Wolfgang Lück
Münster
Germany
email lueck@math.uni-muenster.de
http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007
We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsion-free groups:

\[
\begin{align*}
H_n(BG; K_R) & \xrightarrow{\text{R}} K_n(RG); \\
H_n(BG; L_R^{(-\infty)}) & \xrightarrow{\text{R}} L_n^{(-\infty)}(RG); \\
K_n(BG) & \xrightarrow{\text{R}} K_n(C^*_r(G)).
\end{align*}
\]

We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups:

\[
\begin{align*}
H_n(BG; K_R) & \xrightarrow{\mathbb{R}} K_n(RG); \\
H_n(BG; L_R^{(-\infty)}) & \xrightarrow{\mathbb{R}} L_n^{(-\infty)}(RG); \\
K_n(BG) & \xrightarrow{\mathbb{R}} K_n(C^*_r(G)).
\end{align*}
\]

We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups:

\[H_n(BG; K_R) \xrightarrow{\text{ir}} K_n(RG); \]
\[H_n(BG; L_R^{\langle -\infty \rangle}) \xrightarrow{\text{ir}} L_n^{\langle -\infty \rangle}(RG); \]
\[K_n(BG) \xrightarrow{\text{ir}} K_n(C_r^*(G)). \]

We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups:

\[
\begin{align*}
H_n(BG; K_R) &\xrightarrow{\mathbb{R}} K_n(RG); \\
H_n(BG; L_{\mathbb{R}}^{(-\infty)}) &\xrightarrow{\mathbb{R}} L_n^{(-\infty)}(RG); \\
K_n(BG) &\xrightarrow{\mathbb{R}} K_n(C^*_r(G)).
\end{align*}
\]

We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?
Cliffhanger

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?
Cliffhanger

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?
We introduce the notion of the classifying space of a family \mathcal{F} of subgroups $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$.

In the case, where \mathcal{F} is the family COM of compact subgroups, we present some nice geometric models for $E_{\mathcal{F}}(G)$ and explain $E_{\mathcal{F}}(G) \simeq J_{\mathcal{F}}(G)$.

We discuss finiteness properties of these classifying spaces.
We introduce the notion of the **classifying space of a family** \mathcal{F} of subgroups $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$.

In the case, where \mathcal{F} is the family COM of compact subgroups, we present some nice geometric models for $E_{\mathcal{F}}(G)$ and explain $E_{\mathcal{F}}(G) \simeq J_{\mathcal{F}}(G)$.

We discuss **finiteness properties** of these classifying spaces.
We introduce the notion of the **classifying space of a family** \mathcal{F} of subgroups $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$.

In the case, where \mathcal{F} is the family COM of compact subgroups, we present some nice geometric models for $E_{\mathcal{F}}(G)$ and explain $E_{\mathcal{F}}(G) \simeq J_{\mathcal{F}}(G)$.

We discuss **finiteness properties** of these classifying spaces.
We introduce the notion of the **classifying space of a family** \mathcal{F} of subgroups $E_\mathcal{F}(G)$ and $J_\mathcal{F}(G)$.

In the case, where \mathcal{F} is the family COM of compact subgroups, we present some nice geometric models for $E_\mathcal{F}(G)$ and explain $E_\mathcal{F}(G) \simeq J_\mathcal{F}(G)$.

We discuss **finiteness properties** of these classifying spaces.
Definition (\textit{G-CW-complex})

A \textit{G-CW-complex} \(X\) is a \(G\)-space together with a \(G\)-invariant filtration

\[
\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \geq 0} X_n = X
\]

such that \(X\) carries the \textit{colimit topology} with respect to this filtration, and \(X_n\) is obtained from \(X_{n-1}\) for each \(n \geq 0\) by attaching equivariant \(n\)-dimensional cells, i.e., there exists a \(G\)-pushout

\[
\begin{array}{ccc}
\bigsqcup_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\bigsqcup_{i \in I_n} q_i^n} & X_{n-1} \\
\downarrow & & \downarrow \\
\bigsqcup_{i \in I_n} G/H_i \times D^n & \xrightarrow{\bigsqcup_{i \in I_n} Q_i^n} & X_n
\end{array}
\]
Definition (G-CW-complex)

A *G-CW-complex* \(X \) is a \(G \)-space together with a \(G \)-invariant filtration

\[
\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \geq 0} X_n = X
\]

such that \(X \) carries the colimit topology with respect to this filtration, and \(X_n \) is obtained from \(X_{n-1} \) for each \(n \geq 0 \) by attaching equivariant \(n \)-dimensional cells, i.e., there exists a \(G \)-pushout

\[
\begin{array}{ccc}
\bigsqcup_{i \in I} G/H_i \times S^{n-1} & \xrightarrow{\bigsqcup_{i \in I} q^n_i} & X_{n-1} \\
\downarrow & & \downarrow \\
\bigsqcup_{i \in I} G/H_i \times D^n & \xrightarrow{\bigsqcup_{i \in I} Q^n_i} & X_n
\end{array}
\]
Definition (**G-CW-complex**)

A **G-CW-complex** X is a G-space together with a G-invariant filtration

$$
\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \geq 0} X_n = X
$$

such that X carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \geq 0$ by attaching equivariant n-dimensional cells, i.e., there exists a G-pushout

$$
\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1}
$$

$$
\coprod_{i \in I_n} G/H_i \times D^n \xrightarrow{\coprod_{i \in I_n} Q_i^n} X_n
$$
Definition \((G\text{-}CW\text{-complex})\)

A \(G\text{-}CW\text{-complex} \ X\) is a \(G\)-space together with a \(G\)-invariant filtration

\[
\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \geq 0} X_n = X
\]

such that \(X\) carries the colimit topology with respect to this filtration, and \(X_n\) is obtained from \(X_{n-1}\) for each \(n \geq 0\) by attaching equivariant \(n\)-dimensional cells, i.e., there exists a \(G\)-pushout

\[
\begin{array}{ccc}
\bigsqcup_{i \in I} G/H_i \times S^{n-1} & \xrightarrow{\bigsqcup_{i \in I} q_i^n} & X_{n-1} \\
\downarrow & & \downarrow \\
\bigsqcup_{i \in I} G/H_i \times D^n & \xrightarrow{\bigsqcup_{i \in I} Q_i^n} & X_n \\
\end{array}
\]
A \textit{G-CW-complex} X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \geq 0} X_n = X$$

such that X carries the \textit{colimit topology} with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \geq 0$ by attaching equivariant n-dimensional cells, i.e., there exists a G-pushout

$$\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q^n_i} X_{n-1} \quad \coprod_{i \in I_n} G/H_i \times D^n \xrightarrow{\coprod_{i \in I_n} Q^n_i} X_n$$
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)
Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)
Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)
Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)
Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)
Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Group means **locally compact Hausdorff topological group** with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the **barycentric subdivision** X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of a G-CW-complex.
Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.
Definition (Proper G-action)

A G-space X is called *proper* if for each pair of points x and y in X there are open neighborhoods V_x of x and W_y of y in X such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of G is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.
Definition (Proper G-action)

A G-space X is called *proper* if for each pair of points x and y in X there are open neighborhoods V_x of x and W_y of y in X such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of G is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.
Definition (Proper G-action)

A G-space X is called **proper** if for each pair of points x and y in X there are open neighborhoods V_x of x and W_y of y in X such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of G is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.
Definition (Proper G-action)

A G-space X is called proper if for each pair of points x and y in X there are open neighborhoods V_x of x and W_y of y in X such that the closure of the subset $\{g \in G | gV_x \cap W_y \neq \emptyset\}$ of G is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.
Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $TR = \{\text{trivial subgroup}\}$;
- $FIN = \{\text{finite subgroups}\}$;
- $VCYC = \{\text{virtually cyclic subgroups}\}$;
- $COM = \{\text{compact subgroups}\}$;
- $COMOP = \{\text{compact open subgroups}\}$;
- $ALL = \{\text{all subgroups}\}$.
Definition (Family of subgroups)

A \textit{family F of subgroups} of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for F are:

