The Isomorphism Conjectures in the torsionfree case (Lecture II)

Wolfgang Lück
Münster
Germany
email lueck@math.uni-muenster.de
http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007
We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $Wh(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $Wh(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Cliffhanger

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
We have introduced $K_n(R)$ for $n \in \mathbb{Z}$, $n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $\text{Wh}(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $\text{Wh}(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Cliffhanger

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
Flashback

- We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.
- We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $Wh(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.
- We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $Wh(G)$ vanish for torsionfree G.
- We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Cliffhanger

Question (*K*-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $\text{Wh}(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $\text{Wh}(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Cliffhanger

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $Wh(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $Wh(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Cliffhanger

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
We have introduced $K_n(R)$ for $n \in \mathbb{Z}$, $n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $Wh(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $Wh(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $Wh(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $Wh(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Cliffhanger

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.

We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group $Wh(G)$, e.g., the finiteness obstruction and the s-cobordism theorem.

We have stated the conjectures that $\tilde{K}_0(\mathbb{Z}G)$ and $Wh(G)$ vanish for torsionfree G.

We have presented the Bass-Heller-Swan decomposition and indicated some similarities between $K_n(RG)$ and group homology.

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?
We introduce **spectra** and how they yield **homology theories**.

We state the **Farrell-Jones-Conjecture** and the **Baum-Connes Conjecture** for torsionfree groups.

We discuss applications of these conjectures such as the **Kaplansky Conjecture** and the **Borel Conjecture**.

We explain that the formulations for torsionfree groups cannot extend to arbitrary groups.
We introduce **spectra** and how they yield **homology theories**.

We state the **Farrell-Jones-Conjecture** and the **Baum-Connes Conjecture** for torsionfree groups.

We discuss applications of these conjectures such as the **Kaplansky Conjecture** and the **Borel Conjecture**.

We explain that the formulations for torsionfree groups cannot extend to arbitrary groups.
We introduce \textit{spectra} and how they yield \textit{homology theories}.

We state the \textbf{Farrell-Jones-Conjecture} and the \textbf{Baum-Connes Conjecture} for torsionfree groups.

We discuss applications of these conjectures such as the \textbf{Kaplansky Conjecture} and the \textbf{Borel Conjecture}.

We explain that the formulations for torsionfree groups cannot extend to arbitrary groups.
We introduce spectra and how they yield homology theories.

We state the Farrell-Jones-Conjecture and the Baum-Connes Conjecture for torsionfree groups.

We discuss applications of these conjectures such as the Kaplansky Conjecture and the Borel Conjecture.

We explain that the formulations for torsionfree groups cannot extend to arbitrary groups.
We introduce spectra and how they yield homology theories.

We state the Farrell-Jones-Conjecture and the Baum-Connes Conjecture for torsionfree groups.

We discuss applications of these conjectures such as the Kaplansky Conjecture and the Borel Conjecture.

We explain that the formulations for torsionfree groups cannot extend to arbitrary groups.
Homology theories and spectra

Definition (Spectrum)

A *spectrum*

\[E = \{(E(n), \sigma(n)) \mid n \in \mathbb{Z}\} \]

is a sequence of pointed spaces \(\{E(n) \mid n \in \mathbb{Z}\} \) together with pointed maps called *structure maps*

\[\sigma(n) : E(n) \wedge S^1 \to E(n + 1). \]

A *map of spectra*

\[f : E \to E' \]

is a sequence of maps \(f(n) : E(n) \to E'(n) \) which are compatible with the structure maps \(\sigma(n) \), i.e.,

\[f(n + 1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge \text{id}_{S^1}) \]

holds for all \(n \in \mathbb{Z} \).
Homology theories and spectra

Definition (Spectrum)

A *spectrum* \(E = \{(E(n), \sigma(n)) \mid n \in \mathbb{Z}\} \)

is a sequence of pointed spaces \(\{E(n) \mid n \in \mathbb{Z}\} \) together with pointed maps called *structure maps*

\[\sigma(n): E(n) \wedge S^1 \to E(n + 1). \]

A *map of spectra* \(f: E \to E' \)

is a sequence of maps \(f(n): E(n) \to E'(n) \) which are compatible with the structure maps \(\sigma(n) \), i.e., \(f(n + 1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge \text{id}_{S^1}) \) holds for all \(n \in \mathbb{Z} \).
Definition (Spectrum)

A *spectrum*

\[E = \{ (E(n), \sigma(n)) \mid n \in \mathbb{Z} \} \]

is a sequence of pointed spaces \(\{ E(n) \mid n \in \mathbb{Z} \} \) together with pointed maps called *structure maps*

\[\sigma(n) : E(n) \wedge S^1 \longrightarrow E(n + 1). \]

A *map of spectra*

\[f : E \rightarrow E' \]

is a sequence of maps \(f(n) : E(n) \rightarrow E'(n) \) which are compatible with the structure maps \(\sigma(n) \), i.e., \(f(n + 1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge \text{id}_{S^1}) \) holds for all \(n \in \mathbb{Z} \).
Definition (Spectrum)

A *spectrum*

\[E = \{(E(n), \sigma(n)) \mid n \in \mathbb{Z}\} \]

is a sequence of pointed spaces \(\{E(n) \mid n \in \mathbb{Z}\} \) together with pointed maps called *structure maps*

\[\sigma(n) : E(n) \wedge S^1 \to E(n + 1). \]

A *map of spectra*

\[f : E \to E' \]

is a sequence of maps \(f(n) : E(n) \to E'(n) \) which are compatible with the structure maps \(\sigma(n) \), i.e., \(f(n + 1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge \text{id}_{S^1}) \) holds for all \(n \in \mathbb{Z} \).
Given two pointed spaces \(X = (X, x_0) \) and \(Y = (Y, y_0) \), their one-point-union and their smash product are defined to be the pointed spaces

\[
X \vee Y := \{ (x, y_0) \mid x \in X \} \cup \{ (x_0, y) \mid y \in Y \} \subseteq X \times Y;
\]

\[
X \wedge Y := (X \times Y)/(X \vee Y).
\]

We have \(S^{n+1} \cong S^n \wedge S^1 \).

The sphere spectrum \(S \) has as \(n \)-th space \(S^n \) and as \(n \)-th structure map the homeomorphism \(S^n \wedge S^1 \cong S^{n+1} \).

Let \(X \) be a pointed space. Its suspension spectrum \(\Sigma^\infty X \) is given by the sequence of spaces \(\{ X \wedge S^n \mid n \geq 0 \} \) with the homeomorphism \((X \wedge S^n) \wedge S^1 \cong X \wedge S^{n+1} \) as structure maps. We have \(S = \Sigma^\infty S^0 \).
Given two pointed spaces $X = (X, x_0)$ and $Y = (Y, y_0)$, their one-point-union and their smash product are defined to be the pointed spaces

\[
X \vee Y := \{(x, y_0) \mid x \in X\} \cup \{(x_0, y) \mid y \in Y\} \subseteq X \times Y;
\]

\[
X \wedge Y := (X \times Y)/(X \vee Y).
\]

We have $S^{n+1} \cong S^n \wedge S^1$.

The sphere spectrum S has as n-th space S^n and as n-th structure map the homeomorphism $S^n \wedge S^1 \cong S^{n+1}$.

Let X be a pointed space. Its suspension spectrum $\Sigma^\infty X$ is given by the sequence of spaces $\{X \wedge S^n \mid n \geq 0\}$ with the homeomorphism $(X \wedge S^n) \wedge S^1 \cong X \wedge S^{n+1}$ as structure maps. We have $S = \Sigma^\infty S^0$.

Given two pointed spaces \(X = (X, x_0) \) and \(Y = (Y, y_0) \), their one-point-union and their smash product are defined to be the pointed spaces

\[
X \vee Y := \{(x, y_0) \mid x \in X\} \cup \{(x_0, y) \mid y \in Y\} \subseteq X \times Y;
\]

\[
X \wedge Y := (X \times Y)/(X \vee Y).
\]

We have \(S^{n+1} \cong S^n \wedge S^1 \).

The sphere spectrum \(S \) has as \(n \)-th space \(S^n \) and as \(n \)-th structure map the homeomorphism \(S^n \wedge S^1 \xrightarrow{\cong} S^{n+1} \).

Let \(X \) be a pointed space. Its suspension spectrum \(\Sigma^\infty X \) is given by the sequence of spaces \(\{X \wedge S^n \mid n \geq 0\} \) with the homeomorphism \((X \wedge S^n) \wedge S^1 \cong X \wedge S^{n+1} \) as structure maps. We have \(S = \Sigma^\infty S^0 \).
Given two pointed spaces $X = (X, x_0)$ and $Y = (Y, y_0)$, their one-point-union and their smash product are defined to be the pointed spaces

$$X \vee Y := \{(x, y_0) \mid x \in X\} \cup \{(x_0, y) \mid y \in Y\} \subseteq X \times Y;$$

$$X \wedge Y := (X \times Y)/(X \vee Y).$$

We have $S^{n+1} \cong S^n \wedge S^1$.

The sphere spectrum S has as n-th space S^n and as n-th structure map the homeomorphism $S^n \wedge S^1 \cong S^{n+1}$.

Let X be a pointed space. Its suspension spectrum $\Sigma^\infty X$ is given by the sequence of spaces $\{X \wedge S^n \mid n \geq 0\}$ with the homeomorphism $(X \wedge S^n) \wedge S^1 \cong X \wedge S^{n+1}$ as structure maps. We have $S = \Sigma^\infty S^0$.

Wolfgang Lück (Münster, Germany) The Iso. Conj. in the torsionfree case Hangzhou, July 2007 5 / 35
Given two pointed spaces $X = (X, x_0)$ and $Y = (Y, y_0)$, their one-point-union and their smash product are defined to be the pointed spaces

$$X \vee Y := \{(x, y_0) \mid x \in X\} \cup \{(x_0, y) \mid y \in Y\} \subseteq X \times Y;$$

$$X \wedge Y := (X \times Y)/(X \vee Y).$$

We have $S^{n+1} \cong S^n \wedge S^1$.

The sphere spectrum S has as n-th space S^n and as n-th structure map the homeomorphism $S^n \wedge S^1 \xrightarrow{\cong} S^{n+1}$.

Let X be a pointed space. Its suspension spectrum $\Sigma^\infty X$ is given by the sequence of spaces $\{X \wedge S^n \mid n \geq 0\}$ with the homeomorphism $(X \wedge S^n) \wedge S^1 \cong X \wedge S^{n+1}$ as structure maps. We have $S = \Sigma^\infty S^0.$
Given two pointed spaces \(X = (X, x_0) \) and \(Y = (Y, y_0) \), their one-point-union and their smash product are defined to be the pointed spaces

\[
X \vee Y := \{(x, y_0) \mid x \in X\} \cup \{(x_0, y) \mid y \in Y\} \subseteq X \times Y;
\]

\[
X \wedge Y := (X \times Y)/(X \vee Y).
\]

We have \(S^{n+1} \cong S^n \wedge S^1 \).

The sphere spectrum \(S \) has as \(n \)-th space \(S^n \) and as \(n \)-th structure map the homeomorphism \(S^n \wedge S^1 \xrightarrow{\cong} S^{n+1} \).

