Starting point: Injectivity \Rightarrow hyperfiniteness

Connes ’77: Injective \mathcal{V}NAs are hyperfinite

Combining this with classification of hyperfinite factors:
- Complete classification of (separably acting) injective factors.
Starting point: Injectivity \Rightarrow hyperfiniteness

Connes ’77: Injective vNAs are hyperfinite

Combining this with classification of hyperfinite factors:
- Complete classification of (separably acting) injective factors.

Classification programme

- Aims to classify separable, **nuclear** and **simple** C*-algebras by “K-theoretic data”.

- **Nuclear** analogous to injective: A nuclear $\iff A^{**}$ injective.
- **Simple** analogous to factor: weak*-closed ideals in vNa of form $\mathcal{M}p$ for a central projection $p \in \mathcal{M}$.
STARTING POINT: Injectivity \implies hyperfiniteness

CLASSIFICATION PROGRAMME

- Aims to classify separable, nuclear and simple C*-algebras by “K-theoretic data”.

- Nuclear analogous to injective: A nuclear \iff A^{**} injective.
- Simple analogous to factor: weak*-closed ideals in vNa of form $M\rho$ for a central projection $\rho \in M$

CONNES’ 3 INGREDIENTS

A (separably acting) injective II$_1$ factor \mathcal{M}

1. is McDuff: $\mathcal{M} \cong \mathcal{M} \bar{\otimes} \mathcal{R}$.
2. has unique morphisms: any two *-hms $\mathcal{M} \rightarrow (\text{II}_1 \text{ factor})$ are approximately unitarily equivalent.
3. has an embedding $\theta : \mathcal{M} \hookrightarrow \mathcal{R}^\omega$
Quasidiagonality

- Q universal UHF-algebra. $Q = \bigotimes_{p \text{ prime}} (\bigotimes_1^\infty M_p)$.
- $Q_\omega = \ell^\infty(Q)/\{(x_n) \in \ell^\infty(Q) : \lim_{n \to \omega} \|x_n\| = 0\}$. [$\omega \in \beta\mathbb{N}\setminus\mathbb{N}$ fixed.]
- Has unique trace $\tau_{Q_\omega}((x_n)_n) = \lim_{n \to \omega} \tau_Q(x_n)$

Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.
Quasidiagonality

- Q universal UHF-algebra. $Q = \bigotimes_{p \text{ prime}} (\bigotimes_1^\infty M_p)$.
- $Q_\omega = \ell^\infty(Q)/\{(x_n) \in \ell^\infty(Q) : \lim_{n \to \omega} \|x_n\| = 0\}$. [$\omega \in \beta\mathbb{N}\setminus\mathbb{N}$ fixed.]
- Has unique trace $\tau_{Q_\omega}((x_n)_n) = \lim_{n \to \omega} \tau_Q(x_n)$

Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Examples

- Abelian.
- Subhomogeneous

Closed under

- Subalgebras
- Increasing inductive limits
Quasidiagonality

- Q universal UHF-algebra. $Q = \bigotimes_{\text{prime}} \bigotimes_1^\infty M_p$.
- $Q_\omega = \ell^\infty(Q)/\{(x_n) \in \ell^\infty(Q) : \lim_{n \to \omega} \|x_n\| = 0\}$. [$\omega \in \beta \mathbb{N}\setminus\mathbb{N}$ fixed.]
- Has unique trace $\tau_{Q_\omega}((x_n)_n) = \lim_{n \to \omega} \tau_Q(x_n)$

Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Examples
- Abelian.
- Subhomogeneous

Closed under
- Subalgebras
- Increasing inductive limits

Obstruction one: stable finiteness
Quasidiagonal \Rightarrow stably finite: no infinite projections in $M_n(A)$
Quasidiagonality

- \(Q \) universal UHF-algebra. \(Q = \bigotimes_{p \text{ prime}} \bigotimes_{1}^{\infty} M_p \).
- \(Q_\omega = \ell^\infty(Q)/\{(x_n) \in \ell^\infty(Q) : \lim_{n \to \omega} \|x_n\| = 0\}. \) [\(\omega \in \beta\mathbb{N}\setminus\mathbb{N} \) fixed.]
- Has unique trace \(\tau_{Q_\omega}((x_n)_n) = \lim_{n \to \omega} \tau_Q(x_n) \)

Separable nuclear \(C^\ast \)-algebra \(A \) is quasidiagonal iff \(\exists A \hookrightarrow Q_\omega \).