- $\text{TR} = \{\text{trivial subgroup}\}$;
- $\text{FIN} = \{\text{finite subgroups}\}$;
- $\text{VCYC} = \{\text{virtually cyclic subgroups}\}$;
- $\text{COM} = \{\text{compact subgroups}\}$;
- $\text{COMOP} = \{\text{compact open subgroups}\}$;
- $\text{ALL} = \{\text{all subgroups}\}$.
Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $TR = \{\text{trivial subgroup}\}$;
- $FIN = \{\text{finite subgroups}\}$;
- $VCYC = \{\text{virtually cyclic subgroups}\}$;
- $COM = \{\text{compact subgroups}\}$;
- $COMOP = \{\text{compact open subgroups}\}$;
- $ALL = \{\text{all subgroups}\}$.
Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $\text{TR} = \{\text{trivial subgroup}\}$;
- $\text{FIN} = \{\text{finite subgroups}\}$;
- $\text{VCYC} = \{\text{virtually cyclic subgroups}\}$;
- $\text{COM} = \{\text{compact subgroups}\}$;
- $\text{COMOP} = \{\text{compact open subgroups}\}$;
- $\text{ALL} = \{\text{all subgroups}\}$.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007
Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $TR = \{\text{trivial subgroup}\}$;
- $FIN = \{\text{finite subgroups}\}$;
- $VCYC = \{\text{virtually cyclic subgroups}\}$;
- $COM = \{\text{compact subgroups}\}$;
- $COMOP = \{\text{compact open subgroups}\}$;
- $ALL = \{\text{all subgroups}\}$.
Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $TR = \{\text{trivial subgroup}\}$;
- $FIN = \{\text{finite subgroups}\}$;
- $VCYC = \{\text{virtually cyclic subgroups}\}$;
- $COM = \{\text{compact subgroups}\}$;
- $COMOP = \{\text{compact open subgroups}\}$;
- $ALL = \{\text{all subgroups}\}$.
Definition (Family of subgroups)

A family \(\mathcal{F} \) of subgroups of \(G \) is a set of (closed) subgroups of \(G \) which is closed under conjugation and finite intersections.

Examples for \(\mathcal{F} \) are:

\[
\begin{align*}
\text{TR} & = \{\text{trivial subgroup}\}; \\
\text{FIN} & = \{\text{finite subgroups}\}; \\
\text{VCYC} & = \{\text{virtually cyclic subgroups}\}; \\
\text{COM} & = \{\text{compact subgroups}\}; \\
\text{COMOP} & = \{\text{compact open subgroups}\}; \\
\text{ALL} & = \{\text{all subgroups}\}.
\end{align*}
\]
Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $\mathcal{TR} = \{\text{trivial subgroup}\}$;
- $\mathcal{FIN} = \{\text{finite subgroups}\}$;
- $\mathcal{VCYC} = \{\text{virtually cyclic subgroups}\}$;
- $\mathcal{COM} = \{\text{compact subgroups}\}$;
- $\mathcal{COMOP} = \{\text{compact open subgroups}\}$;
- $\mathcal{ALL} = \{\text{all subgroups}\}$.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007
8 / 35
Definition (Family of subgroups)

A *family \mathcal{F} of subgroups* of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $TR = \{\text{trivial subgroup}\}$;
- $FIN = \{\text{finite subgroups}\}$;
- $VCYC = \{\text{virtually cyclic subgroups}\}$;
- $COM = \{\text{compact subgroups}\}$;
- $COMOP = \{\text{compact open subgroups}\}$;
- $ALL = \{\text{all subgroups}\}$.
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family \mathcal{F}* is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to E_{\mathcal{F}}(G)$.

We abbreviate $EG := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{TR}(G)$.
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_\mathcal{F}(G)$ which has the following properties:

- All isotropy groups of $E_\mathcal{F}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to E_\mathcal{F}(G)$.

We abbreviate $EG := E_{\text{COM}}(G)$ and call it the universal G-CW-complex for proper G-actions.
We also write $EG = E_{\text{T\&R}}(G)$.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007 9 / 35
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_\mathcal{F}(G)$ which has the following properties:

- All isotropy groups of $E_\mathcal{F}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow E_\mathcal{F}(G)$.

We abbreviate $EG := E_{COM}(G)$ and call it the universal G-CW-complex for proper G-actions. We also write $EG = E_{TR}(G)$.
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to E_{\mathcal{F}}(G)$.

We abbreviate $EG := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{TR}(G)$.
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to E_{\mathcal{F}}(G)$.

We abbreviate $EG := E_{COM}(G)$ and call it the universal G-CW-complex for proper G-actions.
We also write $EG = E_{TR}(G)$.
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to E_{\mathcal{F}}(G)$.

We abbreviate $EG := E_{COM}(G)$ and call it the universal G-CW-complex for proper G-actions.

We also write $EG = E_{TR}(G)$.
Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the **classifying G-CW-complex for the family \mathcal{F}** is a G-CW-complex $E_\mathcal{F}(G)$ which has the following properties:

- All isotropy groups of $E_\mathcal{F}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \to E_\mathcal{F}(G)$.

We abbreviate $EG := E_{COM}(G)$ and call it the **universal G-CW-complex for proper G-actions**. We also write $EG = E_{\mathcal{T}\mathcal{R}}(G)$.

Wolfgang Lück (Münster, Germany)

Hangzhou, July 2007 9 / 35
Theorem \textbf{(Homotopy characterization of $E_{\mathcal{F}}(G)$)}

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F};
- Two models for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible.
Theorem (Homotopy characterization of $E_{\mathcal{F}}(G)$)

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F};
- Two model for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible.
Theorem (Homotopy characterization of $E_F(G)$)

Let F be a family of subgroups.

- There exists a model for $E_F(G)$ for any family F;
- Two models for $E_F(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_F(G)$ if and only if all its isotropy groups belong to F and for each $H \in F$ the H-fixed point set X^H is weakly contractible.
Theorem (Homotopy characterization of $E_{\mathcal{F}}(G)$)

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F};
- Two models for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible.
Theorem (Homotopy characterization of $E_{\mathcal{F}}(G)$)

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F};
- Two model for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible.
A model for $E_{\mathcal{A}\mathcal{L}L}(G)$ is G/G;

$EG \to BG := G\backslash EG$ is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \ast \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $RP^\infty \vee RP^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

If G is totally disconnected, then $E_{CO\mathcal{M}OP}(G) = EG$.
A model for $E_{\text{ALL}}(G)$ is G/G;

$EG \to BG := G\backslash EG$ is the **universal** G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \ast \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $\mathbb{RP}^\infty \vee \mathbb{RP}^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

If G is totally disconnected, then $E_{\text{COMOP}}(G) = EG$.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007 11 / 35
A model for $E_{\mathcal{ALC}}(G)$ is G/G;

$EG \to BG := G\backslash EG$ is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \star \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $\mathbb{RP}^\infty \lor \mathbb{RP}^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

If G is totally disconnected, then $E_{\mathcal{COMOP}}(G) = EG$.
A model for $E_{\text{ALL}}(G)$ is G/G;

$EG \to BG := G\backslash EG$ is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \ast \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $\mathbb{R}P^\infty \vee \mathbb{R}P^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

If G is totally disconnected, then $E_{\text{COMOP}}(G) = EG$.
A model for $\mathcal{E}_{\mathcal{A}LL}(G)$ is G/G;

$EG \to BG := G \backslash EG$ is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \star \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $RP^\infty \lor RP^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

If G is totally disconnected, then $E_{G_{\mathcal{MOP}}}(G) = EG$.
A model for $E_{\mathcal{ALL}}(G)$ is G/G;

$EG \rightarrow BG := G\backslash EG$ is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \rtimes \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $\mathbb{R}P^\infty \vee \mathbb{R}P^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

If G is totally disconnected, then $E_{\mathcal{COMOP}}(G) = EG$.
A model for $E_{\mathcal{A} \mathcal{L} \mathcal{L}}(G)$ is G/G;

$EG \to BG := G \setminus EG$ is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_\infty = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 \rtimes \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_∞ is the universal covering of $\mathbb{R}P^\infty \vee \mathbb{R}P^\infty$.
- A model for ED_∞ is \mathbb{R} with the obvious D_∞-action.