Let \(X \) be a pointed space. Its suspension spectrum \(\Sigma^\infty X \) is given by the sequence of spaces \(\{X \wedge S^n \mid n \geq 0\} \) with the homeomorphism \((X \wedge S^n) \wedge S^1 \cong X \wedge S^{n+1} \) as structure maps. We have \(S = \Sigma^\infty S^0 \).
Definition (\(\Omega\)-spectrum)

Given a spectrum \(E\), we can consider instead of the structure map \(\sigma(n) : E(n) \wedge S^1 \to E(n + 1)\) its adjoint

\[\sigma'(n) : E(n) \to \Omega E(n + 1) = \text{map}(S^1, E(n + 1)).\]

We call \(E\) an \(\Omega\)-spectrum if each map \(\sigma'(n)\) is a weak homotopy equivalence.
Definition (Ω-spectrum)

Given a spectrum E, we can consider instead of the structure map $\sigma(n): E(n) \wedge S^1 \to E(n + 1)$ its adjoint

$$\sigma'(n): E(n) \to \Omega E(n + 1) = \text{map}(S^1, E(n + 1)).$$

We call E an Ω-spectrum if each map $\sigma'(n)$ is a weak homotopy equivalence.
Definition (Ω-spectrum)

Given a spectrum E, we can consider instead of the structure map $\sigma(n): E(n) \wedge S^1 \to E(n + 1)$ its adjoint

$$\sigma'(n): E(n) \to \Omega E(n + 1) = \text{map}(S^1, E(n + 1)).$$

We call E an Ω-spectrum if each map $\sigma'(n)$ is a weak homotopy equivalence.
Definition (Homotopy groups of a spectrum)

Given a spectrum E, define for $n \in \mathbb{Z}$ its n-th homotopy group

$$\pi_n(E) := \colim_{k \to \infty} \pi_{k+n}(E(k))$$

to be the abelian group which is given by the colimit over the directed system indexed by \mathbb{Z} with k-th structure map

$$\pi_{k+n}(E(k)) \xrightarrow{\sigma'(k)} \pi_{k+n}(\Omega E(k+1)) = \pi_{k+n+1}(E(k+1)).$$

- Notice that a spectrum can have in contrast to a space non-trivial negative homotopy groups.
- If E is an Ω-spectrum, then $\pi_n(E) = \pi_n(E(0))$ for all $n \geq 0$.
Definition (Homotopy groups of a spectrum)

Given a spectrum E, define for $n \in \mathbb{Z}$ its n-th homotopy group

$$\pi_n(E) := \colim_{k \to \infty} \pi_{k+n}(E(k))$$

to be the abelian group which is given by the colimit over the directed system indexed by \mathbb{Z} with k-th structure map

$$\pi_{k+n}(E(k)) \xrightarrow{\sigma'(k)} \pi_{k+n}(\Omega E(k+1)) = \pi_{k+n+1}(E(k+1)).$$

Notice that a spectrum can have in contrast to a space non-trivial negative homotopy groups.

If E is an Ω-spectrum, then $\pi_n(E) = \pi_n(E(0))$ for all $n \geq 0$.
Definition (Homotopy groups of a spectrum)

Given a spectrum E, define for $n \in \mathbb{Z}$ its n-th homotopy group

$$\pi_n(E) := \text{colim}_{k \to \infty} \pi_{k+n}(E(k))$$

to be the abelian group which is given by the colimit over the directed system indexed by \mathbb{Z} with k-th structure map

$$\pi_{k+n}(E(k)) \xrightarrow{\sigma'(k)} \pi_{k+n}(\Omega E(k + 1)) = \pi_{k+n+1}(E(k + 1)).$$

- Notice that a spectrum can have in contrast to a space non-trivial negative homotopy groups.
- If E is an Ω-spectrum, then $\pi_n(E) = \pi_n(E(0))$ for all $n \geq 0$.
Definition (Homotopy groups of a spectrum)

Given a spectrum E, define for $n \in \mathbb{Z}$ its n-th homotopy group

$$\pi_n(E) := \colim_{k \to \infty} \pi_{k+n}(E(k))$$

to be the abelian group which is given by the colimit over the directed system indexed by \mathbb{Z} with k-th structure map

$$\pi_{k+n}(E(k)) \xrightarrow{\sigma'(k)} \pi_{k+n}(\Omega E(k + 1)) = \pi_{k+n+1}(E(k + 1)).$$

- Notice that a spectrum can have in contrast to a space non-trivial negative homotopy groups.
- If E is an Ω-spectrum, then $\pi_n(E) = \pi_n(E(0))$ for all $n \geq 0$.
Eilenberg-MacLane spectrum

Let A be an abelian group. The n-th Eilenberg-MacLane space $EM(A, n)$ associated to A for $n \geq 0$ is a CW-complex with $\pi_m(EM(A, n)) = A$ for $m = n$ and $\pi_m(EM(A, n)) = \{0\}$ for $m \neq n$. The associated Eilenberg-MacLane spectrum $H(A)$ has as n-th space $EM(A, n)$ and as n-th structure map a homotopy equivalence $EM(A, n) \rightarrow \Omega EM(A, n + 1)$.

Algebraic K-theory spectrum

For a ring R there is the algebraic K-theory spectrum K_R with the property

$$\pi_n(K_R) = K_n(R) \quad \text{for } n \in \mathbb{Z}.$$
Eilenberg-MacLane spectrum

Let A be an abelian group. The n-th Eilenberg-MacLane space $EM(A, n)$ associated to A for $n \geq 0$ is a CW-complex with $\pi_m(EM(A, n)) = A$ for $m = n$ and $\pi_m(EM(A, n)) = \{0\}$ for $m \neq n$. The associated Eilenberg-MacLane spectrum $H(A)$ has as n-th space $EM(A, n)$ and as n-th structure map a homotopy equivalence $EM(A, n) \to \Omega EM(A, n + 1)$.

Algebraic K-theory spectrum

For a ring R there is the algebraic K-theory spectrum K_R with the property

$$\pi_n(K_R) = K_n(R) \quad \text{for } n \in \mathbb{Z}.$$
Eilenberg-MacLane spectrum

Let A be an abelian group. The n-th Eilenberg-MacLane space $EM(A, n)$ associated to A for $n \geq 0$ is a CW-complex with $\pi_m(EM(A, n)) = A$ for $m = n$ and $\pi_m(EM(A, n)) = \{0\}$ for $m \neq n$. The associated Eilenberg-MacLane spectrum $H(A)$ has as n-th space $EM(A, n)$ and as n-th structure map a homotopy equivalence $EM(A, n) \to \Omega EM(A, n+1)$.

Algebraic K-theory spectrum

For a ring R there is the algebraic K-theory spectrum K_R with the property

$$\pi_n(K_R) = K_n(R) \quad \text{for } n \in \mathbb{Z}.$$
Eilenberg-MacLane spectrum

Let A be an abelian group. The n-th Eilenberg-MacLane space $EM(A, n)$ associated to A for $n \geq 0$ is a CW-complex with $\pi_m(EM(A, n)) = A$ for $m = n$ and $\pi_m(EM(A, n)) = \{0\}$ for $m \neq n$. The associated Eilenberg-MacLane spectrum $H(A)$ has as n-th space $EM(A, n)$ and as n-th structure map a homotopy equivalence $EM(A, n) \rightarrow \Omega EM(A, n + 1)$.

Algebraic K-theory spectrum

For a ring R there is the algebraic K-theory spectrum K_R with the property

$$\pi_n(K_R) = K_n(R) \quad \text{for } n \in \mathbb{Z}.$$
Eilenberg-MacLane spectrum

Let A be an abelian group. The n-th Eilenberg-MacLane space $EM(A, n)$ associated to A for $n \geq 0$ is a CW-complex with $\pi_m(EM(A, n)) = A$ for $m = n$ and $\pi_m(EM(A, n)) = \{0\}$ for $m \neq n$. The associated Eilenberg-MacLane spectrum $H(A)$ has as n-th space $EM(A, n)$ and as n-th structure map a homotopy equivalence $EM(A, n) \to \Omega EM(A, n + 1)$.

Algebraic K-theory spectrum

For a ring R there is the algebraic K-theory spectrum K_R with the property

$$\pi_n(K_R) = K_n(R) \quad \text{for } n \in \mathbb{Z}.$$
Eilenberg-MacLane spectrum

Let A be an abelian group. The n-th Eilenberg-MacLane space $EM(A, n)$ associated to A for $n \geq 0$ is a CW-complex with $\pi_m(EM(A, n)) = A$ for $m = n$ and $\pi_m(EM(A, n)) = \{0\}$ for $m \neq n$. The associated Eilenberg-MacLane spectrum $H(A)$ has as n-th space $EM(A, n)$ and as n-th structure map a homotopy equivalence $EM(A, n) \to \Omega EM(A, n + 1)$.

Algebraic K-theory spectrum

For a ring R there is the algebraic K-theory spectrum K_R with the property

$$\pi_n(K_R) = K_n(R) \quad \text{for } n \in \mathbb{Z}.$$
Algebraic L-theory spectrum

For a ring with involution R there is the algebraic L-theory spectrum $L^{\langle -\infty \rangle}_R$ with the property

$$\pi_n(L^{\langle -\infty \rangle}_R) = L^{\langle -\infty \rangle}_n(R) \quad \text{for } n \in \mathbb{Z}.$$

Topological K-theory spectrum

By Bott periodicity there is a homotopy equivalence

$$\beta : BU \times \mathbb{Z} \xrightarrow{\sim} \Omega^2(BU \times \mathbb{Z}).$$

The topological K-theory spectrum K^{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$. The structure maps are given in even degrees by the map β and in odd degrees by the identity $\text{id} : \Omega(BU \times \mathbb{Z}) \to \Omega(BU \times \mathbb{Z})$.

Wolfgang Lück (Münster, Germany)
The Iso. Conj. in the torsionfree case
Hangzhou, July 2007
9 / 35
Algebraic L-theory spectrum

For a ring with involution R there is the algebraic L-theory spectrum $L^{(-\infty)}_R$ with the property

$$\pi_n(L^{(-\infty)}_R) = L^{(-\infty)}_n(R) \quad \text{for} \quad n \in \mathbb{Z}.$$

Topological K-theory spectrum

By Bott periodicity there is a homotopy equivalence

$$\beta: BU \times \mathbb{Z} \xrightarrow{\sim} \Omega^2(BU \times \mathbb{Z}).$$

The topological K-theory spectrum K^{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$. The structure maps are given in even degrees by the map β and in odd degrees by the identity map $\Omega(BU \times \mathbb{Z}) \to \Omega(BU \times \mathbb{Z})$.
Algebraic L-theory spectrum

For a ring with involution R there is the algebraic L-theory spectrum $\mathcal{L}^{\langle -\infty \rangle}_R$ with the property

$$
\pi_n(\mathcal{L}^{\langle -\infty \rangle}_R) = \mathcal{L}^{\langle -\infty \rangle}_n(R) \quad \text{for } n \in \mathbb{Z}.
$$

Topological K-theory spectrum

By Bott periodicity there is a homotopy equivalence

$$
\beta: BU \times \mathbb{Z} \xrightarrow{\sim} \Omega^2(BU \times \mathbb{Z}).
$$

The topological K-theory spectrum K^{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$.

The structure maps are given in even degrees by the map β and in odd degrees by the identity $\text{id}: \Omega(BU \times \mathbb{Z}) \to \Omega(BU \times \mathbb{Z})$.

Algebraic L-theory spectrum

For a ring with involution R there is the algebraic L-theory spectrum $L_R^{(-\infty)}$ with the property

$$\pi_n(L_R^{(-\infty)}) = L_n^{(-\infty)}(R) \quad \text{for } n \in \mathbb{Z}.$$

Topological K-theory spectrum

By Bott periodicity there is a homotopy equivalence

$$\beta : BU \times \mathbb{Z} \xrightarrow{\sim} \Omega^2(BU \times \mathbb{Z}).$$

The topological K-theory spectrum K^{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$. The structure maps are given in even degrees by the map β and in odd degrees by the identity $\text{id} : \Omega(BU \times \mathbb{Z}) \to \Omega(BU \times \mathbb{Z})$.
Algebraic L-theory spectrum

For a ring with involution R there is the algebraic L-theory spectrum $L^{\langle -\infty \rangle}_R$ with the property

$$\pi_n(L^{\langle -\infty \rangle}_R) = L^{\langle -\infty \rangle}_n(R) \quad \text{for } n \in \mathbb{Z}.$$

Topological K-theory spectrum

By Bott periodicity there is a homotopy equivalence

$$\beta: BU \times \mathbb{Z} \xrightarrow{\sim} \Omega^2(BU \times \mathbb{Z}).$$

The topological K-theory spectrum K^{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$.