Examples

- Abeliens.
- Subhomogeneous

Closed under

- Subalgebras
- Increasing inductive limits

Obstruction one: Stable finiteness

Quasidiagonal \(\Rightarrow \) stably finite: no infinite projections in \(M_n(A) \)

Classification predicts

Stably finite simple nuclear \(C^\ast \)-algebras are approximately subhomogenous, so quasidiagonal.
Traces

Separable nuclear C*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Definition

A trace τ_A on A is

1. **quasidiagonal** if \exists cpc $\phi_i : A \to M_{k_i}$ with
 \[
 \|\phi_i(ab) - \phi_i(a)\phi_i(b)\| \to 0 \text{ and } \tau_A(a) = \lim \tau_{M_{k_i}}(\phi_i(a)).
 \]

2. **amenable** if \exists cpc $\phi_i : A \to M_{k_i}$ with
 \[
 \|\phi_i(ab) - \phi_i(a)\phi_i(b)\|_{2,M_{k_i}} \to 0 \text{ and } \tau_A(a) = \lim \tau_{M_{k_i}}(\phi_i(a)).
 \]

- A sep nuclear: qd traces those factorising $A \xrightarrow{*-hm} Q_\omega \xrightarrow{Q_\omega} \mathbb{C}$.
- τ_A amenable \iff For $A \subset B(H)$ \exists A-central state extending τ_A.

Second Obstruction

Quasidiagonal unital C*-algebras have amenable traces.

- In particular, as noted by Rosenberg, $C^*_r(G)$ QD \Rightarrow G amenable.
Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Rosenberg’s Conjecture

$C^*(G)$ is qd for G discrete amenable.

- Yes for elementary amenable groups (Ozawa, Rørdam, Sato ’14) via classification!
Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Rosenberg’s Conjecture

$C^*(G)$ is qd for G discrete amenable.

- Yes for elementary amenable groups (Ozawa, Rørdam, Sato ’14) via classification!

Blackadar-Kirchberg Conjecture

Stably finite nuclear C^*-algebras are quasidiagonal.
Separable nuclear C^*-algebra A is **quasidiagonal** iff $\exists A \hookrightarrow Q_\omega$.

Rosenberg’s Conjecture

$C^*(G)$ is qd for G discrete amenable.

- Yes for elementary amenable groups (Ozawa, Rørdam, Sato ’14) via classification!

Blackadar-Kirchberg Conjecture

Stably finite nuclear C^*-algebras are quasidiagonal.

Question

Are all amenable traces quasidiagonal? (Is \mathcal{R} quasidiagonal?)
Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.

- Having a faithful qd trace ensures quasidiagonality.
- Via Brown: all traces on a quasidiagonal separable nuclear C^*-algebra in the UCT class are qd.
Questions and Some Answers

Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.

- Having a faithful qd trace ensures quasidiagonality.
- Via Brown: all traces on a quasidiagonal separable nuclear C^*-algebra in the UCT class are qd.

UCT = Universal Coefficient Theorem of Rosenberg and Schochet

- A has UCT iff it is KK-equivalent (weak homotopy kind of statement) to an abelian C^*-algebra;
- Open whether all separable nuclear C^*-algebras have UCT.
Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.

- Having a faithful qd trace ensures quasidiagonality.
- Via Brown: all traces on a quasidiagonal separable nuclear C^*-algebra in the UCT class are qd.

Rosenberg’s conjecture

$C^*(G)$ is qd for G discrete amenable.

- Yes for elementary amenable groups (Ozawa, Rørdam, Sato ’14) via classification!
- Yes in general. $C^*_r(G)$ is in the UCT class by Tu.
- In fact $C^*_r(G)$ is AF-embeddible.
Separable nuclear C^*-algebra A is quasidiagonal iff $\exists A \hookrightarrow Q_\omega$.