Lemma

*If G is totally disconnected, then $E_{\mathcal{C} \mathcal{O} \mathcal{M} \mathcal{O} \mathcal{P}}(G) = EG$.***
Definition (**\(F\)-numerable **\(G\)**-space)

A **\(F\)**-**\(G\)**-space is a **\(G\)**-space, for which there exists an open covering \(\{U_i \mid i \in I\}\) by **\(G\)**-subspaces satisfying:

- For each \(i \in I\) there exists a **\(G\)**-map \(U_i \rightarrow G/G_i\) for some **\(G\)**\(i\) \(\in\) **\(F\)**;
- There is a locally finite partition of unity \(\{e_i \mid i \in I\}\) subordinate to \(\{U_i \mid i \in I\}\) by **\(G\)**-invariant functions \(e_i : X \rightarrow [0, 1]\).

- Notice that we do not demand that the isotropy groups of a **\(F\)**-**\(G\)**-space belong to **\(F\)**.
- If \(f : X \rightarrow Y\) is a **\(G\)**-map and **\(Y\)** is **\(F\)**-numerable, then **\(X\)** is also **\(F\)**-numerable.
- A **\(G\)**-**\(CW\)**-complex is **\(F\)**-numerable if and only if each isotropy group appears as a subgroup of an element in **\(F\)**.
Definition \((\mathcal{F}\text{-numerable } G\text{-space})\)

A \(\mathcal{F}\text{-numerable } G\text{-space}\) is a \(G\text{-space}\), for which there exists an open covering \(\{U_i \mid i \in I\}\) by \(G\)-subspaces satisfying:

- For each \(i \in I\) there exists a \(G\)-map \(U_i \to G/G_i\) for some \(G_i \in \mathcal{F}\);
- There is a locally finite partition of unity \(\{e_i \mid i \in I\}\) subordinate to \(\{U_i \mid i \in I\}\) by \(G\)-invariant functions \(e_i : X \to [0,1]\).

- Notice that we do not demand that the isotropy groups of a \(\mathcal{F}\)-numerable \(G\)-space belong to \(\mathcal{F}\).
- If \(f : X \to Y\) is a \(G\)-map and \(Y\) is \(\mathcal{F}\)-numerable, then \(X\) is also \(\mathcal{F}\)-numerable.
- A \(G\text{-CW}\)-complex is \(\mathcal{F}\)-numerable if and only if each isotropy group appears as a subgroup of an element in \(\mathcal{F}\).
Definition (\(\mathcal{F}\)-numerable \(G\)-space)

A \(\mathcal{F}\)-numerable \(G\)-space is a \(G\)-space, for which there exists an open covering \(\{U_i \mid i \in I\}\) by \(G\)-subspaces satisfying:

- For each \(i \in I\) there exists a \(G\)-map \(U_i \to G/G_i\) for some \(G_i \in \mathcal{F}\);
- There is a locally finite partition of unity \(\{e_i \mid i \in I\}\) subordinate to \(\{U_i \mid i \in I\}\) by \(G\)-invariant functions \(e_i : X \to [0, 1]\).

Notice that we do not demand that the isotropy groups of a \(\mathcal{F}\)-numerable \(G\)-space belong to \(\mathcal{F}\).

If \(f : X \to Y\) is a \(G\)-map and \(Y\) is \(\mathcal{F}\)-numerable, then \(X\) is also \(\mathcal{F}\)-numerable.

A \(G\)-CW-complex is \(\mathcal{F}\)-numerable if and only if each isotropy group appears as a subgroup of an element in \(\mathcal{F}\).
A \mathcal{F}-numerable G-space is a G-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by G-subspaces satisfying:

- For each $i \in I$ there exists a G-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by G-invariant functions $e_i: X \to [0, 1]$.

Notice that we do not demand that the isotropy groups of a \mathcal{F}-numerable G-space belong to \mathcal{F}.

If $f: X \to Y$ is a G-map and Y is \mathcal{F}-numerable, then X is also \mathcal{F}-numerable.

A G-CW-complex is \mathcal{F}-numerable if and only if each isotropy group appears as a subgroup of an element in \mathcal{F}.
Definition (\(\mathcal{F}\)-numerable \(G\)-space)

A \(\mathcal{F}\)-numerable \(G\)-space is a \(G\)-space, for which there exists an open covering \(\{U_i \mid i \in I\}\) by \(G\)-subspaces satisfying:

- For each \(i \in I\) there exists a \(G\)-map \(U_i \rightarrow G/G_i\) for some \(G_i \in \mathcal{F}\);
- There is a locally finite partition of unity \(\{e_i \mid i \in I\}\) subordinate to \(\{U_i \mid i \in I\}\) by \(G\)-invariant functions \(e_i : X \rightarrow [0, 1]\).

Notice that we do not demand that the isotropy groups of a \(\mathcal{F}\)-numerable \(G\)-space belong to \(\mathcal{F}\).

If \(f : X \rightarrow Y\) is a \(G\)-map and \(Y\) is \(\mathcal{F}\)-numerable, then \(X\) is also \(\mathcal{F}\)-numerable.

A \(G\)-CW-complex is \(\mathcal{F}\)-numerable if and only if each isotropy group appears as a subgroup of an element in \(\mathcal{F}\).
Definition (**F**-numerable **G**-space)

A **F**-numerable **G**-space is a **G**-space, for which there exists an open covering \(\{ U_i \mid i \in I \} \) by **G**-subspaces satisfying:

- For each \(i \in I \) there exists a **G**-map \(U_i \to G/G_i \) for some \(G_i \in F \);
- There is a locally finite partition of unity \(\{ e_i \mid i \in I \} \) subordinate to \(\{ U_i \mid i \in I \} \) by **G**-invariant functions \(e_i : X \to [0, 1] \).

- Notice that we do not demand that the isotropy groups of a **F**-numerable **G**-space belong to **F**.
- If \(f : X \to Y \) is a **G**-map and \(Y \) is **F**-numerable, then \(X \) is also **F**-numerable.
- A **G-CW**-complex is **F**-numerable if and only if each isotropy group appears as a subgroup of an element in **F**.
A \mathcal{F}-numerable G-space is a G-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by G-subspaces satisfying:

- For each $i \in I$ there exists a G-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by G-invariant functions $e_i : X \to [0, 1]$.

Notice that we do not demand that the isotropy groups of a \mathcal{F}-numerable G-space belong to \mathcal{F}.

If $f : X \to Y$ is a G-map and Y is \mathcal{F}-numerable, then X is also \mathcal{F}-numerable.

A G-CW-complex is \mathcal{F}-numerable if and only if each isotropy group appears as a subgroup of an element in \mathcal{F}.
There is also a version $J_{\mathcal{F}}(G)$ of a classifying space for \mathcal{F}-numerable G-spaces.

It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F}-numerable and for every \mathcal{F}-numerable G-space Y there is up to G-homotopy precisely one G-map $Y \to J_{\mathcal{F}}(G)$.

We abbreviate $JG = J_{COM}(G)$ and $JG = J_{TR}(G)$.

$JG \to G \backslash JG$ is the universal G-principal bundle for numerable free proper G-spaces.
There is also a version $J_{\mathcal{F}}(G)$ of a classifying space for \mathcal{F}-numerable G-spaces.

It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F}-numerable and for every \mathcal{F}-numerable G-space Y there is up to G-homotopy precisely one G-map $Y \to J_{\mathcal{F}}(G)$.

We abbreviate $J G = J_{\mathcal{CM}}(G)$ and $J G = J_{\mathcal{TR}}(G)$.

$J G \to G \backslash J G$ is the universal G-principal bundle for numerable free proper G-spaces.
There is also a version $J_F(G)$ of a classifying space for \mathcal{F}-numerable G-spaces.

It is characterized by the property that $J_F(G)$ is \mathcal{F}-numerable and for every \mathcal{F}-numerable G-space Y there is up to G-homotopy precisely one G-map $Y \to J_F(G)$.

We abbreviate $J_G = J_{COM}(G)$ and $J_G = J_{TR}(G)$.

$J_G \to G \backslash J_G$ is the universal G-principal bundle for numerable free proper G-spaces.
There is also a version $J_{\mathcal{F}}(G)$ of a classifying space for \mathcal{F}-numerable G-spaces.