The structure maps are given in even degrees by the map β and in odd degrees by the identity $\text{id}: \Omega(BU \times \mathbb{Z}) \to \Omega(BU \times \mathbb{Z})$.

Algebraic L-theory spectrum

For a ring with involution R there is the algebraic L-theory spectrum $L_{R}^{(-\infty)}$ with the property

$$\pi_{n}(L_{R}^{(-\infty)}) = \langle L_{n}^{(-\infty)}(R) \rangle \text{ for } n \in \mathbb{Z}.$$

Topological K-theory spectrum

By Bott periodicity there is a homotopy equivalence

$$\beta: BU \times \mathbb{Z} \xrightarrow{\sim} \Omega^{2}(BU \times \mathbb{Z}).$$

The topological K-theory spectrum K_{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$.

The structure maps are given in even degrees by the map β and in odd degrees by the identity $\text{id}: \Omega(BU \times \mathbb{Z}) \rightarrow \Omega(BU \times \mathbb{Z})$.
Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q}. A homology theory \mathcal{H}_* with values in Λ-modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$\partial_n(X, A): \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

If (X, A) is a CW-pair and $f: A \to B$ is a cellular map, then

$$\mathcal{H}_n(X, A) \xrightarrow{\cong} \mathcal{H}_n(X \cup_f B, B).$$
Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q}.

A homology theory \mathcal{H}_* with values in Λ-modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$\partial_n(X, A) : \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

If (X, A) is a CW-pair and $f : A \to B$ is a cellular map, then

$$\mathcal{H}_n(X, A) \xrightarrow{\cong} \mathcal{H}_n(X \cup_f B, B).$$
Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q}. A homology theory \mathcal{H}_\ast with values in Λ-modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$\partial_n(X, A) : \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

If (X, A) is a CW-pair and $f : A \to B$ is a cellular map, then

$$\mathcal{H}_n(X, A) \cong \mathcal{H}_n(X \cup_f B, B).$$
Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q}. A homology theory \mathcal{H}_* with values in Λ-modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$\partial_n(X, A) : \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

If (X, A) is a CW-pair and $f : A \to B$ is a cellular map, then

$$\mathcal{H}_n(X, A) \xrightarrow{\cong} \mathcal{H}_n(X \cup_f B, B).$$
Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q}. A *homology theory* \mathcal{H}_* with values in Λ-modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$\partial_n(X, A) : \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

If (X, A) is a CW-pair and $f : A \to B$ is a cellular map, then

$$\mathcal{H}_n(X, A) \xrightarrow{\cong} \mathcal{H}_n(X \cup_f B, B).$$
Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q}.
A homology theory \mathcal{H}_* with values in Λ-modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$\partial_n(X, A) : \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

 If (X, A) is a CW-pair and $f: A \to B$ is a cellular map, then

 $$\mathcal{H}_n(X, A) \xrightarrow{\sim} \mathcal{H}_n(X \cup_f B, B).$$
Definition (continued)

- **Disjoint union axiom**

\[\bigoplus_{i \in I} \mathcal{H}_n(X_i) \xrightarrow{\cong} \mathcal{H}_n \left(\bigsqcup_{i \in I} X_i \right). \]

Definition (Smash product)

Let \(E \) be a spectrum and \(X \) be a pointed space. Define the **smash product** \(X \land E \) to be the spectrum whose \(n \)-th space is \(X \land E(n) \) and whose \(n \)-th structure map is

\[X \land E(n) \land S^1 \xrightarrow{id_X \land \sigma(n)} X \land E(n + 1). \]
Definition (continued)

- Disjoint union axiom

\[\bigoplus_{i \in I} \mathcal{H}_n(X_i) \cong \mathcal{H}_n \left(\bigsqcup_{i \in I} X_i \right). \]

Definition (Smash product)

Let \(E \) be a spectrum and \(X \) be a pointed space. Define the smash product \(X \wedge E \) to be the spectrum whose \(n \)-th space is \(X \wedge E(n) \) and whose \(n \)-th structure map is

\[X \wedge E(n) \wedge S^1 \xrightarrow{\text{id}_X \wedge \sigma(n)} X \wedge E(n + 1). \]
Definition (continued)

- Disjoint union axiom

\[
\bigoplus_{i \in I} \mathcal{H}_n(X_i) \cong \mathcal{H}_n \left(\bigsqcup_{i \in I} X_i \right).
\]

Definition (Smash product)

Let \(E \) be a spectrum and \(X \) be a pointed space. Define the smash product \(X \wedge E \) to be the spectrum whose \(n \)-th space is \(X \wedge E(n) \) and whose \(n \)-th structure map is

\[
X \wedge E(n) \wedge S^1 \xrightarrow{id_X \wedge \sigma(n)} X \wedge E(n + 1).
\]
Definition (continued)

- Disjoint union axiom

\[
\bigoplus_{i \in I} \mathcal{H}_n(X_i) \cong \mathcal{H}_n\left(\coprod_{i \in I} X_i \right).
\]

Definition (Smash product)

Let \(E \) be a spectrum and \(X \) be a pointed space. Define the smash product \(X \wedge E \) to be the spectrum whose \(n \)-th space is \(X \wedge E(n) \) and whose \(n \)-th structure map is

\[
X \wedge E(n) \wedge S^1 \xrightarrow{\text{id}_X \wedge \sigma(n)} X \wedge E(n + 1).
\]
Let E be a spectrum. Then we obtain a homology theory $H_*(-; E)$ by

$$H_n(X, A; E) := \pi_n((X \cup_A \text{cone}(A)) \wedge E).$$

It satisfies

$$H_n(pt; E) = \pi_n(E).$$
Theorem (**Homology theories and spectra**)

Let E be a spectrum. Then we obtain a homology theory $H_*(-; E)$ by

$$H_n(X, A; E) := \pi_n((X \cup_A \text{cone}(A)) \wedge E).$$

It satisfies

$$H_n(pt; E) = \pi_n(E).$$
Theorem (Homology theories and spectra)

Let E be a spectrum. Then we obtain a homology theory $H_*(-; E)$ by

$$H_n(X, A; E) := \pi_n((X \cup_A \text{cone}(A)) \wedge E).$$

It satisfies

$$H_n(pt; E) = \pi_n(E).$$
Let E be a spectrum. Then we obtain a homology theory $H_*(-; E)$ by

$$H_n(X, A; E) := \pi_n((X \cup_A \text{cone}(A)) \wedge E).$$

It satisfies

$$H_n(pt; E) = \pi_n(E).$$
Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum S is stable homotopy $\pi^S_\ast(X)$. The groups $\pi^S_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological K-theory spectrum K^{top} is K-homology $K_\ast(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum S is stable homotopy $\pi^S_*(X)$. The groups $\pi^n_*(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum $\mathcal{H}(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological K-theory spectrum K^{top} is K-homology $K_*(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum S is stable homotopy $\pi^S_\ast(X)$. The groups $\pi^S_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological K-theory spectrum K_{top} is K-homology $K_\ast(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
Example (Stable homotopy theory)
The homology theory associated to the sphere spectrum S is stable homotopy $\pi^S_\ast(X)$. The groups $\pi^S_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)
The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)
The homology theory associated to the topological K-theory spectrum K^top is K-homology $K_\ast(X)$. We have

$$K_n(pt) \cong \begin{cases}
\mathbb{Z} & n \text{ even;} \\
\{0\} & n \text{ odd.}
\end{cases}$$
Example (Stable homotopy theory)
The homology theory associated to the sphere spectrum S is stable homotopy $\pi^S_*(X)$. The groups $\pi^S_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)
The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)
The homology theory associated to the topological K-theory spectrum K^{top} is K-homology $K_*(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum S is stable homotopy $\pi^s_\ast(X)$. The groups $\pi^s_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological K-theory spectrum K^{top} is K-homology $K_\ast(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum S is stable homotopy $\pi^S_\ast(X)$. The groups $\pi^S_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological K-theory spectrum K^{top} is K-homology $K_\ast(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even}; \\ \{0\} & n \text{ odd}. \end{cases}$$
Example (**Stable homotopy theory**)
The homology theory associated to the sphere spectrum S is **stable homotopy** $\pi^S_\ast(X)$. The groups $\pi^S_n(pt)$ are finite abelian groups for $n \neq 0$ by a result of **Serre (1953)**. Their structure is only known for small n.

Example (**Singular homology theory with coefficients**)
The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is **singular homology with coefficients in** A.

Example (**Topological K-homology**)
The homology theory associated to the topological K-theory spectrum K^{top} is **K-homology** $K_\ast(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum S is stable homotopy $\pi_*^S(X)$. The groups $\pi_n^S(pt)$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum $H(A)$ is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological K-theory spectrum K^{top} is K-homology $K_*(X)$. We have

$$K_n(pt) \cong \begin{cases} \mathbb{Z} & n \text{ even;} \\ \{0\} & n \text{ odd.} \end{cases}$$
The Isomorphism Conjectures for torsionfree groups

Conjecture \((K\text{-theoretic Farrell-Jones Conjecture for torsionfree groups})\)

The \textit{K-theoretic Farrell-Jones Conjecture} with coefficients in the regular ring \(R\) for the torsionfree group \(G\) predicts that the assembly map

\[
H_n(BG; K_R) \rightarrow K_n(RG)
\]

is bijective for all \(n \in \mathbb{Z}\).

- \(K_n(RG)\) is the algebraic \(K\)-theory of the group ring \(RG\);
- \(K_R\) is the (non-connective) algebraic \(K\)-theory spectrum of \(R\);
- \(H_n(\text{pt}; K_R) \cong \pi_n(K_R) \cong K_n(R)\) for \(n \in \mathbb{Z}\).
- \(BG\) is the classifying space of the group \(G\), i.e., the base space of the universal \(G\)-principal \(G\)-bundle \(G \rightarrow EG \rightarrow BG\). Equivalently, \(BG = EM(G, 1)\). The space \(BG\) is unique up to homotopy.
Conjecture (\textit{K-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring }R\textit{ for the torsionfree group }G\textit{ predicts that the assembly map}

$$H_n(BG; K_R) \rightarrow K_n(RG)$$

\textit{is bijective for all }$n \in \mathbb{Z}$.

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of R;
- $H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R)$ for $n \in \mathbb{Z}$.
- BG is the \textit{classifying space} of the group G, i.e., the base space of the universal G-principal G-bundle $G \rightarrow EG \rightarrow BG$. Equivalently, $BG = EM(G, 1)$. The space BG is unique up to homotopy.
The Isomorphism Conjectures for torsionfree groups

Conjecture \((K\text{-theoretic Farrell-Jones Conjecture for torsionfree groups})\)

The \(K\text{-theoretic Farrell-Jones Conjecture with coefficients in the regular ring } R\text{ for the torsionfree group } G\) predicts that the assembly map

\[H_n(BG; K_R) \to K_n(RG) \]

is bijective for all \(n \in \mathbb{Z}\).

- \(K_n(RG)\) is the algebraic \(K\)-theory of the group ring \(RG\);
- \(K_R\) is the (non-connective) algebraic \(K\)-theory spectrum of \(R\);
- \(H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R)\) for \(n \in \mathbb{Z}\).
- \(BG\) is the classifying space of the group \(G\), i.e., the base space of the universal \(G\)-principal \(G\)-bundle \(G \to EG \to BG\). Equivalently, \(BG = EM(G, 1)\). The space \(BG\) is unique up to homotopy.
Conjecture (\textit{K-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{K-theoretic Farrell-Jones Conjecture} with coefficients in the regular ring \(R \) for the torsionfree group \(G \) predicts that the \textit{assembly map}

\[
H_n(BG; K_R) \to K_n(RG)
\]

is bijective for all \(n \in \mathbb{Z} \).

