Polynomial cohomology and nilpotent groups

David Kyed
University of Southern Denmark

NCGOA Spring Institute 2016
May 17, 2016

based on joint work with Henrik Densing Petersen

Funded by the Villum Foundation grant 7423.
A PROLOGUE ON NILPOTENT GROUPS

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like \mathbb{Z}, $\text{SL}(3, \mathbb{Z})$, \mathbb{F}_2.
 - And connected, simply connected (csc) Lie groups like \mathbb{R}^n or $H(3, \mathbb{R})$.
- Often discrete groups are lattices in Lie groups ($\mathbb{Z}^n \leq \mathbb{R}^n$).
- A particularly nice class of groups are the nilpotent ones.
- Nilpotency means that the lower central series

$$G \geq [G, G] \geq [[G, G], G] \geq \cdots$$

degenerates to 1 after a finite number of steps.
- The prime example of a csc nilpotent Lie group is the Heisenberg group:

$$H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$
A PROLOGUE ON NILPOTENT GROUPS

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like \mathbb{Z}, $\text{SL}(3, \mathbb{Z})$, \mathbb{F}_2...
 - And connected, simply connected (csc) Lie groups like \mathbb{R}^n or $H(3, \mathbb{R})$.
- Often discrete groups are lattices in Lie groups ($\mathbb{Z}^n \leq \mathbb{R}^n$).
- A particularly nice class of groups are the nilpotent ones.
- Nilpotency means that the lower central series

\[
G \geq [G, G] \geq [[G, G], G] \geq \cdots =: G_{[2]} =: G_{[3]}
\]

degenerates to 1 after a finite number of steps.
- The prime example of a csc nilpotent Lie group is the Heisenberg group:

\[
H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}
\]
A PROLOGUE ON NILPOTENT GROUPS

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like \mathbb{Z}, $\text{SL}(3, \mathbb{Z})$, \mathbb{F}_2.
 - And connected, simply connected (csc) Lie groups like \mathbb{R}^n or $H(3, \mathbb{R})$.
- Often discrete groups are lattices in Lie groups ($\mathbb{Z}^n \leq \mathbb{R}^n$).
- A particularly nice class of groups are the nilpotent ones.
- Nilpotency means that the lower central series
 \[G \geq [G, G] \geq [[G, G], G] \geq \cdots \]
 degenerates to 1 after a finite number of steps.
- The prime example of a csc nilpotent Lie group is the Heisenberg group:
 \[H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \]
A prologue on nilpotent groups

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like \(\mathbb{Z}, \text{SL}(3, \mathbb{Z}), \mathbb{F}_2 \).
 - And connected, simply connected (csc) Lie groups like \(\mathbb{R}^n \) or \(H(3, \mathbb{R}) \).
- Often discrete groups are lattices in Lie groups (\(\mathbb{Z}^n \leq \mathbb{R}^n \)).
 - A particularly nice class of groups are the nilpotent ones.
 - Nilpotency means that the lower central series

\[
G \geq [G, G] \geq [[G, G], G] \geq \cdots
\]

degenerates to 1 after a finite number of steps.
- The prime example of a csc nilpotent Lie group is the Heisenberg group:

\[
H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}
\]
A PROLOGUE ON NILPOTENT GROUPS

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like \(\mathbb{Z}, \text{SL}(3, \mathbb{Z}), \mathbb{F}_2 \ldots \)
 - And connected, simply connected (csc) Lie groups like \(\mathbb{R}^n \) or \(H(3, \mathbb{R}) \).
- Often discrete groups are lattices in Lie groups (\(\mathbb{Z}^n \leq \mathbb{R}^n \)).
- A particularly nice class of groups are the nilpotent ones.
 - Nilpotency means that the lower central series
 \[
 G \triangleright \underbrace{[G, G]} \triangleright \underbrace{[[G, G], G]} \triangleright \cdots
 \]
 \[
 =: G_2 \supseteq G_3 \supseteq \cdots
 \]
 degenerates to 1 after a finite number of steps.
 - The prime example of a csc nilpotent Lie group is the Heisenberg group:
 \[
 H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}
 \]
Two types of groups will play a role in the talk:
- Finitely generated discrete groups like \(\mathbb{Z}, \text{SL}(3, \mathbb{Z}), \mathbb{F}_2 \).
- And connected, simply connected (csc) Lie groups like \(\mathbb{R}^n \) or \(H(3, \mathbb{R}) \).