Theorem (Tikuisis, W, Winter)
Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.

- Having a faithful qd trace ensures quasidiagonality.
- Via Brown: all traces on a quasidiagonal separable nuclear C^*-algebra in the UCT class are qd.

Blackadar-Kirchberg Conjecture
Stably finite nuclear C^*-algebras are quasidiagonal.

- Holds in the simple UCT case.
Separable nuclear C^*-algebra A is **quasidiagonal** iff $\exists A \hookrightarrow Q_\omega$.

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C^*-algebra in the **UCT class** is quasidiagonal.

- Having a faithful qd trace ensures quasidiagonality.
- Via Brown: all traces on a quasidiagonal separable nuclear C^*-algebra in the UCT class are qd.

Question

Are all amenable traces quasidiagonal? (Is \mathcal{R} quasidiagonal?)

- Extended by Gabe to obtain quasidiagonality of faithful amenable traces on separable exact algebras (= subalgebras of nuclears) in the UCT class.
Gong-Lin-Niu ’15 (The Long Paper)

Identifies, and classifies (assuming UCT), a class of stably finite algebras which exhausts Elliott’s invariant.
Identifies, and classifies (assuming UCT), a class of stably finite algebras which exhausts Elliott’s invariant.

- Class given by internal conditions (like hyperfinite for vNas).
- Aim: find abstract characterisation of this class.
Back to classification (briefly)

Gong-Lin-Niu ’15 (the long paper)

Identifies, and classifies (assuming UCT), a class of stably finite algebras which exhausts Elliott’s invariant.

- Class given by internal conditions (like hyperfinite for vNas).
- Aim: find abstract characterisation of this class.

Theorem (Matui-Sato ’13)

Let A be simple, separable, unital and nuclear with unique trace. Suppose

1. $A \cong A \otimes Q$ (for those in the know, \mathcal{Z}-stability suffices).
2. A is quasidiagonal.

Then A is in the GLN-class (in fact in a somewhat simpler class).

- In UCT case, 2 is now automatic: thus get classification from a tensorial absorption hypothesis.
GONG-LIN-NIU ’15 (THE LONG PAPER)

Identifies, and classifies (assuming UCT), a class of stably finite algebras which exhausts Elliott’s invariant.

- Nuclear dimension (Winter, Zacharias): natural non-commutative generalising of covering dimension to nuclear C^*-algebras.
- e.g. $C(X)
times G$ has finite nuclear dimension for free minimal action of finitely generated nilpotent on finite dimensional X.

ELLIOIT-GONG-LIN-NIU + WINTER

A stably finite simple unital separable of finite nuclear dimension in UCT class such that all traces are QD. Then A is in the GLN-class.
Identifies, and classifies (assuming UCT), a class of stably finite algebras which exhausts Elliott’s invariant.

- Nuclear dimension (Winter, Zacharias): natural non-commutative generalising of covering dimension to nuclear C*-algebras.
- e.g. $C(X) \rtimes G$ has finite nuclear dimension for free minimal action of finitely generated nilpotent on finite dimensional X.

A stably finite simple unital separable of finite nuclear dimension in UCT class such that all traces are QD. Then A is in the GLN-class.

Simple separable infinite dimensional unital C*-algebras with finite nuclear dimension and UCT are classified by Elliott’s invariant.
Strategy of proof

Theorem (Tikuisis, W, Winter)
Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.
Strategy of Proof

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.

Theorem (Voiculescu)

Quasidiagonality is homotopy invariant.

- Cones $C_0(0, 1] \otimes A$ are always quasidiagonal.
STRATEGY OF PROOF

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C^*-algebra in the UCT class is quasidiagonal.

Theorem (Voiculescu)

Quasidiagonality is homotopy invariant.

- Cones $C_0(0, 1] \otimes A$ are always quasidiagonal.

Proposition: Kirchberg-Rørdam, Sato-W-Winter, Gabe, ...

All amenable traces on cones $C_0(0, 1] \otimes A$ are quasidiagonal.
Strategy of proof

Theorem (Tikuisis, W, Winter)
Every faithful trace on a separable nuclear C*-algebra in the UCT class is quasidiagonal.