- \(K_n(RG) \) is the algebraic \(K \)-theory of the group ring \(RG \);
- \(K_R \) is the (non-connective) algebraic \(K \)-theory spectrum of \(R \);
- \(H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R) \) for \(n \in \mathbb{Z} \).
- \(BG \) is the \textit{classifying space} of the group \(G \), i.e., the base space of the universal \(G \)-principal \(G \)-bundle \(G \to EG \to BG \). Equivalently, \(BG = EM(G, 1) \). The space \(BG \) is unique up to homotopy.
Conjecture \((K\text{-theoretic Farrell-Jones Conjecture for torsionfree groups})\)

The \(K\text{-theoretic Farrell-Jones Conjecture}\) with coefficients in the regular ring \(R\) for the torsionfree group \(G\) predicts that the assembly map

\[
H_n(BG; K_R) \rightarrow K_n(RG)
\]

is bijective for all \(n \in \mathbb{Z}\).

- \(K_n(RG)\) is the algebraic \(K\)-theory of the group ring \(RG\);
- \(K_R\) is the (non-connective) algebraic \(K\)-theory spectrum of \(R\);
- \(H_n(\text{pt}; K_R) \cong \pi_n(K_R) \cong K_n(R)\) for \(n \in \mathbb{Z}\).
- \(BG\) is the classifying space of the group \(G\), i.e., the base space of the universal \(G\)-principal \(G\)-bundle \(G \rightarrow EG \rightarrow BG\). Equivalently, \(BG = EM(G, 1)\). The space \(BG\) is unique up to homotopy.
Conjecture (\textit{K-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{K-theoretic Farrell-Jones Conjecture} with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

$$H_n(BG; K_R) \rightarrow K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of R;
- $H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R)$ for $n \in \mathbb{Z}$.
- BG is the classifying space of the group G, i.e., the base space of the universal G-principal G-bundle $G \rightarrow EG \rightarrow BG$. Equivalently, $BG = EM(G, 1)$. The space BG is unique up to homotopy.
The Isomorphism Conjectures for torsionfree groups

Conjecture (K-theoretic Farrell-Jones Conjecture for torsionfree groups)

The *K*-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

$$H_n(BG; K_R) \rightarrow K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of R;
- $H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R)$ for $n \in \mathbb{Z}$.
- BG is the **classifying space** of the group G, i.e., the base space of the universal G-principal G-bundle $G \rightarrow EG \rightarrow BG$. Equivalently, $BG = EM(G, 1)$. The space BG is unique up to homotopy.
The Isomorphism Conjectures for torsionfree groups

Conjecture (\textit{\(K\)-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{\(K\)-theoretic Farrell-Jones Conjecture} with coefficients in the regular ring \(R\) for the torsionfree group \(G\) predicts that the assembly map

\[H_n(BG; K_R) \to K_n(RG) \]

is bijective for all \(n \in \mathbb{Z}\).

- \(K_n(RG)\) is the algebraic \(K\)-theory of the group ring \(RG\);
- \(K_R\) is the (non-connective) algebraic \(K\)-theory spectrum of \(R\);
- \(H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R)\) for \(n \in \mathbb{Z}\).
- \(BG\) is the \textbf{classifying space} of the group \(G\), i.e., the base space of the universal \(G\)-principal \(G\)-bundle \(G \to EG \to BG\). Equivalently, \(BG = EM(G, 1)\). The space \(BG\) is unique up to homotopy.

Wolfgang Lück (Münster, Germany)
Conjecture (\textit{K-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{K-theoretic Farrell-Jones Conjecture} with coefficients in the regular ring \(R \) for the torsionfree group \(G \) predicts that the \textit{assembly map}

\[
H_n(BG; K_R) \rightarrow K_n(RG)
\]

is bijective for all \(n \in \mathbb{Z}. \)

- \(K_n(RG) \) is the algebraic \(K \)-theory of the group ring \(RG; \)
- \(K_R \) is the (non-connective) algebraic \(K \)-theory spectrum of \(R; \)
- \(H_n(pt; K_R) \cong \pi_n(K_R) \cong K_n(R) \) for \(n \in \mathbb{Z}. \)
- \(BG \) is the \textit{classifying space} of the group \(G \), i.e., the base space of the universal \(G \)-principal \(G \)-bundle \(G \rightarrow EG \rightarrow BG \). Equivalently, \(BG \equiv EM(G, 1) \). The space \(BG \) is unique up to homotopy.
Conjecture \((L\)-theoretic Farrell-Jones Conjecture for torsionfree groups\)

The \(L\)-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution \(R\) for the torsionfree group \(G\) predicts that the assembly map

\[
H_n(BG; L_R^{\langle-\infty\rangle}) \to L_n^{\langle-\infty\rangle}(RG)
\]

is bijective for all \(n \in \mathbb{Z}\).

- \(L_n^{\langle-\infty\rangle}(RG)\) is the algebraic \(L\)-theory of \(RG\) with decoration \(\langle-\infty\rangle\);
- \(L_R^{\langle-\infty\rangle}\) is the algebraic \(L\)-theory spectrum of \(R\) with decoration \(\langle-\infty\rangle\);
- \(H_n(pt; L_R^{\langle-\infty\rangle}) \cong \pi_n(L_R^{\langle-\infty\rangle}) \cong L_n^{\langle-\infty\rangle}(R)\) for \(n \in \mathbb{Z}\).
Conjecture (\textit{L-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{L-theoretic Farrell-Jones Conjecture} with coefficients in the ring with involution \(R \) for the torsionfree group \(G \) predicts that the assembly map

\[
H_n(BG; L_R^{\langle -\infty \rangle}) \to L_n^{\langle -\infty \rangle}(RG)
\]

is bijective for all \(n \in \mathbb{Z} \).

- \(L_n^{\langle -\infty \rangle}(RG) \) is the algebraic \(L \)-theory of \(RG \) with decoration \(\langle -\infty \rangle \);
- \(L_{\langle -\infty \rangle} \) is the algebraic \(L \)-theory spectrum of \(R \) with decoration \(\langle -\infty \rangle \);
- \(H_n(pt; L_R^{\langle -\infty \rangle}) \approx \pi_n(L_R^{\langle -\infty \rangle}) \approx L_n^{\langle -\infty \rangle}(R) \) for \(n \in \mathbb{Z} \).
Conjecture (\textit{L-theoretic Farrell-Jones Conjecture for torsionfree groups})

The \textit{L-theoretic Farrell-Jones Conjecture} with coefficients in the ring with involution \(R\) for the torsionfree group \(G\) predicts that the \textit{assembly map}

\[H_n(BG; \mathbb{L}_R^{\langle -\infty \rangle}) \to \mathbb{L}_n^{\langle -\infty \rangle}(RG) \]

is bijective for all \(n \in \mathbb{Z}\).

- \(\mathbb{L}_n^{\langle -\infty \rangle}(RG)\) is the algebraic \(L\)-theory of \(RG\) with decoration \(\langle -\infty \rangle\);
- \(\mathbb{L}_R^{\langle -\infty \rangle}\) is the algebraic \(L\)-theory spectrum of \(R\) with decoration \(\langle -\infty \rangle\);
- \(H_n(pt; \mathbb{L}_R^{\langle -\infty \rangle}) \cong \pi_n(\mathbb{L}_R^{\langle -\infty \rangle}) \cong \mathbb{L}_n^{\langle -\infty \rangle}(R)\) for \(n \in \mathbb{Z}\).
The *L-theoretic Farrell-Jones Conjecture* with coefficients in the ring with involution R for the torsionfree group G predicts that the *assembly map*

$$H_n(BG; \mathbb{L}^\langle -\infty \rangle_R) \to \mathbb{L}^\langle -\infty \rangle_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

- $\mathbb{L}^\langle -\infty \rangle_n(RG)$ is the algebraic L-theory of RG with decoration $\langle -\infty \rangle$;
- $\mathbb{L}^\langle -\infty \rangle_R$ is the algebraic L-theory spectrum of R with decoration $\langle -\infty \rangle$;
- $H_n(pt; \mathbb{L}^\langle -\infty \rangle_R) \cong \pi_n(\mathbb{L}^\langle -\infty \rangle_R) \cong \mathbb{L}^\langle -\infty \rangle_n(R)$ for $n \in \mathbb{Z}$.
The L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R for the torsionfree group G predicts that the assembly map

$$H_n(BG; \mathbb{L}_R^{\langle-\infty\rangle}) \rightarrow \mathbb{L}_n^{\langle-\infty\rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

- $\mathbb{L}_n^{\langle-\infty\rangle}(RG)$ is the algebraic L-theory of RG with decoration $\langle-\infty\rangle$;
- $\mathbb{L}_R^{\langle-\infty\rangle}$ is the algebraic L-theory spectrum of R with decoration $\langle-\infty\rangle$;
- $H_n(pt; \mathbb{L}_R^{\langle-\infty\rangle}) \cong \pi_n(\mathbb{L}_R^{\langle-\infty\rangle}) \cong \mathbb{L}_n^{\langle-\infty\rangle}(R)$ for $n \in \mathbb{Z}$.

Wolfgang Lück (Münster, Germany)

Hangzhou, July 2007 15 / 35
Conjecture (Baum-Connes Conjecture for torsionfree groups)

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

\[K_n(BG) \to K_n(C^*_r(G)) \]

is bijective for all \(n \in \mathbb{Z} \).

- \(K_n(BG) \) is the topological \(K \)-homology of \(BG \), where \(K_*(-) = H_*(-; K_{\text{top}}) \) for \(K_{\text{top}} \) the topological \(K \)-theory spectrum.
- \(K_n(C^*_r(G)) \) is the topological \(K \)-theory of the reduced complex group \(C^* \)-algebra \(C^*_r(G) \) of \(G \) which is the closure in the norm topology of \(\mathbb{C}G \) considered as subalgebra of \(B(l^2(G)) \).
- There is also a real version of the Baum-Connes Conjecture

\[KO_n(BG) \to K_n(C^*_r(G; \mathbb{R})) \].
The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

$$K_n(BG) \to K_n(C^*_r(G))$$

is bijective for all $n \in \mathbb{Z}$.

- $K_n(BG)$ is the topological K-homology of BG, where $K_*(-) = H_*(-; K^{\text{top}})$ for K^{top} the topological K-theory spectrum.
- $K_n(C^*_r(G))$ is the topological K-theory of the reduced complex group C^*-algebra $C^*_r(G)$ of G which is the closure in the norm topology of C^*G considered as subalgebra of $\mathcal{B}(l^2(G))$.
- There is also a real version of the Baum-Connes Conjecture

$$KO_n(BG) \to K_n(C^*_r(G; \mathbb{R})).$$
Conjecture (Baum-Connes Conjecture for torsionfree groups)

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

\[K_n(BG) \rightarrow K_n(C_r^*(G)) \]

is bijective for all \(n \in \mathbb{Z} \).

- \(K_n(BG) \) is the topological \(K \)-homology of \(BG \), where \(K_*(-) = H_*(-; K_{\text{top}}) \) for \(K_{\text{top}} \) the topological \(K \)-theory spectrum.
- \(K_n(C_r^*(G)) \) is the topological \(K \)-theory of the reduced complex group \(C^* \)-algebra \(C_r^*(G) \) of \(G \) which is the closure in the norm topology of \(\mathbb{C}G \) considered as subalgebra of \(\mathcal{B}(l^2(G)) \).
- There is also a real version of the Baum-Connes Conjecture

\[KO_n(BG) \rightarrow K_n(C_r^*(G; \mathbb{R})). \]
Conjecture (Baum-Connes Conjecture for torsionfree groups)

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

\[K_n(BG) \to K_n(C^*_r(G)) \]

is bijective for all \(n \in \mathbb{Z} \).