Often discrete groups are lattices in Lie groups (\(\mathbb{Z}^n \leq \mathbb{R}^n \)).

A particularly nice class of groups are the nilpotent ones.

Nilpotency means that the lower central series

\[
G \geq [G, G] \geq [[G, G], G] \geq \cdots
\]

\(\equiv G_{[2]} \equiv G_{[3]} \)

degenerates to 1 after a finite number of steps.

The prime example of a csc nilpotent Lie group is the Heisenberg group:

\[
H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}
\]
A PROLOGUE ON NILPOTENT GROUPS

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like $\mathbb{Z}, \text{SL}(3,\mathbb{Z}), \mathbb{F}_2$...
 - And connected, simply connected (csc) Lie groups like \mathbb{R}^n or $H(3,\mathbb{R})$.
- Often discrete groups are lattices in Lie groups ($\mathbb{Z}^n \leq \mathbb{R}^n$).
- A particularly nice class of groups are the nilpotent ones.
- Nilpotency means that the lower central series

$$G \triangleright [G, G] \triangleright [[G, G], G] \triangleright \cdots$$

$$= G_{[2]} \quad = G_{[3]}$$

degenerates to 1 after a finite number of steps.
- The prime example of a csc nilpotent Lie group is the Heisenberg group:

$$H(3, \mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$
A PROLOGUE ON NILPOTENT GROUPS

- Two types of groups will play a role in the talk:
 - Finitely generated discrete groups like \(\mathbb{Z}, \text{SL}(3, \mathbb{Z}), F_2\).
 - And connected, simply connected (csc) Lie groups like \(\mathbb{R}^n\) or \(H(3, \mathbb{R})\).
- Often discrete groups are lattices in Lie groups (\(\mathbb{Z}^n \leq \mathbb{R}^n\)).
- A particularly nice class of groups are the nilpotent ones.
- Nilpotency means that the lower central series

\[
G \triangleright [G, G] \triangleright [[G, G], G] \triangleright \cdots
\]

\[=:G[2] \quad =:G[3]\]

degenerates to 1 after a finite number of steps.
- The prime example of a csc nilpotent Lie group is the discrete Heisenberg group:

\[
H(3, \mathbb{Z}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}
\]
A lattice Γ in a csc nilpotent Lie group G is automatically cocompact, finitely generated, torsion free and nilpotent.

Mal’cev proved that the converse is true:

Theorem (Mal’cev, 1956)

If Γ is finitely generated, torsion free and nilpotent then there exists a unique csc nilpotent Lie group $G = \Gamma \otimes \mathbb{R}$ in which Γ sits as a cocompact lattice, called the Mal’cev completion of Γ.

A classical conjecture, originally due to Gromov, claims that if Γ and Λ are quasi-isometric (f.g. torsion free) nilpotent groups then their Mal’cev completions $\Gamma \otimes \mathbb{R}$ and $\Lambda \otimes \mathbb{R}$ are isomorphic.
A lattice \(\Gamma \) in a csc nilpotent Lie group \(G \) is automatically cocompact, finitely generated, torsion free and nilpotent.

Mal’cev proved that the converse is true:

Theorem (Mal’cev, 1956)

If \(\Gamma \) is finitely generated, torsion free and nilpotent then there exists a unique csc nilpotent Lie group \(G = \Gamma \otimes \mathbb{R} \) in which \(\Gamma \) sits as a cocompact lattice, called the Mal’cev completion of \(\Gamma \).

A classical conjecture, originally due to Gromov, claims that if \(\Gamma \) and \(\Lambda \) are quasi-isometric (f.g. torsion free) nilpotent groups then their Mal’cev completions \(\Gamma \otimes \mathbb{R} \) and \(\Lambda \otimes \mathbb{R} \) are isomorphic.
A lattice \(\Gamma \) in a csc nilpotent Lie group \(G \) is automatically cocompact, finitely generated, torsion free and nilpotent.