It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F}-numerable and for every \mathcal{F}-numerable G-space Y there is up to G-homotopy precisely one G-map $Y \to J_{\mathcal{F}}(G)$.

We abbreviate $\underline{J}G = J_{\text{COM}}(G)$ and $JG = J_{\text{TR}}(G)$.

$JG \to G\backslash JG$ is the universal G-principal bundle for numerable free proper G-spaces.
Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

There is up to G-homotopy precisely one G-map

$$\phi: E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$$

It is a G-homotopy equivalence if one of the following conditions is satisfied:
- Each element in \mathcal{F} is open and closed;
- G is discrete;
- \mathcal{F} is COM;

Let G be totally disconnected. Then $EG \to JG$ is a G-homotopy equivalence if and only if G is discrete.
Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

- There is up to G-homotopy precisely one G-map

\[\phi : E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G); \]

- It is a G-homotopy equivalence if one of the following conditions is satisfied:
 - Each element in \mathcal{F} is open and closed;
 - G is discrete;
 - \mathcal{F} is COM;

- Let G be totally disconnected. Then $EG \to JG$ is a G-homotopy equivalence if and only if G is discrete.
Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

- There is up to G-homotopy precisely one G-map
 \[\phi : E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G); \]

- It is a G-homotopy equivalence if one of the following conditions is satisfied:
 - Each element in \mathcal{F} is open and closed;
 - G is discrete;
 - \mathcal{F} is COM;
 - Let G be totally disconnected. Then $E_G \to J_G$ is a G-homotopy equivalence if and only if G is discrete.
Theorem (Comparison of $E_\mathcal{F}(G)$ and $J_\mathcal{F}(G)$, L. (2005))

- There is up to G-homotopy precisely one G-map

$$\phi: E_\mathcal{F}(G) \to J_\mathcal{F}(G);$$

- It is a G-homotopy equivalence if one of the following conditions is satisfied:
 - Each element in \mathcal{F} is open and closed;
 - G is discrete;
 - \mathcal{F} is COM;

- Let G be totally disconnected. Then $E_G \to J_G$ is a G-homotopy equivalence if and only if G is discrete.
Theorem (Comparison of $E_F(G)$ and $J_F(G)$, L. (2005))

- There is up to G-homotopy precisely one G-map

$\phi : E_F(G) \to J_F(G)$;

- It is a G-homotopy equivalence if one of the following conditions is satisfied:
 - Each element in \mathcal{F} is open and closed;
 - G is discrete;
 - \mathcal{F} is COM;

- Let G be totally disconnected. Then $EG \to JG$ is a G-homotopy equivalence if and only if G is discrete.
Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

- There is up to G-homotopy precisely one G-map
 \[\phi: E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G); \]

- It is a G-homotopy equivalence if one of the following conditions is satisfied:
 - Each element in \mathcal{F} is open and closed;
 - G is discrete;
 - \mathcal{F} is COM;

- Let G be totally disconnected. Then $EG \to JG$ is a G-homotopy equivalence if and only if G is discrete.
Theorem (Comparison of $E_\mathcal{F}(G)$ and $J_\mathcal{F}(G)$, L. (2005))

- There is up to G-homotopy precisely one G-map

$$\phi : E_\mathcal{F}(G) \to J_\mathcal{F}(G);$$

- It is a G-homotopy equivalence if one of the following conditions is satisfied:
 - Each element in \mathcal{F} is open and closed;
 - G is discrete;
 - \mathcal{F} is COM;
- Let G be totally disconnected. Then $EG \to JG$ is a G-homotopy equivalence if and only if G is discrete.
We want to illustrate that the space $EG = JG$ often has very nice geometric models and appear naturally in many interesting situations.

Let $C_0(G)$ be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for JG.
We want to illustrate that the space $EG = JG$ often has very nice geometric models and appear naturally in many interesting situations.

Let $C_0(G)$ be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for JG.
We want to illustrate that the space $EG = JG$ often has very nice geometric models and appear naturally in many interesting situations.

Let $C_0(G)$ be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for JG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007
We want to illustrate that the space $EG = JG$ often has very nice geometric models and appear naturally in many interesting situations.

Let $C_0(G)$ be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for JG.
We want to illustrate that the space $EG = JG$ often has very nice geometric models and appear naturally in many interesting situations.

Let $C_0(G)$ be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for JG.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007
15 / 35
Special models for EG

- We want to illustrate that the space $EG = JG$ often has very nice geometric models and appear naturally in many interesting situations.

- Let $C_0(G)$ be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on $C_0(G)$ by $(g \cdot f)(x) := f(g^{-1}x)$ for $f \in C_0(G)$ and $g, x \in G$.

 Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for JG.
Theorem

Let G be discrete. A model for JG is the space

$$X_G = \left\{ f : G \to [0, 1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_\infty(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k + 1)$-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for EG.

Wolfgang Lück (Münster, Germany)

Classifying spaces for families

Hangzhou, July 2007
Theorem

Let G be discrete. A model for $\mathbb{J}G$ is the space

$$X_G = \left\{ f : G \to [0,1] \left| \begin{array}{c} f \text{ has finite support, } \\ \sum_{g \in G} f(g) = 1 \end{array} \right. \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_\infty(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k + 1)$-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for $E \mathbb{G}$.
Theorem

Let G be discrete. A model for $\mathcal{J}G$ is the space

$$X_G = \left\{ f: G \to [0, 1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_∞(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k + 1)$-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for E_G.
Theorem

Let G be discrete. A model for JG is the space

$$X_G = \left\{ f : G \to [0, 1] \, \bigg| \, f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_\infty(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k+1)$-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for EG.
Theorem

Let G be discrete. A model for \mathcal{J}_G is the space
\[
X_G = \left\{ f : G \rightarrow [0, 1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}
\]
with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_\infty(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k + 1)$-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for EG.

Wolfgang Lück (Münster, Germany)

Classifying spaces for families

Hangzhou, July 2007
Theorem

Let G be discrete. A model for J_G is the space

\[X_G = \left\{ f : G \to [0, 1] \ \middle|\ f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\} \]

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_\infty(G)$ be the geometric realization of the simplicial set whose k-simplices consist of $(k + 1)$-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for E_G.
The spaces X_G and $P_\infty(G)$ have the same underlying sets but in general they have different topologies.

The identity map induces a G-map $P_\infty(G) \to X_G$ which is a G-homotopy equivalence, but in general not a G-homeomorphism.
The spaces X_G and $P_\infty(G)$ have the same underlying sets but in general they have different topologies.

The identity map induces a G-map $P_\infty(G) \to X_G$ which is a G-homotopy equivalence, but in general not a G-homeomorphism.
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for \mathbb{J}_G.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for \mathbb{E}_L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for $\mathbb{E}G$.
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element.

Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for J_G.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components.

Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for E_L.

If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for E_G.
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for J_G.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for E_L.

If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for E_G.
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is *almost connected*, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for J_G.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for E_L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for E_G.

Wolfgang Lück (Münster, Germany)
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for J_G.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for E_L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for E_G.
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element.
Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for J_G.

- As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components.
Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for E_L.
If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for E_G.
Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element.
Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for JG.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components.
Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for EL.
If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for EG.
Theorem (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for EG.

The result above contains as special case isometric G actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and G-actions on trees.
Theorem \textbf{(Actions on CAT(0)-spaces)}

Let G be a \textit{(locally compact Hausdorff) topological group}. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries. Then X is a model for EG.

The result above contains as special case isometric G actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and G-actions on trees.
Theorem (Actions on CAT(0)-spaces)

Let \(G \) be a (locally compact Hausdorff) topological group. Let \(X \) be a proper \(G \)-CW-complex. Suppose that \(X \) has the structure of a complete simply connected \(\text{CAT}(0) \)-space for which \(G \) acts by isometries. Then \(X \) is a model for \(EG \).

The result above contains as special case isometric \(G \) actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and \(G \)-actions on trees.
Theorem (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for EG.

The result above contains as special case isometric G actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and G-actions on trees.
Theorem (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for EG.

The result above contains as special case isometric G actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and G-actions on trees.
Theorem (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries. Then X is a model for E_G.