- \(K_n(BG) \) is the topological \(K \)-homology of \(BG \), where \(K_*(-) = H_*(-; K_{\text{top}}) \) for \(K_{\text{top}} \) the topological \(K \)-theory spectrum.
- \(K_n(C^*_r(G)) \) is the topological \(K \)-theory of the reduced complex group \(C^* \)-algebra \(C^*_r(G) \) of \(G \) which is the closure in the norm topology of \(CG \) considered as subalgebra of \(B(l^2(G)) \).

There is also a real version of the Baum-Connes Conjecture

\[KO_n(BG) \to K_n(C^*_r(G; \mathbb{R})) \].
The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

\[K_n(BG) \rightarrow K_n(C_r^*(G)) \]

is bijective for all \(n \in \mathbb{Z} \).

- **\(K_n(BG) \)** is the topological K-homology of \(BG \), where \(K_*(-) = H_*(-; K^{\text{top}}) \) for \(K^{\text{top}} \) the topological K-theory spectrum.
- **\(K_n(C_r^*(G)) \)** is the topological K-theory of the reduced complex group C*-algebra \(C_r^*(G) \) of \(G \) which is the closure in the norm topology of \(CG \) considered as subalgebra of \(B(l^2(G)) \).
- There is also a real version of the Baum-Connes Conjecture

\[KO_n(BG) \rightarrow K_n(C_r^*(G; \mathbb{R})). \]
Consequences of the Isomorphism Conjectures for torsionfree groups

In order to illustrate the depth of the Farrell-Jones Conjecture and the Baum-Connes Conjecture, we present some conclusions which are interesting in their own right.

Let $\mathcal{FJ}_K(R)$ and $\mathcal{FJ}_L(R)$ respectively be the class of groups which satisfy the K-theoretic and L-theoretic respectively Farrell-Jones Conjecture for the coefficient ring R.

Let \mathcal{BC} be the class of groups which satisfy the Baum-Connes Conjecture.
In order to illustrate the depth of the Farrell-Jones Conjecture and the Baum-Connes Conjecture, we present some conclusions which are interesting in their own right.

Let $\mathcal{FJ}_K(R)$ and $\mathcal{FJ}_L(R)$ respectively be the class of groups which satisfy the K-theoretic and L-theoretic respectively Farrell-Jones Conjecture for the coefficient ring R.

Let $\mathcal{B}C$ be the class of groups which satisfy the Baum-Connes Conjecture.
Consequences of the Isomorphism Conjectures for torsionfree groups

- In order to illustrate the depth of the Farrell-Jones Conjecture and the Baum-Connes Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_K(R)$ and $\mathcal{FJ}_L(R)$ respectively be the class of groups which satisfy the K-theoretic and L-theoretic respectively Farrell-Jones Conjecture for the coefficient ring R.
- Let \mathcal{BC} be the class of groups which satisfy the Baum-Connes Conjecture.
In order to illustrate the depth of the Farrell-Jones Conjecture and the Baum-Connes Conjecture, we present some conclusions which are interesting in their own right.

Let $\mathcal{F}J_K(R)$ and $\mathcal{F}J_L(R)$ respectively be the class of groups which satisfy the K-theoretic and L-theoretic respectively Farrell-Jones Conjecture for the coefficient ring R.

Let BC be the class of groups which satisfy the Baum-Connes Conjecture.
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \rightarrow K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

- $K_n(RG) = 0$ for $n \leq -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\tilde{K}_0(RG)$ is trivial if and only if $\tilde{K}_0(R)$ is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then the Whitehead group $\text{Wh}(G)$ is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; K_R)$ whose E^2-term is given by

$$E^2_{p,q} = H_p(BG, K_q(R)).$$
Proof (continued).

- Since R is regular by assumption, we get $K_q(R) = 0$ for $q \leq -1$.
- Hence the edge homomorphism yields an isomorphism

$$K_0(R) = H_0(\text{pt}, K_0(R)) \xrightarrow{\cong} H_0(BG; K_R) \cong K_0(RG).$$

- We have $K_0(\mathbb{Z}) = \mathbb{Z}$ and $K_1(\mathbb{Z}) = \{\pm 1\}$. We get an exact sequence

$$0 \rightarrow H_0(BG; K_1(\mathbb{Z})) = \{\pm 1\} \rightarrow H_1(BG; K_\mathbb{Z}) \cong K_1(\mathbb{Z}G) \rightarrow H_1(BG; K_0(\mathbb{Z})) = G/[G, G] \rightarrow 0.$$

- This implies $\text{Wh}(G) := K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\} \cong 0$.
Proof (continued).

Since R is regular by assumption, we get $K_q(R) = 0$ for $q \leq -1$.

Hence the edge homomorphism yields an isomorphism

$$K_0(R) = H_0(pt, K_0(R)) \xrightarrow{\cong} H_0(BG; K_R) \cong K_0(RG).$$

We have $K_0(\mathbb{Z}) = \mathbb{Z}$ and $K_1(\mathbb{Z}) = \{\pm 1\}$. We get an exact sequence

$$0 \to H_0(BG; K_1(\mathbb{Z})) = \{\pm 1\} \to H_1(BG; K_\mathbb{Z}) \cong K_1(\mathbb{Z}G) \to H_1(BG; K_0(\mathbb{Z})) = G/[G, G] \to 0.$$

This implies $\text{Wh}(G) := K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\} \cong 0$.

\[\square\]
Proof (continued).

- Since R is regular by assumption, we get $K_q(R) = 0$ for $q \leq -1$.
- Hence the edge homomorphism yields an isomorphism

$$K_0(R) = H_0(\text{pt}, K_0(R)) \xrightarrow{\cong} H_0(BG; K_R) \cong K_0(RG).$$

We have $K_0(\mathbb{Z}) = \mathbb{Z}$ and $K_1(\mathbb{Z}) = \{\pm 1\}$. We get an exact sequence

$$0 \to H_0(BG; K_1(\mathbb{Z})) = \{\pm 1\} \to H_1(BG; K_\mathbb{Z}) \cong K_1(\mathbb{Z}G) \to H_1(BG; K_0(\mathbb{Z})) = G/[G, G] \to 0.$$

This implies $\text{Wh}(G) := K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\} \cong 0$.

Wolfgang Lück (Münster, Germany)
Proof (continued).

- Since R is regular by assumption, we get $K_q(R) = 0$ for $q \leq -1$.
- Hence the edge homomorphism yields an isomorphism

$$K_0(R) = H_0(\text{pt}, K_0(R)) \xrightarrow{\cong} H_0(BG; K_R) \cong K_0(RG).$$

- We have $K_0(\mathbb{Z}) = \mathbb{Z}$ and $K_1(\mathbb{Z}) = \{ \pm 1 \}$. We get an exact sequence

$$0 \rightarrow H_0(BG; K_1(\mathbb{Z})) = \{ \pm 1 \} \rightarrow H_1(BG; K_\mathbb{Z}) \cong K_1(\mathbb{Z}G)$$

$$\rightarrow H_1(BG; K_0(\mathbb{Z})) = G/[G, G] \rightarrow 0.$$

- This implies $\text{Wh}(G) := K_1(\mathbb{Z}G)/\{ \pm g \mid g \in G \} \cong 0$.

\[\square \]
Proof (continued).

- Since R is regular by assumption, we get $K_q(R) = 0$ for $q \leq -1$.
- Hence the edge homomorphism yields an isomorphism

$$K_0(R) = H_0(\text{pt}, K_0(R)) \xrightarrow{\cong} H_0(BG; K_R) \cong K_0(RG).$$

- We have $K_0(\mathbb{Z}) = \mathbb{Z}$ and $K_1(\mathbb{Z}) = \{\pm 1\}$. We get an exact sequence

$$0 \to H_0(BG; K_1(\mathbb{Z})) = \{\pm 1\} \to H_1(BG; K_\mathbb{Z}) \cong K_1(\mathbb{Z}G) \to H_1(BG; K_0(\mathbb{Z})) = G/[G, G] \to 0.$$

- This implies $\text{Wh}(G) := K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\} \cong 0$.
In particular we get for a torsionfree group $G \in \mathcal{FK}(\mathbb{Z})$:

- $K_n(\mathbb{Z}G) = 0$ for $n \leq -1$;
- $\tilde{K}_0(\mathbb{Z}G) = 0$;
- $\text{Wh}(G) = 0$;
- Every finitely dominated CW-complex X with $G = \pi_1(X)$ is homotopy equivalent to a finite CW-complex;
- Every compact h-cobordism W of dimension ≥ 6 with $\pi_1(W) \cong G$ is trivial;
- If G belongs to $\mathcal{FK}(\mathbb{Z})$, then it is of type FF if and only if it is of type FP (Serre’s problem).
In particular we get for a torsionfree group $G \in \mathcal{FJ}_K(\mathbb{Z})$:

- $K_n(\mathbb{Z}G) = 0$ for $n \leq -1$;
- $\tilde{K}_0(\mathbb{Z}G) = 0$;
- $Wh(G) = 0$;
- Every finitely dominated CW-complex X with $G = \pi_1(X)$ is homotopy equivalent to a finite CW-complex;
- Every compact h-cobordism W of dimension ≥ 6 with $\pi_1(W) \cong G$ is trivial;
- If G belongs to $\mathcal{FJ}_K(\mathbb{Z})$, then it is of type FF if and only if it is of type FP (Serre’s problem).
In particular we get for a torsionfree group $G \in \mathcal{FI}_K(\mathbb{Z})$:

- $K_n(\mathbb{Z}G) = 0$ for $n \leq -1$;
- $\tilde{K}_0(\mathbb{Z}G) = 0$;
- $\text{Wh}(G) = 0$;
- Every finitely dominated CW-complex X with $G = \pi_1(X)$ is homotopy equivalent to a finite CW-complex;
- Every compact h-cobordism W of dimension ≥ 6 with $\pi_1(W) \cong G$ is trivial;
- If G belongs to $\mathcal{FI}_K(\mathbb{Z})$, then it is of type FF if and only if it is of type FP (Serre’s problem).
In particular we get for a torsionfree group \(G \in \mathcal{FJ}_K(\mathbb{Z}) \):

- \(K_n(\mathbb{Z}G) = 0 \) for \(n \leq -1 \);
- \(\tilde{K}_0(\mathbb{Z}G) = 0 \);
- \(\text{Wh}(G) = 0 \);

- Every finitely dominated \(CW \)-complex \(X \) with \(G = \pi_1(X) \) is homotopy equivalent to a finite \(CW \)-complex;
- Every compact \(h \)-cobordism \(W \) of dimension \(\geq 6 \) with \(\pi_1(W) \simeq G \) is trivial;
- If \(G \) belongs to \(\mathcal{FJ}_K(\mathbb{Z}) \), then it is of type FF if and only if it is of type FP (Serre’s problem).
In particular we get for a torsionfree group $G \in \mathcal{FJ}_K(\mathbb{Z})$:

- $K_n(\mathbb{Z}G) = 0$ for $n \leq -1$;
- $\tilde{K}_0(\mathbb{Z}G) = 0$;
- $\text{Wh}(G) = 0$;
- Every finitely dominated CW-complex X with $G = \pi_1(X)$ is homotopy equivalent to a finite CW-complex;
- Every compact h-cobordism W of dimension ≥ 6 with $\pi_1(W) \cong G$ is trivial;
- If G belongs to $\mathcal{FJ}_K(\mathbb{Z})$, then it is of type FF if and only if it is of type FP (Serre’s problem).
In particular we get for a torsionfree group $G \in \mathcal{FJ}_K(\mathbb{Z})$:

- $K_n(\mathbb{Z}G) = 0$ for $n \leq -1$;
- $\tilde{K}_0(\mathbb{Z}G) = 0$;
- $\text{Wh}(G) = 0$;
- Every finitely dominated CW-complex X with $G = \pi_1(X)$ is homotopy equivalent to a finite CW-complex;
- Every compact h-cobordism W of dimension ≥ 6 with $\pi_1(W) \cong G$ is trivial;
- If G belongs to $\mathcal{FJ}_K(\mathbb{Z})$, then it is of type FF if and only if it is of type FP (Serre’s problem).
In particular we get for a torsionfree group \(G \in \mathcal{FJ}_K(\mathbb{Z}) \):

- \(K_n(\mathbb{Z}G) = 0 \) for \(n \leq -1 \);
- \(\tilde{K}_0(\mathbb{Z}G) = 0 \);
- \(\text{Wh}(G) = 0 \);
- Every finitely dominated \(CW \)-complex \(X \) with \(G = \pi_1(X) \) is homotopy equivalent to a finite \(CW \)-complex;
- Every compact \(h \)-cobordism \(W \) of dimension \(\geq 6 \) with \(\pi_1(W) \cong G \) is trivial;
- If \(G \) belongs to \(\mathcal{FJ}_K(\mathbb{Z}) \), then it is of type FF if and only if it is of type FP (Serre’s problem).
Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Conjecture (Kaplansky Conjecture)

The **Kaplansky Conjecture** says for a torsionfree group \(G \) and an integral domain \(R \) that \(0 \) and \(1 \) are the only idempotents in \(RG \).

