spaces,	294
Dirac-Dual Dirac Method,	617
Dirichlet Unit Theorem,	65
Discrete subgroups of almost connected Lie groups,	278
Dual of the Green-Julg Theorem,	262
Equivariant cellular Approximation theorem,	274
Equivariant Chern character for equivariant K-homology,	263
Equivariant Whitehead Theorem,	275
Estimate on $\dim(EG)$ in terms of $\text{vcd}(G)$,	292
Eventual injectivity of the rational K-theoretic assembly map for $R = \mathbb{Z}$,	470
Every CW-complex occurs up to homotopy as quotient of a classifying space for proper group actions,	290
Exact sequence of a two-sided ideal for middle K-theory,	90
Exact sequence of two-sided ideal for K-theory in degree ≤ 2,	121
External Künneth Theorem for complex K-theory,	242
Farrell-Jones Conjecture for torsionfree hyperbolic groups for K-theory,	404
Finite groups with vanishing $\text{Wh}(G)$ or $SK_1(\mathbb{Z}G)$,	101
Finite groups with vanishing $\check{K}_0(\mathbb{Z}G)$,	61
Finite-dimensional models for EG for discrete subgroup of $\text{GL}_n(R)$,	295
Finiteness conditions for BG,	288
Fundamental exact sequences for groups satisfying conditions (M) and (NM),	356
Fundamental Theorem of K-theory in dimension 1,	54
Geometric and algebraic Whitehead groups,	72
Gillet-Waldhausen zigzag for non-connective K-theory,	549
Grothendieck decomposition for G_0 and G_1,	85
h-cobordism theorem,	75
Hilbert Basis Theorem,	85
Homotopy characterization of $E_F(G)$,	270
Homotopy classification of Lens spaces,	78
Homotopy Groups of $\text{Diff}(M)$,	252
Homotopy Groups of $\text{Top}(M)$,	231
Homotopy Invariance of $\rho^{(2)}(M)$,	590
Hyperbolic groups with Čech-homology spheres as boundary,	228
Hyperbolic groups with spheres as boundary,	228
Hyperelementary Induction,	350
Identifying the finiteness obstruction with its geometric counterpart,	36
Immersions and Bundle Monomorphisms,	186
Independence of decorations,	203
Inheritance properties of the Meta-Isomorphism Conjecture for functors from spaces to spectra with coefficients,	412
Inheritance properties of the Baum-Connes Conjecture with coefficients,	352
Inheritance properties of the Farrell-Jones Conjecture,	344
Injectivity of the Farrell-Jones assembly map for $\mathcal{F}\mathcal{L}\mathcal{N}$ for linear groups,	454
Injectivity of the Farrell-Jones assembly map for $\mathcal{F}\mathcal{L}\mathcal{N}$ for subgroups of almost connected Lie groups,	453
K- and L-theory spectra over groupoids,	313
K- and L-groups of Fuchsian groups,	503
Künneth Theorem for KK-theory,	261
Künneth Theorem for finite CW-complexes for topological complex K-cohomology,	237
Künneth Theorem for topological K-theory of C^*-algebras,	272
$K_0(R)$ of local rings,	54
$K_0(RG)$ for finite G and an Artinian ring R,	54
$K_0(RG)$ is finite for finite G and R the ring of integers in an algebraic number field,	49
$K_1(B)$ of a commutative Banach algebra,	103
$K_1(B)$ of a commutative C^*-algebra $C(X)$,	103
$K_1(F)$ of skewfields,	59
$K_1(R)$ equals $GL(R)/(GL(R),GL(R))$,	61
$K_1(R) = R^*$ for commutative rings with Euclidean algorithm,	63
Karoubi’s Conjecture,	265
L-groups of the integers in dimension 4n, 173
L-groups of the integers in dimension 4n + 2, 174
L-theory and topological K-theory of complex C*-algebras, 266
Localization, 143
Localization Theorem for equivariant topological complex K-theory, 243
Long exact sequence of a two-sided ideal for higher algebraic K-theory, 172
Low-dimensional models for EG and BG, 298
Lower and middle K-theory of the integral group ring of $SL_3(\mathbb{Z})$, 509
Mayer-Vietoris sequence for K-theory in degree ≤ 2 of a pullback of rings, 121
Mayer-Vietoris sequence for middle K-theory of a pullback of rings, 88
Mayer-Vietoris sequence of an amalgamated free product for algebraic K-theory, 147
Mayer-Vietoris sequence of an amalgamated free product for homotopy K-theory, 149
Models for EG of finite type, 289
Morita equivalence for $K_0(R)$, 26
Morita equivalence for $K_1(R)$, 96
Morita equivalence for algebraic K-theory, 132
Negative K-theory of RG for finite groups G and Dedekind domains of characteristic zero R, 116
$NK_n(R)[1/N]$ vanishes for characteristic N, 134
Noetherian group rings, 88
Non-triangulable aspherical closed manifolds, 219
Operator theoretic model, 278
p-elementary induction for $NK_n(RG)$, 153
Passage from $\mathcal{F}N$ to \mathcal{VCY} for L-theory, 194
Passage from $R\mathcal{F}Y$ to \mathcal{VCY} for K-theory, 350
Passage from \mathcal{VCY}_1 to \mathcal{VCY} for K-theory, 350
Passage from EG to EG, 283
Poincaré duality groups and aspherical compact homology ANR-manifolds, 227
Product decompositions of aspherical closed manifolds, 230
Properties of the finiteness obstruction, 33
Properties of the plus-construction, 130