The result above contains as special case isometric G actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and G-actions on trees.
Theorem (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries. Then X is a model for E_G.

The result above contains as special case isometric G actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and G-actions on trees.
Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact. Then Σ is a model for both $J_{\text{COMOP}}(G)$ and $\underline{\text{G}}$ and the barycentric subdivision Σ' is a model for both $E_{\text{COMOP}}(G)$ and $\underline{\text{EG}}$.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for $\underline{\text{G}}$ and $\beta(G)'$ is a model for $\underline{\text{EG}}$ by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.
Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact. Then Σ is a model for both $J_{\text{COMOP}}(G)$ and J_G and the barycentric subdivision Σ' is a model for both $E_{\text{COMOP}}(G)$ and E_G.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for J_G and $\beta(G)'$ is a model for E_G by the previous result.

- For more information about buildings we refer to the lectures of Abramenko.
Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $\text{J}_{\text{COMOP}}(G)$ and J_G and the barycentric subdivision Σ' is a model for both $\text{E}_{\text{COMOP}}(G)$ and E_G.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for J_G and $\beta(G)'$ is a model for E_G by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.
Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $\text{J}_{\text{COMOP}}(G)$ and J_G and the barycentric subdivision Σ' is a model for both $\text{E}_{\text{COMOP}}(G)$ and E_G.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for J_G and $\beta(G)'$ is a model for E_G by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.
Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact. Then Σ is a model for both $J_{\text{COMOP}}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{\text{COMOP}}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for $\underline{J}G$ and $\beta(G)'$ is a model for $\underline{E}G$ by the previous result.

- For more information about buildings we refer to the lectures of Abramenko.
Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact. Then Σ is a model for both $J_{\text{COMOP}}(G)$ and $\bar{J}G$ and the barycentric subdivision Σ' is a model for both $E_{\text{COMOP}}(G)$ and $\bar{E}G$.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for $\bar{J}G$ and $\beta(G)'$ is a model for $\bar{E}G$ by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.
Theorem (**Affine buildings**)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact. Then Σ is a model for both $J_{\text{COMOP}}(G)$ and $\bar{J}G$ and the barycentric subdivision Σ' is a model for both $E_{\text{COMOP}}(G)$ and $\bar{E}G$.

- An important example is the case of a reductive p-adic algebraic group G and its associated affine Bruhat-Tits building $\beta(G)$. Then $\beta(G)$ is a model for $\bar{J}G$ and $\beta(G)'$ is a model for $\bar{E}G$ by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.
The **Rips complex** $P_d(G, S)$ of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of $(k + 1)$-tuples $(g_0, g_1, \ldots g_k)$ of pairwise distinct elements $g_i \in G$ satisfying $d_S(g_i, g_j) \leq d$ for all $i, j \in \{0, 1, \ldots, k\}$.

The obvious G-action by simplicial automorphisms on $P_d(G, S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G, S)'$.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for $\underline{E}G$.
The Rips complex $P_d(G, S)$ of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of $(k + 1)$-tuples $(g_0, g_1, \ldots g_k)$ of pairwise distinct elements $g_i \in G$ satisfying $d_S(g_i, g_j) \leq d$ for all $i, j \in \{0, 1, \ldots, k\}$.

The obvious G-action by simplicial automorphisms on $P_d(G, S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G, S)'$.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for E_G.
The Rips complex $P_d(G, S)$ of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of $(k + 1)$-tuples (g_0, g_1, \ldots, g_k) of pairwise distinct elements $g_i \in G$ satisfying $d_S(g_i, g_j) \leq d$ for all $i, j \in \{0, 1, \ldots, k\}$.

The obvious G-action by simplicial automorphisms on $P_d(G, S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G, S)'$.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$.

Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for $\underline{E}G$.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007
21 / 35
The **Rips complex** $P_d(G, S)$ of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of $(k + 1)$-tuples (g_0, g_1, \ldots, g_k) of pairwise distinct elements $g_i \in G$ satisfying $d_S(g_i, g_j) \leq d$ for all $i, j \in \{0, 1, \ldots, k\}$.

The obvious G-action by simplicial automorphisms on $P_d(G, S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G, S)'$.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$.
Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for $\underline{E}G$.
The Rips complex $P_d(G, S)$ of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of $(k + 1)$-tuples $(g_0, g_1, \ldots g_k)$ of pairwise distinct elements $g_i \in G$ satisfying $d_S(g_i, g_j) \leq d$ for all $i, j \in \{0, 1, \ldots, k\}$.

The obvious G-action by simplicial automorphisms on $P_d(G, S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G, S)'$.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$.

Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for EG.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007
21 / 35
The **Rips complex** $P_d(G, S)$ of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of $(k + 1)$-tuples $(g_0, g_1, \ldots g_k)$ of pairwise distinct elements $g_i \in G$ satisfying $d_S(g_i, g_j) \leq d$ for all $i, j \in \{0, 1, \ldots, k\}$.

The obvious G-action by simplicial automorphisms on $P_d(G, S)$ induces a G-action by simplicial automorphisms on the barycentric subdivision $P_d(G, S)'$.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ-hyperbolic for the real number $\delta \geq 0$. Let d be a natural number with $d \geq 16\delta + 8$.

Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for EG.
• Arithmetic groups in a semisimple connected linear \mathbb{Q}-algebraic group possess finite models for EG.

• Namely, let $G(\mathbb{R})$ be the \mathbb{R}-points of a semisimple \mathbb{Q}-group $G(\mathbb{Q})$ and let $K \subseteq G(\mathbb{R})$ be a maximal compact subgroup.

• If $A \subseteq G(\mathbb{Q})$ is an arithmetic group, then $G(\mathbb{R})/K$ with the left A-action is a model for EA as already explained above.

• The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for EA.

• For more information about arithmetic groups we refer to the lectures of Abramenko.
Arithmetic groups in a semisimple connected linear \mathbb{Q}-algebraic group possess finite models for EG.

Namely, let $G(\mathbb{R})$ be the \mathbb{R}-points of a semisimple \mathbb{Q}-group $G(\mathbb{Q})$ and let $K \subseteq G(\mathbb{R})$ be a maximal compact subgroup.

If $A \subseteq G(\mathbb{Q})$ is an arithmetic group, then $G(\mathbb{R})/K$ with the left A-action is a model for EA as already explained above.

The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for EA.

For more information about arithmetic groups we refer to the lectures of Abramenko.
Arithmetic groups in a semisimple connected linear \mathbb{Q}-algebraic group possess finite models for EG.

Namely, let $G(\mathbb{R})$ be the \mathbb{R}-points of a semisimple \mathbb{Q}-group $G(\mathbb{Q})$ and let $K \subseteq G(\mathbb{R})$ be a maximal compact subgroup.

If $A \subseteq G(\mathbb{Q})$ is an arithmetic group, then $G(\mathbb{R})/K$ with the left A-action is a model for EA as already explained above.

The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for EA.

For more information about arithmetic groups we refer to the lectures of Abramenko.
Arithmetic groups in a semisimple connected linear \(\mathbb{Q} \)-algebraic group possess finite models for \(E\!G \).

Namely, let \(G(\mathbb{R}) \) be the \(\mathbb{R} \)-points of a semisimple \(\mathbb{Q} \)-group \(G(\mathbb{Q}) \) and let \(K \subseteq G(\mathbb{R}) \) be a maximal compact subgroup.

If \(A \subseteq G(\mathbb{Q}) \) is an arithmetic group, then \(G(\mathbb{R})/K \) with the left \(A \)-action is a model for \(E\!A \) as already explained above.

The \(A \)-space \(G(\mathbb{R})/K \) is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of \(G(\mathbb{R})/K \) is a finite \(A \)-CW-model for \(E\!A \).

For more information about arithmetic groups we refer to the lectures of Abramenko.
Arithmetic groups in a semisimple connected linear \(\mathbb{Q} \)-algebraic group possess finite models for \(EG \).

Namely, let \(G(\mathbb{R}) \) be the \(\mathbb{R} \)-points of a semisimple \(\mathbb{Q} \)-group \(G(\mathbb{Q}) \) and let \(K \subseteq G(\mathbb{R}) \) be a maximal compact subgroup.