Mal’cev proved that the converse is true:

Theorem (Mal’cev, 1956)

If \(\Gamma \) is finitely generated, torsion free and nilpotent then there exists a unique csc nilpotent Lie group \(G = \Gamma \otimes \mathbb{R} \) in which \(\Gamma \) sits as a cocompact lattice, called the Mal’cev completion of \(\Gamma \).

A classical conjecture, originally due to Gromov, claims that if \(\Gamma \) and \(\Lambda \) are quasi-isometric (f.g. torsion free) nilpotent groups then their Mal’cev completions \(\Gamma \otimes \mathbb{R} \) and \(\Lambda \otimes \mathbb{R} \) are isomorphic.
QUASI-ISOMETRY

- Recall that metric spaces \((X, d_X)\) and \((Y, d_Y)\) are quasi-isometric if there exists a map \(f : X \to Y\) and constants \(A, B > 0\) such that for all \(x_1, x_2 \in X\):
QUASI-ISOMETRY

- Recall that metric spaces \((X, d_X)\) and \((Y, d_Y)\) are \textbf{quasi-isometric} if there exists a map \(f : X \to Y\) and constants \(A, B > 0\) such that for all \(x_1, x_2 \in X\)

 1. \[
 \frac{1}{A} d_X(x_1, x_2) - B \leq d_Y(f(x_1), f(x_2)) \leq A d_X(x_1, x_2) + B
 \]
QUASI-ISOMETRY

- Recall that metric spaces \((X, d_X)\) and \((Y, d_Y)\) are **quasi-isometric** if there exists a map \(f : X \to Y\) and constants \(C, A, B > 0\) such that for all \(x_1, x_2 \in X\) and \(y \in Y\):
 1. \(\frac{1}{A} d_X(x_1, x_2) - B \leq d_Y(f(x_1), f(x_2)) \leq A d_X(x_1, x_2) + B\)
 2. \(d_Y(y, f(X)) := \inf_{x \in X} d_Y(y, f(x)) \leq C\)
QUASI-ISOMETRY

- Recall that metric spaces \((X, d_X)\) and \((Y, d_Y)\) are quasi-isometric if there exists a map \(f : X \to Y\) and constants \(A, B > 0\) such that for all \(x_1, x_2 \in X\) and \(y \in Y\):
 1. \(\frac{1}{A} d_X(x_1, x_2) - B \leq d_Y(f(x_1), f(x_2)) \leq A d_X(x_1, x_2) + B\)
 2. \(d_Y(y, f(X)) := \inf_{x \in X} d_Y(y, f(x)) \leq C\)
QUASI-ISOMETRY

- Recall that metric spaces \((X, d_X)\) and \((Y, d_Y)\) are quasi-isometric if there exists a map \(f : X \rightarrow Y\) and constants \(A, B > 0\) such that for all \(x_1, x_2 \in X\) and \(y \in Y\):
 1. \(\frac{1}{A} d_X(x_1, x_2) - B \leq d_Y(f(x_1), f(x_2)) \leq A d_X(x_1, x_2) + B\)
 2. \(d_Y(y, f(X)) := \inf_{x \in X} d_Y(y, f(x)) \leq C\)

- \(\Gamma\) and \(\Lambda\) are quasi-isometric if they are so with respect to the word metrics arising from some/any finite generating sets.
\textbf{Theorem (Gromov, 1993 (Shalom, Sauer))}

Two amenable discrete groups Γ and Λ are quasi-isometric iff there exists a locally compact space Ω with cocompact, free, commuting actions of Γ and Λ and a Borel measure η which is ergodic for the $\Gamma \times \Lambda$-action.

\begin{itemize}
 \item Such a space (Ω, η) is called a uniform measure equivalence (UME) between Γ and Λ.
 \item One may define UME for locally compact (unimodular) groups and show that quasi-isometric nilpotent groups have UME Mal’cev completions.
 \item Thus, Gromov’s conjecture boils down to whether or not UME implies isomorphism for csc nilpotent Lie groups.
\end{itemize}
Quasi-isometry between amenable groups can be characterized in a more dynamic way:

Theorem (Gromov, 1993 (Shalom, Sauer))

Two amenable discrete groups Γ and Λ are quasi-isometric iff there exists a locally compact space Ω with cocompact, free, commuting actions of Γ and Λ and a Borel measure η which is ergodic for the $\Gamma \times \Lambda$-action.