Properties of the signature of oriented compact manifolds, 167
Pseudoisotopy is a homotopy-invariant functor, 154
Rational algebraic K-theory of ring of integers of number fields, 135
Rational computation of algebraic L-theory, 184
Rational computation of the source of the assembly maps appearing in the Farrell-Jones and Baum-Connes Conjecture, 327
Rational computation of topological K-theory, 254
Rational computations of $K_n(RG)$ for regular R, 483
Rational injectivity of $\mathbb{Z} \otimes_{RG} Wh(H) \to Wh(G)$ for normal finite $H \subseteq G$, 175
Rationally injectivity of the colimit map for finite subgroups for the Whitehead group, 470
Realizability of the surgery obstruction, 207
Reducing the family of subgroups for the Baum-Connes Conjecture, 389
Reductions to families contained in FIN for algebraic K-theory, 351
Reflection group trick, 475
Regular group rings, 86
Relating the K-theory of $DG(X)$ and DG_0, 590
Relative Whitehead Lemma, 92
Resolution Theorem, 412
Rim’s Theorem, 47
Rips complex, 280
s-cobordism Theorem, 73
Selfintersections and embeddings, 179
Shaneson splitting, 204
Signature Theorem, 214
Simple surgery obstruction for manifolds with boundary, 202
$SK_1(G) = \text{tors}(Wh(G))$, 101
Slice Theorem for G-CW-complexes, 273
Split Injectivity of the assembly map appearing in the L-theoretic Farrell Jones Conjecture with coefficients in the ring \mathbb{Z} for fundamental groups of complete Riemannian manifolds with non-negative sectional curvature, 452
Split injectivity of the assembly map appearing in the Baum-Connes Conjecture for fundamental groups of complete Riemannian manifolds with non-positive sectional curvature, 450
Split injectivity of the assembly map appearing in the Baum-Connes Conjecture with coefficient, 451
Splitting the K-theoretic assembly map from \mathcal{FN} to \mathcal{VCY}, 436
Splitting the L-theoretic assembly map from \mathcal{FN} to \mathcal{VCY}, 437
Stable Cannon Conjecture, 229
Status of the Full Farrell-Jones Conjecture, 441
Status of the Baum-Connes Conjecture with coefficients, 446
Status of the Baum-Connes Conjecture, 449
Status of the Coarse Baum-Connes Conjecture, 450
Status of the Farrell-Jones Conjecture for A-theory with coefficients finite wreath products, 470
Status of the Full Farrell-Jones Conjecture for coefficients in right-exact ∞-categories, 471
Strategy Theorem, 613
Surgery Exact Sequence, 210
Surgery Exact Sequence for PL and TOP, 211
Surgery Obstruction for Manifolds with Boundary, 197
Surgery obstruction in even dimensions, 190
Surgery obstruction in odd dimensions, 196
Swan’s Theorem, 30
The K-theoretic Farrell-Jones Conjecture implies the Farrell-Jones Conjecture for homotopy K-theory, 250
The p-chain spectral sequence, 249
The algebraic K-groups of $D^c(X,A)$ yield a G-homology theory, 489
The algebraic K-groups of $D_c^c(X,A)$ yield a G-homology theory, 490
The algebraic K-theory and L-theory of right-angled Artin groups, 511
The Bass Conjecture for integral domains and elements of finite order, 528
The Baum-Connes Conjecture implies the Novikov Conjecture, 381
The Baum-Connes Conjecture implies the Stable Gromov-Lawson-Rosenberg Conjecture, 388
The Baum-Connes Conjecture with coefficients for proper $G_\mathbb{C}^\ast$-algebras, 617
The class groups of a ring of integers is finite, 29
The dimension of EG, 293
The equivariant Atiyah-Hirzebruch spectral sequence, 314
The equivariant Chern character, 320
The Farrell-Jones and the Borel Conjecture, 222
The Farrell-Jones Conjecture and the Bass Conjecture for fields of characteristic zero, 29
The Farrell-Jones Conjecture and the Bass Conjecture for integral domains, 48
The Farrell-Jones Conjecture holds for topological Hochschild homology, 422
The Farrell-Jones Conjecture with coefficients in additive G-categories (with involutions) is automatically fibered, 490
The finiteness obstruction is the universal functorial additive invariant, 38
The Full Farrell-Jones Conjecture and relatively hyperbolic groups, 457
The Full Farrell-Jones Conjecture for normally poly-free groups, 465
The Full Farrell-Jones Conjecture for strongly poly-surface groups, 464
The Full Farrell-Jones Conjecture implies all other variants, 561
The generalized Swan homomorphism, 97
The geometric finiteness obstruction, 35
The middle and lower K-theory of RG for finite G and Artinian R, 113
The reduced projective class group and the class group of Dedekind domains, 28
The set of normal maps and G/O, G/PL and G/TOP, 211
The stable parametrized h-cobordism Theorem, 162
The strong Novikov Conjecture implies the Zero-in-the-spectrum Conjecture, 396
The topological K-theory of right-angled Artin groups, 511
The topological K-theory of right-angled Coxeter groups. 512