Proposition: Kirchberg-Rørdam, Sato-W-Winter, Gabe, ...
All amenable traces on cones $C_0(0, 1] \otimes A$ are quasidiagonal.

Fix such faithful trace $\tau_\mathcal{A}$
STRATEGY OF PROOF

THEOREM (TIKUISIS, W, WINTER)
Every faithful trace on a separable nuclear C*-algebra in the UCT class is quasidiagonal.

PROPOSITION: KIRCHBERG-RØRDAM, SATO-W-WINTER, GABE, ...
All amenable traces on cones $C_0(0, 1] \otimes A$ are quasidiagonal.

FIX SUCH FAITHFUL TRACE τ_A

1. $\exists \Phi : C_0(0, 1] \otimes A \rightarrow Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.
Strategy of Proof

Theorem (Tikuisis, W, Winter)
Every faithful trace on a separable nuclear C*-algebra in the UCT class is quasidiagonal.

Proposition: Kirchberg-Rørdam, Sato-W-Winter, Gabe, ...
All amenable traces on cones $C_0(0, 1] \otimes A$ are quasidiagonal.

Fix such faithful trace τ_A

1. $\exists \phi : C_0(0, 1] \otimes A \to Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.
2. $\exists \phi : C_0[0, 1) \otimes A \to Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.
Strategy of Proof

Theorem (Tikuisis, W, Winter)
Every faithful trace on a separable nuclear C*-algebra in the UCT class is quasidiagonal.

Proposition: Kirchberg-Rørdam, Sato-W-Winter, Gabe, ...
All amenable traces on cones $C_0(0, 1] \otimes A$ are quasidiagonal.

Fix such faithful trace τ_A

1. $\exists \hat{\phi} : C_0(0, 1] \otimes A \to Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.
2. $\exists \hat{\Phi} : C_0[0, 1) \otimes A \to Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.

A priori, these have nothing in common; but can adjust s.t.

- $\hat{\phi}$ and $\hat{\Phi}$ agree on $C_0(0, 1] \otimes 1_A$.
- $\hat{\phi}(\text{id}_{(0,1]} \otimes 1_A) + \hat{\Phi}((1 - \text{id}_{(0,1]}) \otimes 1_A)) = 1_{Q_\omega}$.

\therefore scalar parts of $\hat{\phi}, \hat{\Phi}$ restrictions of unital *-hm $\theta : C[0, 1] \to Q_\omega$.
Strategy of proof

Theorem (Tikuisis, W, Winter)

Every faithful trace on a separable nuclear C*-algebra in the UCT class is quasidiagonal.

Fix such faithful trace τ_A

1. $\exists \Phi : C_0(0, 1) \otimes A \to Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.
2. $\exists \dot{\Phi} : C_0[0, 1) \otimes A \to Q_\omega$ realising $\mu_{\text{leb}} \otimes \tau_A$.

A priori, these have nothing in common; but can adjust s.t.

- Φ and $\dot{\Phi}$ agree on $C_0(0, 1) \otimes 1_A$.
- $\dot{\Phi}(\text{id}_{(0,1]} \otimes 1_A) + \dot{\Phi}((1 - \text{id}_{(0,1]} \otimes 1_A)) = 1_{Q_\omega}$.

\therefore scalar parts of Φ, $\dot{\Phi}$ restrictions of unital *-hm $\theta : C[0, 1] \to Q_\omega$.

In fact

τ_A is qd \iff Φ and $\dot{\Phi}$ are unitarily equivalent on $C_0(0, 1) \otimes A$.
Stable uniqueness

In fact

\(\tau_A \) is qd \(\iff \) \(\hat{\phi} \) and \(\hat{\Phi} \) are unitarily equivalent on \(C_0(0, 1) \otimes A \).

Thm (Dadarlat-Eilers, c.f. Lin): Stable Uniqueness V1

Let \(C \) be unital separable and exact, \(B \) unital and \(\iota, \phi, \psi : C \to B \) s.t.