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let \(F \) be a skew-field and let \(G \) be a group with \(G \in \mathcal{FJ}_K(F) \). Suppose that one of the following conditions is satisfied:

- \(F \) is commutative and has characteristic zero and \(G \) is torsionfree;
- \(G \) is torsionfree and sofic, e.g., residually amenable;
- The characteristic of \(F \) is \(p \), all finite subgroups of \(G \) are \(p \)-groups and \(G \) is sofic.

Then \(0 \) and \(1 \) are the only idempotents in \(FG \).
Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJK}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Conjecture (Kaplansky Conjecture)

The *Kaplansky Conjecture* says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in FJ_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.
Proof.

Let p be an idempotent in FG. We want to show $p \in \{0, 1\}$.

Denote by $\epsilon : FG \to F$ the augmentation homomorphism sending $\sum_{g \in G} r_g \cdot g$ to $\sum_{g \in G} r_g$. Obviously $\epsilon(p) \in F$ is 0 or 1. Hence it suffices to show $p = 0$ under the assumption that $\epsilon(p) = 0$.

Let $(p) \subseteq FG$ be the ideal generated by p which is a finitely generated projective FG-module.

Since $G \in \mathcal{F}_K(F)$, we can conclude that

$$i_* : K_0(F) \otimes \mathbb{Q} \to K_0(FG) \otimes \mathbb{Q}$$

is surjective.

Hence we can find a finitely generated projective F-module P and integers $k, m, n \geq 0$ satisfying

$$(p)^k \oplus FG^m \cong_{FG} i_*(P) \oplus FG^n.$$
Proof.

Let p be an idempotent in FG. We want to show $p \in \{0, 1\}$.

Denote by $\epsilon : FG \to F$ the augmentation homomorphism sending $\sum_{g \in G} r_g \cdot g$ to $\sum_{g \in G} r_g$. Obviously $\epsilon(p) \in F$ is 0 or 1. Hence it suffices to show $p = 0$ under the assumption that $\epsilon(p) = 0$.

Let $(p) \subseteq FG$ be the ideal generated by p which is a finitely generated projective FG-module. Since $G \in \mathcal{FJ}_K(F)$, we can conclude that

$$i_* : K_0(F) \otimes \mathbb{Q} \to K_0(FG) \otimes \mathbb{Q}$$

is surjective. Hence we can find a finitely generated projective F-module P and integers $k, m, n \geq 0$ satisfying

$$(p)^k \oplus FG^m \cong_{FG} i_*(P) \oplus FG^n.$$
Proof.

- Let \(p \) be an idempotent in \(FG \). We want to show \(p \in \{0, 1\} \).

- Denote by \(\epsilon : FG \to F \) the augmentation homomorphism sending \(\sum_{g \in G} r_g \cdot g \) to \(\sum_{g \in G} r_g \). Obviously \(\epsilon(p) \in F \) is 0 or 1. Hence it suffices to show \(p = 0 \) under the assumption that \(\epsilon(p) = 0 \).

- Let \((p) \subseteq FG \) be the ideal generated by \(p \) which is a finitely generated projective \(FG \)-module.

Since \(G \in \mathcal{FJ}_K(F) \), we can conclude that

\[
i_* : K_0(F) \otimes \mathbb{Z} \mathbb{Q} \to K_0(FG) \otimes \mathbb{Z} \mathbb{Q}
\]

is surjective.

Hence we can find a finitely generated projective \(F \)-module \(P \) and integers \(k, m, n \geq 0 \) satisfying

\[
(p)^k \oplus FG^m \cong_{FG} i_*(P) \oplus FG^n.
\]
Proof.

Let \(p \) be an idempotent in \(FG \). We want to show \(p \in \{0, 1\} \).

Denote by \(\varepsilon : FG \to F \) the augmentation homomorphism sending \(\sum_{g \in G} r_g \cdot g \) to \(\sum_{g \in G} r_g \). Obviously \(\varepsilon(p) \in F \) is 0 or 1. Hence it suffices to show \(p = 0 \) under the assumption that \(\varepsilon(p) = 0 \).

Let \((p) \subseteq FG \) be the ideal generated by \(p \) which is a finitely generated projective \(FG \)-module. Since \(G \in FJ_K(F) \), we can conclude that

\[
i_\ast : K_0(F) \otimes \mathbb{Z} \mathbb{Q} \to K_0(FG) \otimes \mathbb{Z} \mathbb{Q}
\]

is surjective.

Hence we can find a finitely generated projective \(F \)-module \(P \) and integers \(k, m, n \geq 0 \) satisfying

\[
(p)^k \oplus FG^m \cong_{FG} i_\ast(P) \oplus FG^n.
\]
Proof.

Let p be an idempotent in FG. We want to show $p \in \{0, 1\}$.

Denote by $\epsilon : FG \to F$ the augmentation homomorphism sending $\sum_{g \in G} r_g \cdot g$ to $\sum_{g \in G} r_g$. Obviously $\epsilon(p) \in F$ is 0 or 1. Hence it suffices to show $p = 0$ under the assumption that $\epsilon(p) = 0$.

Let $(p) \subseteq FG$ be the ideal generated by p which is a finitely generated projective FG-module.

Since $G \in \mathcal{FJ}_K(F)$, we can conclude that $i_* : K_0(F) \otimes \mathbb{Z} \mathbb{Q} \to K_0(FG) \otimes \mathbb{Z} \mathbb{Q}$ is surjective.

Hence we can find a finitely generated projective F-module P and integers $k, m, n \geq 0$ satisfying

$$(p)^k \oplus FG^m \cong_{FG} i_*(P) \oplus FG^n.$$
If we now apply $i_* \circ \epsilon_*$ and use $\epsilon \circ i = \text{id}$, $i_* \circ \epsilon_*(FG^l) \cong FG^l$ and $\epsilon(p) = 0$ we obtain

$$FG^m \cong i_*(P) \oplus FG^n.$$

Inserting this in the first equation yields

$$(p)^k \oplus i_*(P) \oplus FG^n \cong i_*(P) \oplus FG^n.$$

Our assumptions on F and G imply that FG is stably finite, i.e., if A and B are square matrices over FG with $AB = I$, then $BA = I$. This implies $(p)^k = 0$ and hence $p = 0$.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. in the torsionfree case

Hangzhou, July 2007 23 / 35
Proof (continued).

- If we now apply $i_\ast \circ \epsilon_\ast$ and use $\epsilon \circ i = \text{id}$, $i_\ast \circ \epsilon_\ast(FG^l) \cong FG^l$ and $\epsilon(p) = 0$ we obtain

$$FG^m \cong i_\ast(P) \oplus FG^n.$$

- Inserting this in the first equation yields

$$(p)^k \oplus i_\ast(P) \oplus FG^n \cong i_\ast(P) \oplus FG^n.$$

- Our assumptions on F and G imply that FG is stably finite, i.e., if A and B are square matrices over FG with $AB = I$, then $BA = I$. This implies $(p)^k = 0$ and hence $p = 0$.

Proof (continued).

If we now apply $i_* \circ \epsilon_*$ and use $\epsilon \circ i = \text{id}$, $i_* \circ \epsilon_*(FG^l) \cong FG^l$ and $\epsilon(p) = 0$ we obtain

$$FG^m \cong i_*(P) \oplus FG^n.$$

Inserting this in the first equation yields

$$(p)^k \oplus i_*(P) \oplus FG^n \cong i_*(P) \oplus FG^n.$$

Our assumptions on F and G imply that FG is stably finite, i.e., if A and B are square matrices over FG with $AB = I$, then $BA = I$.

This implies $(p)^k = 0$ and hence $p = 0$.

Wolfgang Lück (Münster, Germany)
Proof (continued).

- If we now apply $i_\ast \circ \epsilon_\ast$ and use $\epsilon \circ i = \text{id}$, $i_\ast \circ \epsilon_\ast(FG^l) \cong FG^l$ and $\epsilon(p) = 0$ we obtain

$$FG^m \cong i_\ast(P) \oplus FG^n.$$

- Inserting this in the first equation yields

$$(p)^k \oplus i_\ast(P) \oplus FG^n \cong i_\ast(P) \oplus FG^n.$$

- Our assumptions on F and G imply that FG is stably finite, i.e., if A and B are square matrices over FG with $AB = I$, then $BA = I$. This implies $(p)^k = 0$ and hence $p = 0$.

Wolfgang Lück (Münster, Germany)
The Iso. Conj. in the torsionfree case
Hangzhou, July 2007
23 / 35
Theorem (The Baum-Connes Conjecture and the Kaplansky Conjecture)

Let G be a torsionfree group with $G \in \mathcal{B}C$. Then 0 and 1 are the only idempotents in $\mathbb{C}G$.

Proof.

- There is a trace map
 \[\text{tr}: C^*_r(G) \to \mathbb{C} \]
 which sends $f \in C^*_r(G) \subseteq \mathcal{B}(l^2(G))$ to $\langle f(e), e \rangle_{l^2(G)}$.

- The L^2-index theorem due to Atiyah (1976) shows that the composite
 \[K_0(BG) \to K_0(C^*_r(G)) \xrightarrow{\text{tr}} \mathbb{C} \]
 coincides with
 \[K_0(BG) \xrightarrow{K_0(\text{pr})} K_0(\text{pt}) = \mathbb{Z} \xrightarrow{i} \mathbb{C}. \]
Theorem (The Baum-Connes Conjecture and the Kaplansky Conjecture)

Let G be a torsionfree group with $G \in BC$. Then 0 and 1 are the only idempotents in $\mathbb{C}G$.

Proof.

- There is a trace map
 \[
 \text{tr} : C^*_r(G) \rightarrow \mathbb{C}
 \]
 which sends $f \in C^*_r(G) \subseteq B(l^2(G))$ to $\langle f(e), e \rangle_{l^2(G)}$.

- The L^2-index theorem due to Atiyah (1976) shows that the composite
 \[
 K_0(BG) \rightarrow K_0(C^*_r(G)) \xrightarrow{\text{tr}} \mathbb{C}
 \]
 coincides with
 \[
 K_0(BG) \xrightarrow{K_0(pr)} K_0(pt) = \mathbb{Z} \xrightarrow{i} \mathbb{C}.
 \]
Theorem (The Baum-Connes Conjecture and the Kaplansky Conjecture)

Let G be a torsionfree group with $G \in BC$. Then 0 and 1 are the only idempotents in $\mathbb{C}G$.

Proof.

- There is a trace map
 \[\text{tr} : C^*_r(G) \to \mathbb{C} \]
 which sends $f \in C^*_r(G) \subseteq \mathcal{B}(l^2(G))$ to $\langle f(e), e \rangle_{l^2(G)}$.