The weak homotopy fibration sequence of a Karoubi filtration. 531

The weak homotopy fibration sequence of a stable Karoubi filtration for K-theory in the setting of Waldhausen categories. 538

The weak homotopy fibration sequence of a stable Karoubi filtration for K-theory. 546

Topological K-theory of the C^*-algebra of finite groups. 267

Topological K-theory of the C^*-algebra $E_{FIN}(SL_3(Z))$. 110

Topological invariance of rational Pontrjagin classes. 215

Topological invariance of Whitehead torsion. 68

Torsion and free homotopy representations. 98

Universal Coefficient Theorem for KK-theory. 267

Universal Coefficient Theorem for equivariant complex K-theory. 241

Universal Property of assembly. 524

Vanishing criterion of $NK_n(RG)$ for finite groups. 134

Vanishing of $NK_n(Z[G \times \mathbb{Z}]^k)$ for $n \leq 1$, $k \geq 0$ and finite G of squarefree order. 524

Vanishing of $NK_n(RK, \phi)$. 148

Vanishing of the odd-dimensional L-groups of the ring of integers. 194

Vanishing results for $D(ZG)$. 63

Waldhausen’s cartesian squares for non-connective algebraic K-theory. 140

Wang sequence associated to an HNN-extension for algebraic K-theory. 117

Wang sequence associated to an HNN-extension for homotopy K-theory. 140

Whitehead torsion and simple homotopy equivalences. 70

Whitney’s Approximation Theorem. 182

Theorem: Status of the Farrell-Jones Conjecture for homotopy K-theory. 444

Thom isomorphism. 242

topological cyclic homology. 151
topological K-theory

K-homology of a C^*-algebra. 260

complex topological K-cohomology of spaces. 235

complex topological K-homology of spaces. 236

complex topological K-theory of spaces. 235

equivariant complex topological K-homology of spaces. 263

equivariant complex topological K-theory of spaces. 263

equivariant real topological K-homology of spaces. 264

equivariant real topological K-theory of spaces. 264

twisted topological K-theory. 239

topological rigid. 220

total surgery obstruction. 212

trace cyclotomic. 151

standard trace of $C^*_r(G)$. 255

transport groupoid. 309

tree. 279

type FP for groups. 225

type FP for modules. 287

type FP for groups. 287

type FP for modules. 287

U-filtered. 530

U-simple. 199

U-torsion

of a contractible finite U-stably based chain complex. 198

of a stable isomorphism of stably U-based modules. 195

uniform embedding into Hilbert space. 450

uniformly contractible metric spaces. 481

unit disk. 77

unit sphere. 77

universal additive invariant for finitely generated projective R-modules. 24

universal central extension. 120

universal determinant for automorphisms of finitely generated projective R-modules. 58
universal dimension function for finitely generated projective R-modules, 24
universal functorial additive invariant for finitely dominated CW-complexes, 37
universal G-CW-complex for proper G-actions, 276
virtual cohomological dimension, 290
virtual (P) group, 85
w-orientation, 181
w-oriented manifold, 182
weak
weak G-homotopy equivalence, 275
homotopy equivalence, 275
weak equivalence of spectra, 308
Weyl group, 271
Whitehead group, 64
generalized, 64
higher, 200
second, 125
Whitehead torsion
of a chain homotopy equivalence, 66