If \(A \subseteq G(\mathbb{Q}) \) is an arithmetic group, then \(G(\mathbb{R})/K \) with the left \(A \)-action is a model for \(EA \) as already explained above.

The \(A \)-space \(G(\mathbb{R})/K \) is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of \(G(\mathbb{R})/K \) is a finite \(A \)-CW-model for \(EA \).

For more information about arithmetic groups we refer to the lectures of Abramenko.
Arithmetic groups in a semisimple connected linear \mathbb{Q}-algebraic group possess finite models for EG.

Namely, let $G(\mathbb{R})$ be the \mathbb{R}-points of a semisimple \mathbb{Q}-group $G(\mathbb{Q})$ and let $K \subseteq G(\mathbb{R})$ be a maximal compact subgroup.

If $A \subseteq G(\mathbb{Q})$ is an arithmetic group, then $G(\mathbb{R})/K$ with the left A-action is a model for EA as already explained above.

The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for EA.

For more information about arithmetic groups we refer to the lectures of Abramenko.
Arithmetic groups in a semisimple connected linear \(\mathbb{Q} \)-algebraic group possess finite models for \(EG \).

Namely, let \(G(\mathbb{R}) \) be the \(\mathbb{R} \)-points of a semisimple \(\mathbb{Q} \)-group \(G(\mathbb{Q}) \) and let \(K \subseteq G(\mathbb{R}) \) be a maximal compact subgroup.

If \(A \subseteq G(\mathbb{Q}) \) is an arithmetic group, then \(G(\mathbb{R})/K \) with the left \(A \)-action is a model for \(EA \) as already explained above.

The \(A \)-space \(G(\mathbb{R})/K \) is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of \(G(\mathbb{R})/K \) is a finite \(A \)-CW-model for \(EA \).

For more information about arithmetic groups we refer to the lectures of Abramenko.
Let $\Gamma_{g,r}$ be the mapping class group of an orientable compact surface F of genus g with s punctures and r boundary components.

We will always assume that $2g + s + r > 2$, or, equivalently, that the Euler characteristic of the punctured surface F is negative.

It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$-space $\mathcal{T}_{g,r}^s$ is a model for $E\Gamma_{g,r}^s$.
Let \(\Gamma_{g,r}^s \) be the mapping class group of an orientable compact surface \(F \) of genus \(g \) with \(s \) punctures and \(r \) boundary components. We will always assume that \(2g + s + r > 2 \), or, equivalently, that the Euler characteristic of the punctured surface \(F \) is negative.

It is well-known that the associated Teichmüller space \(\mathcal{T}_{g,r}^s \) is a contractible space on which \(\Gamma_{g,r}^s \) acts properly.

Theorem (Teichmüller space)

The \(\Gamma_{g,r}^s \)-space \(\mathcal{T}_{g,r}^s \) is a model for \(E\Gamma_{g,r}^s \).
Let $\Gamma_{g,r}$ be the mapping class group of an orientable compact surface F of genus g with s punctures and r boundary components.

We will always assume that $2g + s + r > 2$, or, equivalently, that the Euler characteristic of the punctured surface F is negative.

It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$-space $\mathcal{T}_{g,r}^s$ is a model for $E\Gamma_{g,r}^s$.
Let $\Gamma_{g,r}^s$ be the mapping class group of an orientable compact surface F of genus g with s punctures and r boundary components.

We will always assume that $2g + s + r > 2$, or, equivalently, that the Euler characteristic of the punctured surface F is negative.

It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$-space $\mathcal{T}_{g,r}^s$ is a model for $E\Gamma_{g,r}^s$.
Let $\Gamma_{g,r}^s$ be the mapping class group of an orientable compact surface F of genus g with s punctures and r boundary components. We will always assume that $2g + s + r > 2$, or, equivalently, that the Euler characteristic of the punctured surface F is negative.

It is well-known that the associated Teichmüller space $T_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$-space $T_{g,r}^s$ is a model for $E\Gamma_{g,r}^s$.
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E\text{Out}(F_n)$.
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E\text{Out}(F_n)$.
Let F_n be the free group of rank n.
Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $\mathbb{E}\text{Out}(F_n)$.
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E\text{Out}(F_n)$.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007
24 / 35
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E\text{Out}(F_n)$.
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E\text{Out}(F_n)$.
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E \text{Out}(F_n)$.
Let F_n be the free group of rank n.

Denote by $\text{Out}(F_n)$ the group of outer automorphisms of F_n, i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $\text{Out}(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.

The space X_n contains a spine K_n which is an $\text{Out}(F_n)$-equivariant deformation retraction. This space K_n is a simplicial complex of dimension $(2n - 3)$ on which the $\text{Out}(F_n)$-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite $(2n - 3)$-dimensional model of $E\text{Out}(F_n)$.
Example \((SL_2(\mathbb{R}) \text{ and } SL_2(\mathbb{Z}))\)

- In order to illustrate some of the general statements above we consider the special example \(SL_2(\mathbb{R})\) and \(SL_2(\mathbb{Z})\).

- Let \(\mathbb{H}^2\) be the 2-dimensional hyperbolic space. The group \(SL_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of \(z = i\) is \(SO(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(SL_2(\mathbb{R})\)-space \(\mathbb{H}^2\) is a model for \(E_{SL_2(\mathbb{R})}\).

- The group \(SL_2(\mathbb{R})\) is a connected Lie group and \(SO(2) \subseteq SL_2(\mathbb{R})\) is a maximal compact subgroup. Hence \(SL_2(\mathbb{R})/SO(2)\) is a model for \(E_{SL_2(\mathbb{R})}\).

- Since the \(SL_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(SO(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(SL_2(\mathbb{R})\)-manifolds \(SL_2(\mathbb{R})/SO(2)\) and \(\mathbb{H}^2\) are \(SL_2(\mathbb{R})\)-diffeomorphic.
Example \((\mathit{SL}_2(\mathbb{R}) \text{ and } \mathit{SL}_2(\mathbb{Z}))\)

- In order to illustrate some of the general statements above we consider the special example \(\mathit{SL}_2(\mathbb{R})\) and \(\mathit{SL}_2(\mathbb{Z})\).

- Let \(\mathbb{H}^2\) be the 2-dimensional hyperbolic space. The group \(\mathit{SL}_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of \(z = i\) is \(\mathit{SO}(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(\mathit{SL}_2(\mathbb{R})\)-space \(\mathbb{H}^2\) is a model for \(\mathbb{E}\mathit{SL}_2(\mathbb{R})\).

- The group \(\mathit{SL}_2(\mathbb{R})\) is a connected Lie group and \(\mathit{SO}(2) \subseteq \mathit{SL}_2(\mathbb{R})\) is a maximal compact subgroup. Hence \(\mathit{SL}_2(\mathbb{R})/\mathit{SO}(2)\) is a model for \(\mathbb{E}\mathit{SL}_2(\mathbb{R})\).

- Since the \(\mathit{SL}_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(\mathit{SO}(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(\mathit{SL}_2(\mathbb{R})\)-manifolds \(\mathit{SL}_2(\mathbb{R})/\mathit{SO}(2)\) and \(\mathbb{H}^2\) are \(\mathit{SL}_2(\mathbb{R})\)-diffeomorphic.
Example \((SL_2(\mathbb{R}) \text{ and } SL_2(\mathbb{Z}))\)

- In order to illustrate some of the general statements above we consider the special example \(SL_2(\mathbb{R})\) and \(SL_2(\mathbb{Z})\).

- Let \(\mathbb{H}^2\) be the 2-dimensional hyperbolic space. The group \(SL_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of \(z = i\) is \(SO(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(SL_2(\mathbb{R})\)-space \(\mathbb{H}^2\) is a model for \(E SL_2(\mathbb{R})\).

- The group \(SL_2(\mathbb{R})\) is a connected Lie group and \(SO(2) \subseteq SL_2(\mathbb{R})\) is a maximal compact subgroup. Hence \(SL_2(\mathbb{R})/SO(2)\) is a model for \(E SL_2(\mathbb{R})\).