- Such a space (Ω, η) is called a uniform measure equivalence (UME) between Γ and Λ.
- One may define UME for locally compact (unimodular) groups and show that quasi-isometric nilpotent groups have UME Mal’cev completions.
- Thus, Gromov’s conjecture boils down to whether or not UME implies isomorphism for csc nilpotent Lie groups.
Quasi-isometry between amenable groups can be characterized in a more dynamic way:

Theorem (Gromov, 1993 (Shalom, Sauer))

Two amenable discrete groups \(\Gamma \) and \(\Lambda \) are quasi-isometric iff there exists a locally compact space \(\Omega \) with cocompact, free, commuting actions of \(\Gamma \) and \(\Lambda \) and a Borel measure \(\eta \) which is ergodic for the \(\Gamma \times \Lambda \)-action.

- Such a space \((\Omega, \eta)\) is called a **uniform measure equivalence (UME)** between \(\Gamma \) and \(\Lambda \).
 - One may define UME for locally compact (unimodular) groups and show that quasi-isometric nilpotent groups have UME Mal’cev completions.
 - Thus, Gromov’s conjecture boils down to whether or not UME implies isomorphism for csc nilpotent Lie groups.
Quasi-isometry between amenable groups can be characterized in a more dynamic way:

Theorem (Gromov, 1993 (Shalom, Sauer))

Two amenable discrete groups Γ and Λ are quasi-isometric iff there exists a locally compact space Ω with cocompact, free, commuting actions of Γ and Λ and a Borel measure η which is ergodic for the $\Gamma \times \Lambda$-action.

- Such a space (Ω, η) is called a uniform measure equivalence (UME) between Γ and Λ.
- One may define UME for locally compact (unimodular) groups and show that quasi-isometric nilpotent groups have UME Mal’cev completions.
- Thus, Gromov’s conjecture boils down to whether or not UME implies isomorphism for csc nilpotent Lie groups.
Quasi-isometry between amenable groups can be characterized in a more dynamic way:

Theorem (Gromov, 1993 (Shalom, Sauer))

Two amenable discrete groups Γ and Λ are quasi-isometric iff there exists a locally compact space Ω with cocompact, free, commuting actions of Γ and Λ and a Borel measure η which is ergodic for the $\Gamma \times \Lambda$-action.

- Such a space (Ω, η) is called a uniform measure equivalence (UME) between Γ and Λ.
- One may define UME for locally compact (unimodular) groups and show that quasi-isometric nilpotent groups have UME Mal’cev completions.
- Thus, Gromov’s conjecture boils down to whether or not UME implies isomorphism for csc nilpotent Lie groups.
For this talk, two results are particularly important. Firstly:

Theorem (Pansu, ’89)

If Γ and Λ are (f.g., torsion free) quasi-isometric, nilpotent groups then the associated graded Lie algebras of their Mal’cev completions are isomorphic.

- Here the associated graded Lie algebra of a nilpotent Lie algebra \mathfrak{g} is defined as $\bigoplus_i \mathfrak{g}[i]/\mathfrak{g}[i+1]$.

Secondly there is:

Theorem (Shalom ’04, Sauer ’06)

If Γ and Λ are quasi-isometric nilpotent groups then $H^n(\Gamma, \mathbb{R}) \simeq H^n(\Lambda, \mathbb{R})$ for all $n \geq 0$, and the isomorphism even respects the ring structure on $H^*(-, \mathbb{R})$.

- We aim to generalize Shalom’s result, and for that we need the notion of a polynomial.
For this talk, two results are particularly important. Firstly:

Theorem (Pansu, ’89)

If Γ and Λ are (f.g., torsion free) quasi-isometric, nilpotent groups then the associated graded Lie algebras of their Mal’cev completions are isomorphic.

- Here the associated graded Lie algebra of a nilpotent Lie algebra \mathfrak{g} is defined as $\bigoplus i\mathfrak{g}[i]/\mathfrak{g}[i+1]$.

Secondly there is:

Theorem (Shalom ’04, Sauer ’06)

If Γ and Λ are quasi-isometric nilpotent groups then $H^n(\Gamma, \mathbb{R}) \cong H^n(\Lambda, \mathbb{R})$ for all $n \geq 0$, and the isomorphism even respects the ring structure on $H^*(-, \mathbb{R})$.