geometric, 72
of a homotopy equivalence of finite CW-complexes, 66
of an h-cobordism, 74
wreath product, 101, 342
Z-order, 49
zero-object, 155
Chapter 25
Comments (temporary chapter)

Comment 34: This chapter has to be taken out in the final version.

25.1 Mathematical Comments and Problems

17.08.2011 Can one reformulate the proof of the Farrell-Jones Conjecture so that one
has still an honest G-action on the CAT(0)-space, and the difficulties about
having only a homotopy action are absorbed in the control conditions?

24.08.15 Do we also have equivariant Chern characters in the case where we look
at equivariant homology over a given group Γ? This is not obvious since
the compatibility with induction is only available for g in the kernel of
$\alpha: G \to \Gamma$.

Let $\gamma \in \Gamma$ be an element. Conjugation defines a group automorphism
$c(\gamma): \Gamma \to \Gamma$ and hence an equivalence $c(\gamma): \text{GROUPOIDS} \downarrow \Gamma \to \text{GROUPOIDS} \downarrow \Gamma$. One can consider for $E: \text{GROUPOIDS} \downarrow \Gamma \to \text{SPECTRA}$ its composite $c(g)^*E := E \circ c(g)$. One has to investigate when
there is a natural equivalence $\mathcal{H}_\ast^c(\cdot; -; E) \xrightarrow{\sim} \mathcal{H}_\ast^c(\cdot; -; c(g)^*E)$ and investi-
gate its properties.

We also have to deal with the observation that conjugation with g induces
on $L_n(\mathbb{Z}G, w)$ the map $w(g) \cdot \text{id}$. This can be a serious problem.

19.10.2017 Sollen wir N-\mathcal{F}-amenable diskutieren?

25.2 Mathematical Items or Explanations that Have to
Be Added

•

25.3 Layout and presentation

(i) Shall we add a guide to the introductions of each of the chapters like in
the surgery book?

(ii) We can either write
(see \cite{...}).

or

, see \cite{...}

This has to be decided and implemented everywhere.

25.4 Papers Which We Have Cited but Could Not Download and Check

[200, 450, 453].

25.5 Comments about \LaTeX{}

22.12.04 In labels never let blanks or $-$signs appear. Moreover, use sec:, the:, proc:, lem:, def:, con: or rem: and so on to indicate whether it is a Theorem, Proposition, Lemma, Definition, Conjecture or Remark and so on. For instance

\label{con:BCC_torsionfree_intro};

27.08.2011 Use \[\] and not $$ $$ for display math.

27.08.2011 Do not use CD but always xymatrix for diagrams.

25.6 Comments about the Layout

22.12.04 Except in the main Introduction or in environments like Definition I emphasize a notion if and only if it appears in the index. For instance

\ldots\textbf{\emph{Whitehead group}}\%
\index{Whitehead group}
$\text{Wh}(G)\%$
\indexnotation{Wh(G)}\ldots;

22.12.04 In itemize or enumerate descriptions I use semicolons at the end of an item except for the last which ends with a point. I have done this also in enumerate environments appearing in Theorems or Lemmas.;

22.12.04 After commutative squares or other diagrams do not insert a point or comma in contrast to equations or other displayments;

22.12.04 Theorems, Conjectures, Questions and Problems are cited in the index. For instance

\index{Theorem!Dirac-Dual Dirac Method}
This is not done for Definitions as new notions regardless whether they
Comments about Spelling