1. \(\phi, \psi \) unital nuclear, same class in \(KK_{nuc}(C, B) \).
2. \(\iota \) unital totally full: \(B\iota(c)B = B \) for all non-zero \(b \in B_+ \).
Stable uniqueness

In fact

τ_A is qd \iff $\hat{\phi}$ and $\hat{\Phi}$ are unitarily equivalent on $C_0(0, 1) \otimes A$.

Thm (Dadarlat-Eilers, c.f. Lin): Stable Uniqueness V1

Let C be unital separable and exact, B unital and $\iota, \phi, \psi : C \to B$ s.t.

1. ϕ, ψ unital nuclear, same class in $KK_{\text{nuc}}(C, B)$.
2. ι unital totally full: $B\iota(c)B = B$ for all non-zero $b \in B_+$.

Then, for all $\varepsilon > 0$ and finite $\mathcal{F} \subset C$, exists $n \in \mathbb{N}$ and unitary in $M_{n+1}(B)$ s.t. $\| (\phi(c) \oplus \iota^{\oplus n}(c)) - u(\psi(c) \oplus \iota^{\oplus n}(c))u^* \| < \varepsilon$, $c \in \mathcal{F}$.

ϕ and ψ AU EQUIVALENT AFTER ADDING ON COPIES OF ι. BUT

n depends on \mathcal{F} and ε and on B, ϕ, ψ, ι.

Stuart White (Glasgow) Quasidiagonality & Amenability 8 / 9
Stable uniqueness

In fact

\(\tau_A \) is qd \(\Leftrightarrow \) \(\hat{\phi} \) and \(\tilde{\phi} \) are unitarily equivalent on \(C_0(0, 1) \otimes A \).

Thm (Dadarlat-Eilers, c.f. Lin): Stable Uniqueness V1

Let \(C \) be unital separable and exact, \(B \) unital and \(\iota, \phi, \psi : C \to B \) s.t.

1. \(\phi, \psi \) unital nuclear, same class in \(KK_{nuc}(C, B) \).
2. \(\iota \) unital totally full: \(B \iota(c)B = B \) for all non-zero \(b \in B_+ \).

Then, for all \(\varepsilon > 0 \) and finite \(\mathcal{F} \subset C \), exists \(n \in \mathbb{N} \) and unitary in \(M_{n+1}(B) \) s.t. \(\| (\phi(c) \oplus \iota^{\oplus n}(c)) - u(\psi(c) \oplus \iota^{\oplus n}(c))u^* \| < \varepsilon, \quad c \in \mathcal{F} \).

\(\phi \) and \(\psi \) AU equivalent after adding on copies of \(\iota \). But

\[n \text{ depends on } \mathcal{F} \text{ and } \varepsilon \text{ and on } B, \phi, \psi, \iota. \]

Idea: Dadarlat-Eilers, Lin

Run sequence of counterexamples: get \(n \) to depend only on \(\mathcal{F}, \varepsilon \).
Stable Uniqueness along the Interval
Stable Uniqueness along the interval

\[\Phi \oplus \Phi^{N/2} \cong_{au, \mathcal{F}, \varepsilon} \Phi \oplus \Phi^{N/2} \] and \[\Phi \oplus \Phi^{N/2} \cong_{au, \mathcal{F}, \varepsilon} \Phi \oplus \Phi^{N/2} \]

On blue intervals stable uniqueness gives
Stable Uniqueness along the interval

\[
\begin{align*}
\phi & \quad \phi \\
\rho_1 & \quad \rho_2 & \quad \rho_3 \\
0 & \quad \rho_1 & \quad \rho_2 & \quad \rho_3 & \quad \rho_{N-1} & \quad \rho_N & \quad 1 \\
\end{align*}
\]

Patching on the intervals \(l_i\) gives

approx *-*hms \(\rho_i : C_0(l_i, A) \to M_{2N}(\mathbb{Q_\omega})\) as specified on red intervals.
Stable Uniqueness along the Interval

Glue ρ_i together using partition of unity for $[0, 1]$ gives

$$\text{approx } *\text{-hm } C_0([0, 1], A) \to M_{2N}(\mathcal{Q}_\omega) \text{ realising } \frac{1}{2} \tau_A.$$