- The L^2-index theorem due to Atiyah (1976) shows that the composite
 \[K_0(BG) \to K_0(C^*_r(G)) \xrightarrow{\text{tr}} \mathbb{C} \]
 coincides with
 \[K_0(BG) \xrightarrow{K_0(pr)} K_0(pt) = \mathbb{Z} \to \mathbb{C}. \]
Theorem (The Baum-Connes Conjecture and the Kaplansky Conjecture)

Let G be a torsionfree group with $G \in BC$. Then 0 and 1 are the only idempotents in $\mathbb{C}G$.

Proof.

- There is a trace map
 \[\text{tr}: C_r^*(G) \to \mathbb{C} \]
 which sends \(f \in C_r^*(G) \subseteq B(l^2(G)) \) to \(\langle f(e), e \rangle_{l^2(G)} \).

- The L^2-index theorem due to Atiyah (1976) shows that the composite
 \[K_0(BG) \to K_0(C_r^*(G)) \xrightarrow{\text{tr}} \mathbb{C} \]
 coincides with
 \[K_0(BG) \xrightarrow{K_0(pr)} K_0(pt) = \mathbb{Z} \xrightarrow{i} \mathbb{C}. \]
Proof (continued).

- Hence $G \in \mathcal{B}C$ implies $\text{tr}(p) \in \mathbb{Z}$.
- Since $\text{tr}(1) = 1$, $\text{tr}(0) = 0$, $0 \leq p \leq 1$ and $p^2 = p$, we get $\text{tr}(p) \in \mathbb{R}$ and $0 \leq \text{tr}(p) \leq 1$.
- We conclude $\text{tr}(0) = \text{tr}(p)$ or $\text{tr}(1) = \text{tr}(p)$.
- This implies already $p = 0$ or $p = 1$.
Proof (continued).

Hence $G \in \mathcal{B} \mathcal{C}$ implies $\text{tr}(p) \in \mathbb{Z}$.

Since $\text{tr}(1) = 1$, $\text{tr}(0) = 0$, $0 \leq p \leq 1$ and $p^2 = p$, we get $\text{tr}(p) \in \mathbb{R}$ and $0 \leq \text{tr}(p) \leq 1$.

We conclude $\text{tr}(0) = \text{tr}(p)$ or $\text{tr}(1) = \text{tr}(p)$.

This implies already $p = 0$ or $p = 1$.

Wolfgang Lück (Münster, Germany)
Proof (continued).

- Hence $G \in BC$ implies $\text{tr}(p) \in \mathbb{Z}$.
- Since $\text{tr}(1) = 1$, $\text{tr}(0) = 0$, $0 \leq p \leq 1$ and $p^2 = p$, we get $\text{tr}(p) \in \mathbb{R}$ and $0 \leq \text{tr}(p) \leq 1$.
- We conclude $\text{tr}(0) = \text{tr}(p)$ or $\text{tr}(1) = \text{tr}(p)$.
- This implies already $p = 0$ or $p = 1$.
Proof (continued).

- Hence \(G \in \mathcal{BC} \) implies \(\text{tr}(p) \in \mathbb{Z} \).
- Since \(\text{tr}(1) = 1, \text{tr}(0) = 0, 0 \leq p \leq 1 \) and \(p^2 = p \), we get \(\text{tr}(p) \in \mathbb{R} \) and \(0 \leq \text{tr}(p) \leq 1 \).
- We conclude \(\text{tr}(0) = \text{tr}(p) \) or \(\text{tr}(1) = \text{tr}(p) \).
- This implies already \(p = 0 \) or \(p = 1 \).
Conjecture (Borel Conjecture)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \rightarrow N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.
- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).
- There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
The **Borel Conjecture for G** predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.
- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).
- There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \rightarrow N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.
- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).
- There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.

The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).

There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
Conjecture (Borel Conjecture)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \rightarrow N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.

- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones (1989).

- There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
The Borel Conjecture (Borel Conjecture)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.
- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).
- There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
Theorem (The Farrell-Jones Conjecture and the Borel Conjecture)

If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case $R = \mathbb{Z}$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

- Thurston’s Geometrization Conjecture implies the Borel Conjecture in dimension 3.
- The Borel Conjecture in dimension 1 and 2 is obviously true.
If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case $\mathbb{R} = \mathbb{Z}$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

- Thurston’s Geometrization Conjecture implies the Borel Conjecture in dimension 3.
- The Borel Conjecture in dimension 1 and 2 is obviously true.
If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case $R = \mathbb{Z}$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

- Thurston’s Geometrization Conjecture implies the Borel Conjecture in dimension 3.
- The Borel Conjecture in dimension 1 and 2 is obviously true.
Theorem (The Farrell-Jones Conjecture and the Borel Conjecture)

If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case $R = \mathbb{Z}$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

- Thurston’s Geometrization Conjecture implies the Borel Conjecture in dimension 3.
- The Borel Conjecture in dimension 1 and 2 is obviously true.
Definition (Structure set)

The *structure set* $S^{top}(M)$ of a manifold M consists of equivalence classes of orientation preserving homotopy equivalences $N \to M$ with a manifold N as source. Two such homotopy equivalences $f_0 : N_0 \to M$ and $f_1 : N_1 \to M$ are equivalent if there exists a homeomorphism $g : N_0 \to N_1$ with $f_1 \circ g \simeq f_0$.

Theorem

The Borel Conjecture holds for a closed manifold M if and only if $S^{top}(M)$ consists of one element.
Definition (Structure set)

The *structure set* $S^{\text{top}}(M)$ of a manifold M consists of equivalence classes of orientation preserving homotopy equivalences $N \to M$ with a manifold N as source.

Two such homotopy equivalences $f_0 : N_0 \to M$ and $f_1 : N_1 \to M$ are equivalent if there exists a homeomorphism $g : N_0 \to N_1$ with $f_1 \circ g \simeq f_0$.

Theorem

The Borel Conjecture holds for a closed manifold M if and only if $S^{\text{top}}(M)$ consists of one element.
Definition (Structure set)

The *structure set* $S^{\text{top}}(M)$ of a manifold M consists of equivalence classes of orientation preserving homotopy equivalences $N \to M$ with a manifold N as source.

Two such homotopy equivalences $f_0: N_0 \to M$ and $f_1: N_1 \to M$ are equivalent if there exists a homeomorphism $g: N_0 \to N_1$ with $f_1 \circ g \simeq f_0$.

Theorem

The Borel Conjecture holds for a closed manifold M if and only if $S^{\text{top}}(M)$ consists of one element.
Definition (Structure set)

The *structure set* $S^{\text{top}}(M)$ of a manifold M consists of equivalence classes of orientation preserving homotopy equivalences $N \to M$ with a manifold N as source.

Two such homotopy equivalences $f_0 : N_0 \to M$ and $f_1 : N_1 \to M$ are equivalent if there exists a homeomorphism $g : N_0 \to N_1$ with $f_1 \circ g \simeq f_0$.

Theorem

The Borel Conjecture holds for a closed manifold M if and only if $S^{\text{top}}(M)$ consists of one element.
Theorem (Ranicki (1992))

There is an exact sequence of abelian groups, called algebraic surgery exact sequence, for an n-dimensional closed manifold M:

$$
\ldots \xrightarrow{\sigma_{n+1}} H_{n+1}(M; L\langle 1 \rangle) \xrightarrow{A_{n+1}} L_{n+1}(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_{n+1}} \\
S_{\text{top}}(M) \xrightarrow{\sigma_n} H_n(M; L\langle 1 \rangle) \xrightarrow{A_n} L_n(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_n} \ldots
$$

It can be identified with the classical geometric surgery sequence due to Sullivan and Wall in high dimensions.

- $S_{\text{top}}(M)$ consist of one element if and only if A_{n+1} is surjective and A_n is injective.
- $H_k(M; L\langle 1 \rangle) \rightarrow H_k(M; L)$ is bijective for $k \geq n + 1$ and injective for $k = n$.

Wolfgang Lück (Münster, Germany) The Iso. Conj. in the torsionfree case Hangzhou, July 2007 29 / 35
Theorem (Ranicki (1992))

There is an exact sequence of abelian groups, called *algebraic surgery exact sequence*, for an \(n \)-dimensional closed manifold \(M \)

\[
\ldots \xrightarrow{\sigma_{n+1}} H_{n+1}(M; L\langle 1 \rangle) \xrightarrow{A_{n+1}} L_{n+1}(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_{n+1}} S^{\text{top}}(M) \xrightarrow{\sigma_n} H_n(M; L\langle 1 \rangle) \xrightarrow{A_n} L_n(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_n} \ldots
\]

It can be identified with the classical geometric surgery sequence due to *Sullivan and Wall* in high dimensions.

- \(S^{\text{top}}(M) \) consist of one element if and only if \(A_{n+1} \) is surjective and \(A_n \) is injective.
- \(H_k(M; L\langle 1 \rangle) \rightarrow H_k(M; L) \) is bijective for \(k \geq n + 1 \) and injective for \(k = n \).
Theorem (Ranicki (1992))

There is an exact sequence of abelian groups, called algebraic surgery exact sequence, for an n-dimensional closed manifold M.

$$
\ldots \xrightarrow{\sigma_{n+1}} H_{n+1}(M; L\langle 1 \rangle) \xrightarrow{A_{n+1}} L_{n+1}(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_{n+1}}
$$

$$
S^{\text{top}}(M) \xrightarrow{\sigma_n} H_n(M; L\langle 1 \rangle) \xrightarrow{A_n} L_n(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_n} \ldots
$$

It can be identified with the classical geometric surgery sequence due to Sullivan and Wall in high dimensions.

- $S^{\text{top}}(M)$ consist of one element if and only if A_{n+1} is surjective and A_n is injective.
- $H_k(M; L\langle 1 \rangle) \rightarrow H_k(M; L)$ is bijective for $k \geq n+1$ and injective for $k = n$.

Theorem (Ranicki (1992))

There is an exact sequence of abelian groups, called *algebraic surgery exact sequence*, for an n-dimensional closed manifold M:

$$
\ldots \xrightarrow{\sigma_{n+1}} H_{n+1}(M; L\langle 1 \rangle) \xrightarrow{A_{n+1}} L_{n+1}(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_{n+1}}
$$

$$
S_{\text{top}}(M) \xrightarrow{\sigma_n} H_n(M; L\langle 1 \rangle) \xrightarrow{A_n} L_n(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_n} \ldots
$$

It can be identified with the classical geometric surgery sequence due to *Sullivan and Wall* in high dimensions.

- $S_{\text{top}}(M)$ consist of one element if and only if A_{n+1} is surjective and A_n is injective.
- $H_k(M; L\langle 1 \rangle) \rightarrow H_k(M; L)$ is bijective for $k \geq n + 1$ and injective for $k = n$.
What happens for groups with torsion?

- The versions of the Farrell-Jones Conjecture and the Baum-Connes Conjecture above become false for finite groups unless the group is trivial.
- For instance the version of the Baum-Connes Conjecture above would predict for a finite group G

$$K_0(BG) \cong K_0(C^*_r(G)) \cong R\mathbb{C}(G).$$

However, $K_0(BG) \otimes \mathbb{Q} \cong \mathbb{Q} K_0(pt) \otimes \mathbb{Q} \cong \mathbb{Q} \otimes \mathbb{Q}$ and $R\mathbb{C}(G) \otimes \mathbb{Q} \cong \mathbb{Q} \otimes \mathbb{Q}$ holds if and only if G is trivial.
What happens for groups with torsion?

- The versions of the Farrell-Jones Conjecture and the Baum-Connes Conjecture above become false for finite groups unless the group is trivial.

- For instance the version of the Baum-Connes Conjecture above would predict for a finite group G

$$K_0(BG) \cong K_0(C^*_r(G)) \cong R_C(G).$$

However, $K_0(BG) \otimes \mathbb{Q} \cong K_0(pt) \otimes \mathbb{Q} \cong \mathbb{Q}$ and $R_C(G) \otimes \mathbb{Q} \cong \mathbb{Q}$ holds if and only if G is trivial.
What happens for groups with torsion?