22.12.04 I use analogue (British) instead of analog (American);
27.12.04 torsionfree (One word);
27.12.04 semisimple (One word);
28.12.04 pseudoisotopy (One word);
29.12.04 prove, proved proven;
29.12.04 choose, chosed, chosen;

27.12.04 I sometimes have used EG and E for $E_{FLN}(G)$ and $E_{VCY}(G)$. There are macros \eub{# 1} and \edub{# 1} to generate EG and E;
31.12.04 Denote the complex or real representation ring by $RC(G)$ and $RR(G)$;
31.12.04 Use always the proof environment.
03.01.05 Assembly maps are denote by the letter A with possible subscripts indicating the family, e.g. A_{FLN} or $A_{FLN\rightarrow VCY}$. We do not write the group G or the dimension n in connection with the assembly map. For instance, we write $A_{FLN\rightarrow VCY}: K_G^G(E_{FLN}(G)) \rightarrow K_G^G(E_{VCY}(G))$;
04.01.05 Notation for matrix algebras: $SL_n(R)$, $GL_n(R)$, $M_n(R)$, $M_{m,n}(R)$;
08.01.05 I use ... except for the beginning or ends or long exact sequence, where I use \ldots. For instance
\[
\cdots \frac{d_{i+1}}{d_i} K_n^G(EG_0) \rightarrow K_n^G(EG_1) \oplus K_n^G(EG_2) \rightarrow K_n^G(EG) \frac{d_i}{d_{i-1}}
\]
and $i = 1, 2, \ldots, n$;
09.01.05 Use everywhere the macro \pt for the one point space\{\bullet\}. Then it can changed later if this is wanted;
09.01.05 I have used smooth instead of differentiable everywhere in the text except for standard notations such as P^{diff};
09.05.06 Use the new macro for exercise \exer and for hints \hintex. The exercises appear now in the text and not in an extra section at the end of a chapter.
28.05.06 The titles in chapters, sections and subsections are always capital. Title of Theorems and Definitions begin with a capital letter but then continue with small letters.
23.02.07 Theorems and Definitions do get a name, stated in brackets after the begin-command.
03.06.2012 We must decide whether we take ϕ or φ and ϵ and ε.
24.08.2015 In some chapters we use EG and E, in others we use $E_{FLN}(G)$ and $E_{VCY}(G)$. Check that this is at least consistent in each chapter and whether we have made the right choice in each chapter.

25.7 Comments about Spelling

22.12.04 I use analogue (British) instead of analog (American);
27.12.04 torsionfree (One word);
27.12.04 semisimple (One word);
28.12.04 pseudoisotopy (One word);
29.12.04 prove, proved proven;
29.12.04 choose, chosed, chosen;
09.01.05 We should agree on a unified use of the words any, each and every; I am not certain about the rules;
09.05.06 Write semigroup, semisimple, semidirect and so on;
13.05.06 Before R and S it must be “an”, before h it depends on the pronunciation e.g., “an h-cobordism”, but “a homomorphism”.
13.05.06 Write “generalization” and “generalize”;
21.05.06 Write “well-known” and “well-defined”;
24.05.06 Write “simply connected” and “path connected”;
24.05.06 Insert always a comma after “namely”;
25.05.06 Write selfmap, selfdiffeomorphism, and so on;
01.03.11 Write finite dimensional and not finite-dimensional.
15.08.2011 Write “aspherical closed manifolds”, i.e., “aspherical” before “closed”
24.08.2011 Write “one-relator group”.
24.08.2011 Write “hyperbolic group” and not “word-hyperbolic group”.
26.08.2011 Write “handlebody” and not “handle body”.