- Since the \(SL_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(SO(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(SL_2(\mathbb{R})\)-manifolds \(SL_2(\mathbb{R})/SO(2)\) and \(\mathbb{H}^2\) are \(SL_2(\mathbb{R})\)-diffeomorphic.
Example \((\text{SL}_2(\mathbb{R}) \text{ and SL}_2(\mathbb{Z}))\)

- In order to illustrate some of the general statements above we consider the special example \(\text{SL}_2(\mathbb{R})\) and \(\text{SL}_2(\mathbb{Z})\).

- Let \(\mathbb{H}^2\) be the 2-dimensional hyperbolic space. The group \(\text{SL}_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of \(z = i\) is \(\text{SO}(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(\text{SL}_2(\mathbb{R})\)-space \(\mathbb{H}^2\) is a model for \(E\text{SL}_2(\mathbb{R})\).

- The group \(\text{SL}_2(\mathbb{R})\) is a connected Lie group and \(\text{SO}(2) \subseteq \text{SL}_2(\mathbb{R})\) is a maximal compact subgroup. Hence \(\text{SL}_2(\mathbb{R})/\text{SO}(2)\) is a model for \(E\text{SL}_2(\mathbb{R})\).

- Since the \(\text{SL}_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(\text{SO}(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(\text{SL}_2(\mathbb{R})\)-manifolds \(\text{SL}_2(\mathbb{R})/\text{SO}(2)\) and \(\mathbb{H}^2\) are \(\text{SL}_2(\mathbb{R})\)-diffeomorphic.
Example \(\text{SL}_2(\mathbb{R}) \) and \(\text{SL}_2(\mathbb{Z}) \)

- In order to illustrate some of the general statements above we consider the special example \(\text{SL}_2(\mathbb{R}) \) and \(\text{SL}_2(\mathbb{Z}) \).

- Let \(\mathbb{H}^2 \) be the 2-dimensional hyperbolic space. The group \(\text{SL}_2(\mathbb{R}) \) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of \(z = i \) is \(\text{SO}(2) \). Since \(\mathbb{H}^2 \) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(\text{SL}_2(\mathbb{R}) \)-space \(\mathbb{H}^2 \) is a model for \(\text{ESL}_2(\mathbb{R}) \).

- The group \(\text{SL}_2(\mathbb{R}) \) is a connected Lie group and \(\text{SO}(2) \subseteq \text{SL}_2(\mathbb{R}) \) is a maximal compact subgroup. Hence \(\text{SL}_2(\mathbb{R})/\text{SO}(2) \) is a model for \(\text{ESL}_2(\mathbb{R}) \).

- Since the \(\text{SL}_2(\mathbb{R}) \)-action on \(\mathbb{H}^2 \) is transitive and \(\text{SO}(2) \) is the isotropy group at \(i \in \mathbb{H}^2 \), we see that the \(\text{SL}_2(\mathbb{R}) \)-manifolds \(\text{SL}_2(\mathbb{R})/\text{SO}(2) \) and \(\mathbb{H}^2 \) are \(\text{SL}_2(\mathbb{R}) \)-diffeomorphic.
Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example $SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$.

- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Möbius transformations. This action is proper and transitive. The isotropy group of $z = i$ is $SO(2)$. Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$-space \mathbb{H}^2 is a model for $E SL_2(\mathbb{R})$.

- The group $SL_2(\mathbb{R})$ is a connected Lie group and $SO(2) \subseteq SL_2(\mathbb{R})$ is a maximal compact subgroup. Hence $SL_2(\mathbb{R})/SO(2)$ is a model for $E SL_2(\mathbb{R})$.

- Since the $SL_2(\mathbb{R})$-action on \mathbb{H}^2 is transitive and $SO(2)$ is the isotropy group at $i \in \mathbb{H}^2$, we see that the $SL_2(\mathbb{R})$-manifolds $SL_2(\mathbb{R})/SO(2)$ and \mathbb{H}^2 are $SL_2(\mathbb{R})$-diffeomorphic.
Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example $SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$.

- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Möbius transformations. This action is proper and transitive. The isotropy group of $z = i$ is $SO(2)$. Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$-space \mathbb{H}^2 is a model for $E SL_2(\mathbb{R})$.

- The group $SL_2(\mathbb{R})$ is a connected Lie group and $SO(2) \subseteq SL_2(\mathbb{R})$ is a maximal compact subgroup. Hence $SL_2(\mathbb{R})/SO(2)$ is a model for $E SL_2(\mathbb{R})$.

- Since the $SL_2(\mathbb{R})$-action on \mathbb{H}^2 is transitive and $SO(2)$ is the isotropy group at $i \in \mathbb{H}^2$, we see that the $SL_2(\mathbb{R})$-manifolds $SL_2(\mathbb{R})/SO(2)$ and \mathbb{H}^2 are $SL_2(\mathbb{R})$-diffeomorphic.
Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example $SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$.

- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of $z = i$ is $SO(2)$. Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$-space \mathbb{H}^2 is a model for $E SL_2(\mathbb{R})$.

- The group $SL_2(\mathbb{R})$ is a connected Lie group and $SO(2) \subseteq SL_2(\mathbb{R})$ is a maximal compact subgroup. Hence $SL_2(\mathbb{R})/SO(2)$ is a model for $E SL_2(\mathbb{R})$.

- Since the $SL_2(\mathbb{R})$-action on \mathbb{H}^2 is transitive and $SO(2)$ is the isotropy group at $i \in \mathbb{H}^2$, we see that the $SL_2(\mathbb{R})$-manifolds $SL_2(\mathbb{R})/SO(2)$ and \mathbb{H}^2 are $SL_2(\mathbb{R})$-diffeomorphic.
Example \((SL_2(\mathbb{R}) \text{ and } SL_2(\mathbb{Z}))\)

- In order to illustrate some of the general statements above we consider the special example \(SL_2(\mathbb{R})\) and \(SL_2(\mathbb{Z})\).
- Let \(\mathbb{H}^2\) be the \textit{2-dimensional hyperbolic space}. The group \(SL_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by \textit{Moebius transformations}. This action is proper and transitive. The isotropy group of \(z = i\) is \(SO(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(SL_2(\mathbb{R})\)-space \(\mathbb{H}^2\) is a model for \(ESL_2(\mathbb{R})\).
- The group \(SL_2(\mathbb{R})\) is a connected Lie group and \(SO(2) \subseteq SL_2(\mathbb{R})\) is a maximal compact subgroup. Hence \(SL_2(\mathbb{R})/SO(2)\) is a model for \(ESL_2(\mathbb{R})\).
- Since the \(SL_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(SO(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(SL_2(\mathbb{R})\)-manifolds \(SL_2(\mathbb{R})/SO(2)\) and \(\mathbb{H}^2\) are \(SL_2(\mathbb{R})\)-diffeomorphic.
Example \((\text{SL}_2(\mathbb{R}) \text{ and } \text{SL}_2(\mathbb{Z}))\)

- In order to illustrate some of the general statements above we consider the special example \(\text{SL}_2(\mathbb{R})\) and \(\text{SL}_2(\mathbb{Z})\).

- Let \(\mathbb{H}^2\) be the 2-dimensional hyperbolic space. The group \(\text{SL}_2(\mathbb{R})\) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of \(z = i\) is \(\text{SO}(2)\). Since \(\mathbb{H}^2\) is a simply-connected Riemannian manifold, whose sectional curvature is constant \(-1\), the \(\text{SL}_2(\mathbb{R})\)-space \(\mathbb{H}^2\) is a model for \(\mathbb{E}\text{SL}_2(\mathbb{R})\).

- The group \(\text{SL}_2(\mathbb{R})\) is a connected Lie group and \(\text{SO}(2) \subseteq \text{SL}_2(\mathbb{R})\) is a maximal compact subgroup. Hence \(\text{SL}_2(\mathbb{R})/\text{SO}(2)\) is a model for \(\mathbb{E}\text{SL}_2(\mathbb{R})\).