- The versions of the Farrell-Jones Conjecture and the Baum-Connes Conjecture above become false for finite groups unless the group is trivial.
- For instance the version of the Baum-Connes Conjecture above would predict for a finite group G

$$K_0(BG) \cong K_0(C^*_r(G)) \cong R_C(G).$$

However, $K_0(BG) \otimes \mathbb{Q} \cong K_0(\text{pt}) \otimes \mathbb{Q} \cong \mathbb{Q}$ and $R_C(G) \otimes \mathbb{Q} \cong \mathbb{Q}$ holds if and only if G is trivial.
What happens for groups with torsion?

- The versions of the Farrell-Jones Conjecture and the Baum-Connes Conjecture above become false for finite groups unless the group is trivial.

- For instance, the version of the Baum-Connes Conjecture above would predict for a finite group G

 \[K_0(BG) \cong K_0(C^*_r(G)) \cong R_C(G). \]

 However, $K_0(BG) \otimes \mathbb{Q} \cong Q K_0(pt) \otimes \mathbb{Z} Q \cong Q Q$ and $R_C(G) \otimes \mathbb{Z} Q \cong Q Q$ holds if and only if G is trivial.
If G is torsionfree, then the version of the K-theoretic Farrell-Jones Conjecture predicts

$$H_n(B\mathbb{Z}; K_R) = H_n(S^1; K_R) = H_n(pt; K_R) \oplus H_{n-1}(pt; K_R)$$

$$= K_n(R) \oplus K_{n-1}(R) \cong K_n(R\mathbb{Z}).$$

In view of the Bass-Heller-Swan decomposition this is only possible if $NK_n(R)$ vanishes which is true for regular rings R but not for general rings R.

We want to figure out what is needed for a general version which may be true for all groups.
If G is torsionfree, then the version of the K-theoretic Farrell-Jones Conjecture predicts

$$H_n(B\mathbb{Z}; K_R) = H_n(S^1; K_R) = H_n(pt; K_R) \oplus H_{n-1}(pt; K_R)$$

$$= K_n(R) \oplus K_{n-1}(R) \cong K_n(R\mathbb{Z}).$$

In view of the Bass-Heller-Swan decomposition this is only possible if $NK_n(R)$ vanishes which is true for regular rings R but not for general rings R.

We want to figure out what is needed for a general version which may be true for all groups.
If G is torsionfree, then the version of the K-theoretic Farrell-Jones Conjecture predicts

$$H_n(B\mathbb{Z}; K_R) = H_n(S^1; K_R) = H_n(pt; K_R) \oplus H_{n-1}(pt; K_R)$$

$$= K_n(R) \oplus K_{n-1}(R) \cong K_n(R\mathbb{Z}).$$

In view of the Bass-Heller-Swan decomposition this is only possible if $NK_n(R)$ vanishes which is true for regular rings R but not for general rings R.

We want to figure out what is needed for a general version which may be true for all groups.
Assembly

For a field F of characteristic zero and some groups G one knows that there is an isomorphism

$$\text{colim}_{H \subseteq G} K_0(FH) \cong K_0(FG).$$

This indicates that one has at least to take into account the values for all finite subgroups to assemble $K_n(FG)$.

Degree Mixing

The Bass-Heller-Swan decomposition shows that the K-theory of finite subgroups in degree $m \leq n$ can affect the K-theory in degree n and that at least in the Farrell-Jones setting finite subgroups are not enough.
Assembly

For a field F of characteristic zero and some groups G one knows that there is an isomorphism

$$
\operatorname{colim}_{H \subseteq G, |H| < \infty} \ K_0(FH) \xrightarrow{\cong} K_0(FG).
$$

This indicates that one has at least to take into account the values for all finite subgroups to assemble $K_n(FG)$.

Degree Mixing

The Bass-Heller-Swan decomposition shows that the K-theory of finite subgroups in degree $m \leq n$ can affect the K-theory in degree n and that at least in the Farrell-Jones setting finite subgroups are not enough.
Assembly

For a field F of characteristic zero and some groups G one knows that there is an isomorphism

$$\colim_{H \subseteq G \text{, } |H| < \infty} K_0(FH) \overset{\cong}{\longrightarrow} K_0(FG).$$

This indicates that one has at least to take into account the values for all finite subgroups to assemble $K_n(FG)$.

Degree Mixing

The Bass-Heller-Swan decomposition shows that the K-theory of finite subgroups in degree $m \leq n$ can affect the K-theory in degree n and that at least in the Farrell-Jones setting finite subgroups are not enough.
Assembly

For a field F of characteristic zero and some groups G one knows that there is an isomorphism

$$\text{colim}_{H \subseteq G, |H| < \infty} K_0(FH) \xrightarrow{\cong} K_0(FG).$$

This indicates that one has at least to take into account the values for all finite subgroups to assemble $K_n(FG)$.

Degree Mixing

The Bass-Heller-Swan decomposition shows that the K-theory of finite subgroups in degree $m \leq n$ can affect the K-theory in degree n and that at least in the Farrell-Jones setting finite subgroups are not enough.
Assembly

For a field F of characteristic zero and some groups G one knows that there is an isomorphism

$$\text{colim}_{H \subseteq G \atop |H| < \infty} K_0(FH) \cong K_0(FG).$$

This indicates that one has at least to take into account the values for all finite subgroups to assemble $K_n(FG)$.

Degree Mixing

The Bass-Heller-Swan decomposition shows that the K-theory of finite subgroups in degree $m \leq n$ can affect the K-theory in degree n and that at least in the Farrell-Jones setting finite subgroups are not enough.
In the Baum-Connes setting Nil-phenomena do not appear. Namely, a special case of a result due to Pimsner-Voiculescu (1982) says

\[K_n(C^*_r(G \times \mathbb{Z})) \cong K_n(C^*_r(G)) \oplus K_{n-1}(C^*_r(G)). \]

Homological behaviour

There is still a lot of homological behaviour known for \(K_\ast(C^*_r(G)) \). For instance there exists a long exact Mayer-Vietoris sequence associated to amalgamated products \(G_1 *_{G_0} G_2 \) and a Wang-sequence associated to semi-direct products \(G \rtimes \mathbb{Z} \) by Pimsner-Voiculescu (1982).

Similar versions under certain restrictions exist in \(K \)-and \(L \)-theory due to Cappell (1974) and Waldhausen (1978) if one makes certain assumptions on \(R \) or ignores certain Nil-phenomena.
In the Baum-Connes setting Nil-phenomena do not appear. Namely, a special case of a result due to Pimsner-Voiculescu (1982) says

$$K_n(C_r^*(G \times \mathbb{Z})) \cong K_n(C_r^*(G)) \oplus K_{n-1}(C_r^*(G)).$$

Homological behaviour

There is still a lot of homological behaviour known for $K_*(C_r^*(G))$. For instance there exists a long exact Mayer-Vietoris sequence associated to amalgamated products $G_1 *_{G_0} G_2$ and a Wang-sequence associated to semi-direct products $G \rtimes \mathbb{Z}$ by Pimsner-Voiculescu (1982). Similar versions under certain restrictions exist in K-and L-theory due to Cappell (1974) and Waldhausen (1978) if one makes certain assumptions on R or ignores certain Nil-phenomena.
In the Baum-Connes setting Nil-phenomena do not appear. Namely, a special case of a result due to Pimsner-Voiculescu (1982) says

\[K_n(C^*_r(G \times \mathbb{Z})) \cong K_n(C^*_r(G)) \oplus K_{n-1}(C^*_r(G)). \]

Homological behaviour
There is still a lot of homological behaviour known for \(K_\ast(C^*_r(G)) \). For instance there exists a long exact Mayer-Vietoris sequence associated to amalgamated products \(G_1 \ast_{G_0} G_2 \) and a Wang-sequence associated to semi-direct products \(G \ltimes \mathbb{Z} \) by Pimsner-Voiculescu (1982).
Similar versions under certain restrictions exist in \(K \)-and \(L \)-theory due to Cappell (1974) and Waldhausen (1978) if one makes certain assumptions on \(R \) or ignores certain Nil-phenomena.
In the Baum-Connes setting Nil-phenomena do not appear. Namely, a special case of a result due to Pimsner-Voiculescu (1982) says

\[K_n(C_r^\ast(G \times \mathbb{Z})) \cong K_n(C_r^\ast(G)) \oplus K_{n-1}(C_r^\ast(G)). \]

Homological behaviour

There is still a lot of homological behaviour known for $K^\ast(C_r^\ast(G))$. For instance there exists a long exact Mayer-Vietoris sequence associated to amalgamated products $G_1 *_{G_0} G_2$ and a Wang-sequence associated to semi-direct products $G \rtimes \mathbb{Z}$ by Pimsner-Voiculescu (1982).

Similar versions under certain restrictions exist in K-and L-theory due to Cappell (1974) and Waldhausen (1978) if one makes certain assumptions on R or ignores certain Nil-phenomena.
In the Baum-Connes setting Nil-phenomena do not appear. Namely, a special case of a result due to Pimsner-Voiculescu (1982) says

$$K_n(C^*_r(G \times \mathbb{Z})) \cong K_n(C^*_r(G)) \oplus K_{n-1}(C^*_r(G)).$$

Homological behaviour

There is still a lot of homological behaviour known for $K_*(C^*_r(G))$. For instance there exists a long exact Mayer-Vietoris sequence associated to amalgamated products $G_1 *_{G_0} G_2$ and a Wang-sequence associated to semi-direct products $G \rtimes \mathbb{Z}$ by Pimsner-Voiculescu (1982). Similar versions under certain restrictions exist in K-and L-theory due to Cappell (1974) and Waldhausen (1978) if one makes certain assumptions on R or ignores certain Nil-phenomena.
Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories \mathcal{H}_{*}^{G} that are in some sense computable and yield when applied to $E_{\mathcal{F}}(G)$ a term which potentially is isomorphic to the groups $K_{n}(RG)$, $L^{-\langle \infty \rangle}(RG)$ or $K_{n}(C_{r}^{*}(G))$?

In the torsionfree case they should reduce to $H_{n}(BG; K_{R})$, $H_{n}(BG; L^{-\langle \infty \rangle})$ and $K_{n}(BG)$.
Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories \mathcal{H}_{\ast}^G that are in some sense computable and yield when applied to $E_{\mathcal{F}}(G)$ a term which potentially is isomorphic to the groups $K_n(RG)$, $L^{-\langle \infty \rangle}(RG)$ or $K_n(C_r^*(G))$? In the torsionfree case they should reduce to $H_n(BG; K_R)$, $H_n(BG; L^{-\langle \infty \rangle})$ and $K_n(BG)$.
Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories \mathcal{H}^*_G that are in some sense computable and yield when applied to $E_{\mathcal{F}}(G)$ a term which potentially is isomorphic to the groups $K_n(RG), L^{-\langle \infty \rangle}(RG)$ or $K_n(C^*_r(G))$?

In the torsionfree case they should reduce to $H_n(BG; K_R), H_n(BG; L^{-\langle \infty \rangle})$ and $K_n(BG)$.
Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories \mathcal{H}_*^G that are in some sense computable and yield when applied to $E_{\mathcal{F}}(G)$ a term which potentially is isomorphic to the groups $K_n(RG)$, $L^{-\langle \infty \rangle}(RG)$ or $K_n(C_r^*(G))$?

In the torsionfree case they should reduce to $H_n(BG; K_R)$, $H_n(BG; L^{-\langle \infty \rangle})$ and $K_n(BG)$.
Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories \mathcal{H}^G_* that are in some sense computable and yield when applied to $E_{\mathcal{F}}(G)$ a term which potentially is isomorphic to the groups $K_n(RG)$, $L^{-\langle \infty \rangle}(RG)$ or $K_n(C^*_r(G))$?

In the torsionfree case they should reduce to $H_n(BG; K_R)$, $H_n(BG; L^{-\langle \infty \rangle})$ and $K_n(BG)$.
To be continued
Stay tuned
To be continued
Stay tuned