25.8 Reminders

05.09.2013 There is a new preprint by Mole [672] with the title *Extending a metric on a simplicial complex* on the arXive under arXiv:1309.0981 [math.AT]. It should appear somewhere in Part III.
02.10.2014 There is a draft of a book by Weinberger with the title *Variations of a theme by Borel*. When it has appeared, we shall add a reference.
23.04.2015 There is a the article *On equivariant asymptotic dimension* by Damien Sawacki [805]. This is related to transfer reducibility. It may appear somewhere in Part III.
17.05.2015 There is the article by Kasprowski and Rüping [515] with the title *Long and thin covers for cocompact flow spaces* It may appear somewhere in Part III.
22.08.2015 Has the preprint by Mole and Rüping [673] appeared? It may appear somewhere in Part III.
11.12.2015 There is a paper by Gonzalez-Acuna-Gordon-Simon [383] Theorem 5.6 und Corollary 5.7 with the title *Unsolvable problems about higher-dimensional knots and related groups*, where they show that the problem, whether the projective class group or the Whitehead group of a group is trivial, cannot be decided.
01.11.2016 There is a new preprint *Burghelea conjecture and asymptotic dimension of groups* by Alexander Engel and Michal Marcinkowski on the arXive under arXiv:1610.10076 [math.GT], see [314].
03.04.2017 There is a new preprint with the title *Bivariant KK-theory and the Baum-Connes conjecture* by Echterhoff [294] on the arXive under arXiv:1703.10912 [math.KT]

04.10.2018 The paper by Bartels [87] with the title *On proofs of the Farrell-Jones Conjecture* should appear somewhere in Part III.

27.05.2019 The conjecture that the group ring of a torsionfree groups embeds into a skew-field is due to Mal’cev [631].

06.06.2019 There is a new preprint *Finite Subgroups of Group Rings: A survey* by Margolis-del Rio [634], on the arXive under arXiv:1809.00718 [math.GR].

04.06.2020 The paper [400] makes connections to Bartels-Lück-Reich [80] and may appear in Part III. It does not contain consequences for the Farrell-Jones or Baum-Connes Conjecture. It has not yet been cited.

04.06.2020 The paper [251] should be cited somewhere, maybe in the introduction.

04.06.2020 The papers [327] and [328] by Farrell-Jones have not yet been cited. Maybe we should do this in the introduction, when we will praise their contribution or their appear naturally in Part III.

04.06.2020 The paper [359] should be cited when we discuss whether the Farrell-Jones Conjecture may not be decidable.

04.06.2020 The paper by Velasquez [878] may be cited in the chapter about assembly maps.

04.06.2020 The papers [294, 295] should be cited in Part III.

10.09.2020 There is the final version of the paper The Baum–Connes conjecture localised at the unit element of a discrete group by Antonini-Azalli-Skandalis [35] on the arXive which will appear in Compositio.

01.04.2021 There is a new preprint by Markus Zeggle with the title *The Bounded Isomorphism Conjecture for Box Spaces of Residually Finite Groups* on the arXive under arXiv:2103.16967 [math.KT].

28.05.2021 There is a new preprint with the title *Farrell-Jones Conjecture for free-by-cyclic groups* by Bestvina-Fujiwara-Wigglesworth [121] on the arXive under arXiv:2105.13291 [math.GT].

07.06.2021 There is a new preprint with the title *More Counterexamples to the Unit Conjecture for Group Rings* by Murray [678] on the arXive under arXiv:2106.02147 [math.RA].

09.06.2021 The book *A course on surgery theory* by Chang-Weinberger [202] has appeared and we should add references to it at various places.

08.07.2021 There is a new preprint by Bunke-Engels-Land with the title *Paschke duality and assembly maps* by Bunke-Engels-Land [161], where they identify the Davis-Lueck assembly map with the Baum-Connes assembly map.

25.10.2021 In der Doktorarbeit von Lehner mit dem Titel *The passage from the integral to the rational group ring in algebraic K-theory* wird die integrale $K_0(\mathbb{Z}G)$-to-$K_0(\mathbb{Q}G)$-Vermutung widerlegt. Das könnte man in den Text aufnehmen.

07.03.2022 There is a new preprint *Torus bundles over lens spaces* by Oliver Wang on the arXive under arXiv:2203.02566 [math.GT].

13.03.2022 There is a new preprint *Bredon and Farrell-Jones homology of Artin groups of dihedral type* by Anatolin-Flores [34] on the arXive under arXiv:2203.06706 [math.AT].

25.9 Additional References

[34, 29], [30], [31], [32], [35, 67], [69], [73], [74], [150], [159], [160], [157], [158], [163], [162], [186], [202], [251], [294], [295], [314], [327], [328], [383], [400], [515], [526], [598], [631], [634], [672], [673], [678, 682], [717], [747], [789], [805], [839], [878], [899], [941].

last edited on 15.03.2022
last compiled on March 21, 2022
name of texfile: ic