- Since the \(\text{SL}_2(\mathbb{R})\)-action on \(\mathbb{H}^2\) is transitive and \(\text{SO}(2)\) is the isotropy group at \(i \in \mathbb{H}^2\), we see that the \(\text{SL}_2(\mathbb{R})\)-manifolds \(\text{SL}_2(\mathbb{R})/\text{SO}(2)\) and \(\mathbb{H}^2\) are \(\text{SL}_2(\mathbb{R})\)-diffeomorphic.
Example (continued)

- Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{R})$, the space \mathbb{H}^2 with the obvious $SL_2(\mathbb{Z})$-action is a model for $E SL_2(\mathbb{Z})$.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $E SL_2(\mathbb{Z})$.

- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.
Example (continued)

- Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{R})$, the space \mathbb{H}^2 with the obvious $SL_2(\mathbb{Z})$-action is a model for $E_{SL_2}(\mathbb{Z})$.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $E_{SL_2}(\mathbb{Z})$.

- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.
Example (continued)

- Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{R})$, the space \mathbb{H}^2 with the obvious $SL_2(\mathbb{Z})$-action is a model for $E SL_2(\mathbb{Z})$.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $E SL_2(\mathbb{Z})$.

- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.
Example (continued)

- Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{R})$, the space \mathbb{H}^2 with the obvious $SL_2(\mathbb{Z})$-action is a model for $E SL_2(\mathbb{Z})$.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $E SL_2(\mathbb{Z})$.

- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.
Example (continued)

- Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{R})$, the space \mathbb{H}^2 with the obvious $SL_2(\mathbb{Z})$-action is a model for $E_{SL_2}(\mathbb{Z})$.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $E_{SL_2}(\mathbb{Z})$.

- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.
Example (continued)

- Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{R})$, the space \mathbb{H}^2 with the obvious $SL_2(\mathbb{Z})$-action is a model for $ESL_2(\mathbb{Z})$.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 \ast_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $ESL_2(\mathbb{Z})$.

- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$-homotopy equivalent. They can explicitly be related by the following construction.
Example (continued)

- Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$-action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $SL_2(\mathbb{Z})$-action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$-equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.

Wolfgang Lück (Münster, Germany)
Classifying spaces for families
Hangzhou, July 2007 27 / 35
Example (continued)

- Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$-action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $SL_2(\mathbb{Z})$-action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$-equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.
Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$-action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $SL_2(\mathbb{Z})$-action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$-equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.
Example (continued)

- Divide the Poincaré disk into fundamental domains for the \(SL_2(\mathbb{Z}) \)-action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree \(T \) with \(SL_2(\mathbb{Z}) \)-action which is the tree model above. The tree is a \(SL_2(\mathbb{Z}) \)-equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point \(p \) in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing \(p \), through \(p \) to the first intersection point of this geodesic with \(T \).
Example (continued)

- Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$-action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $SL_2(\mathbb{Z})$-action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$-equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.
Example (continued)

The tree T above can be identified with the Bruhat-Tits building of $SL_2(\mathbb{Q}_p)$ and hence is a model for $E SL_2(\mathbb{Q}_p)$. Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{Q}_p)$, we get another reason why this tree is a model for $SL_2(\mathbb{Z})$.
Example (continued)

The tree T above can be identified with the Bruhat-Tits building of $SL_2(\mathbb{Q}_p)$ and hence is a model for $ESL_2(\mathbb{Q}_p)$. Since $SL_2(\mathbb{Z})$ is a discrete subgroup of $SL_2(\mathbb{Q}_p)$, we get another reason why this tree is a model for $SL_2(\mathbb{Z})$.

Finiteness properties of the spaces EG and E_G have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for E_G for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and E_G have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for E_G for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and EG have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for EG for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and E_G have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for E_G for groups G with torsion.

Often geometry provides small model for E_G in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and EG have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for EG for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and EG have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for EG for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and \underline{EG} have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for \underline{EG} for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Finiteness properties of the spaces EG and EG have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.

If EG has a finite-dimensional model, the group G must be torsionfree. There are often finite models for EG for groups G with torsion.

Often geometry provides small model for EG in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for E_G.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

$$\text{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G \backslash L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for E_G.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

$$\text{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G \setminus L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for E_G.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index.

Then we have for its virtual cohomological dimension

$$\text{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G\backslash L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for E_G.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index.

Then we have for its virtual cohomological dimension

$$\text{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G\backslash L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for EG.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

$$\operatorname{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G \backslash L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for EG.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index.

Then we have for its virtual cohomological dimension

$$\text{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G \backslash L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for EG.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

$$vcd(G) \leq \dim(L/K).$$

Equality holds if and only if $G \backslash L$ is compact.
Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for E_G.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index.

Then we have for its virtual cohomological dimension

$$\text{vcd}(G) \leq \dim(L/K).$$

Equality holds if and only if $G \backslash L$ is compact.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem *(A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))*

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem *(A criterion for 1-dimensional models for EG, Dunwoody (1979))*

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Theorem (A criterion for 1-dimensional models for BG, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for EG, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for EG if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.
Let G be a discrete group which is virtually torsionfree.

Then

$$\text{vcd}(G) \leq \dim(EG)$$

for any model for EG.

Let $l \geq 0$ be an integer such that for any chain of finite subgroups $H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_r$ we have $r \leq l$.

Then there exists a model for EG of dimension

$$\max\{3, \text{vcd}(G)\} + l.$$
Theorem (Virtual cohomological dimension and \(\dim(\mathbb{E}G) \), L. (2000))

Let \(G \) be a discrete group which is virtually torsionfree.

- Then
 \[
 \text{vcd}(G) \leq \dim(\mathbb{E}G)
 \]
 for any model for \(\mathbb{E}G \).

- Let \(l \geq 0 \) be an integer such that for any chain of finite subgroups
 \(H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_r \) we have \(r \leq l \).
 Then there exists a model for \(\mathbb{E}G \) of dimension
 \[
 \max\{3, \text{vcd}(G)\} + l.
 \]
Let G be a discrete group which is virtually torsionfree.

Then

$$\text{vcd}(G) \leq \dim(EG)$$

for any model for EG.

Let $l \geq 0$ be an integer such that for any chain of finite subgroups $H_0 \varsubset H_1 \varsubset \ldots \varsubset H_r$ we have $r \leq l$.

Then there exists a model for EG of dimension

$$\max\{3, \text{vcd}(G)\} + l.$$
Theorem (Virtual cohomological dimension and dim(EG), L. (2000))

Let G be a discrete group which is virtually torsionfree.

Then

$$vcd(G) \leq \dim(EG)$$

for any model for EG.

Let $l \geq 0$ be an integer such that for any chain of finite subgroups $H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_r$ we have $r \leq l$.

Then there exists a model for EG of dimension

$$\max\{3, vcd(G)\} + l.$$
Theorem (Virtual cohomological dimension and $\dim(EG)$, L. (2000))

Let G be a discrete group which is virtually torsionfree.

- Then
 \[\text{vcd}(G) \leq \dim(EG) \]
 for any model for EG.

- Let $l \geq 0$ be an integer such that for any chain of finite subgroups $H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_r$ we have $r \leq l$.
 Then there exists a model for EG of dimension
 \[\max\{3, \text{vcd}(G)\} + l. \]
The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for EG of dimension $vcd(G)$?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G\backslash EG$.
The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for E_G of dimension $vcd(G)$?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

*Let X be a CW-complex. Then there exists a group G with $X \simeq G \backslash E_G$.***
The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for EG of dimension $vcd(G)$?

The results above do give some evidence for a positive answer.

However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \cong G \backslash EG$.
The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for E_G of dimension $vcd(G)$?

The results above do give some evidence for a positive answer. However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \backslash E_G$.
The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for E_G of dimension $vcd(G)$?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G\backslash E_G$.
The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for EG of dimension $\text{vcd}(G)$?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \backslash EG$.
Question (Homological Computations based on nice models for EG)

Can nice geometric models for EG be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?
Question (Homological Computations based on nice models for EG)

Can nice geometric models for EG be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (*K*-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?
Question (Homological Computations based on nice models for EG)

Can nice geometric models for EG be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?
Question (Homological Computations based on nice models for EG)

Can nice geometric models for EG be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?
Question (Homological Computations based on nice models for EG)

Can nice geometric models for EG be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?
Question (Homological Computations based on nice models for EG)

Can nice geometric models for EG be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?
To be continued
Stay tuned
To be continued
Stay tuned