- We aim to generalize Shalom’s result, and for that we need the notion of a polynomial.
For this talk, two results are particularly important. Firstly:

Theorem (Pansu, ’89)

If Γ and Λ are (f.g., torsion free) quasi-isometric, nilpotent groups then the associated graded Lie algebras of their Mal’cev completions are isomorphic.

- Here the associated graded Lie algebra of a nilpotent Lie algebra \mathfrak{g} is defined as $\oplus i\mathfrak{g}[i]/\mathfrak{g}[i+1]$.

Secondly there is:

Theorem (Shalom ’04, Sauer ’06)

If Γ and Λ are quasi-isometric nilpotent groups then $H^n(\Gamma, \mathbb{R}) \simeq H^n(\Lambda, \mathbb{R})$ for all $n \geq 0$, and the isomorphism even respects the ring structure on $H^*(\cdot, \mathbb{R})$.

- We aim to generalize Shalom’s result, and for that we need the notion of a polynomial.
For this talk, two results are particularly important. Firstly:

Theorem (Pansu, ’89)

If Γ and Λ are (f.g., torsion free) quasi-isometric, nilpotent groups then the associated graded Lie algebras of their Mal’cev completions are isomorphic.

- Here the associated graded Lie algebra of a nilpotent Lie algebra \mathfrak{g} is defined as $\bigoplus_{i} \mathfrak{g}[i]/\mathfrak{g}[i+1]$.

Secondly there is:

Theorem (Shalom ’04, Sauer ’06)

If Γ and Λ are quasi-isometric nilpotent groups then $H^n(\Gamma, \mathbb{R}) \simeq H^n(\Lambda, \mathbb{R})$ for all $n \geq 0$, and the isomorphism even respects the ring structure on $H^*(-, \mathbb{R})$.

- We aim to generalize Shalom’s result, and for that we need the notion of a polynomial.
For this talk, two results are particularly important. Firstly:

Theorem (Pansu, ’89)

If Γ and Λ are (f.g., torsion free) quasi-isometric, nilpotent groups then the associated graded Lie algebras of their Mal’cev completions are isomorphic.

- Here the associated graded Lie algebra of a nilpotent Lie algebra \mathfrak{g} is defined as $\bigoplus i \mathfrak{g}[i]/\mathfrak{g}[i+1]$.

Secondly there is:

Theorem (Shalom ’04, Sauer ’06)

If Γ and Λ are quasi-isometric nilpotent groups then $H^n(\Gamma, \mathbb{R}) \simeq H^n(\Lambda, \mathbb{R})$ for all $n \geq 0$, and the isomorphism even respects the ring structure on $H^*(-, \mathbb{R})$.

- We aim to generalize Shalom’s result, and for that we need the notion of a polynomial.
If G is a (lcsc) group, we consider $C(G) = C(G, \mathbb{R})$ with the (left) regular representation and define for each $g \in G$ the difference operator $\partial_g : C(G) \to C(G)$ by $\partial_g (f) := g.f - f$.

Following Leibman, $f \in C(G)$ is called a polynomial if there exists a $d \in \mathbb{N}_0$ such that for all $g_1, \ldots, g_{d+1} \in G$

$$\partial_{g_1} \circ \cdots \circ \partial_{g_{d+1}} (f) = 0$$

The minimal such d is called its degree.

- $\text{Pol}_d (G)$ denotes set polynomials of degree at most d.
- Degree 1: a homomorphism plus a constant.
 - so only interesting for non-compact groups
- When $G = \mathbb{R}$ or \mathbb{Z} (or \mathbb{R}^n or \mathbb{Z}^n) we recover the ordinary polynomials (in n variables).
If G is a (lcsc) group, we consider $C(G) = C(G, \mathbb{R})$ with the (left) regular representation and define for each $g \in G$ the difference operator $\partial_g : C(G) \rightarrow C(G)$ by $\partial_g(f) := g.f - f$.

Following Leibman, $f \in C(G)$ is called a polynomial if there exists a $d \in \mathbb{N}_0$ such that for all $g_1, \ldots, g_{d+1} \in G$

$$\partial_{g_1} \circ \cdots \circ \partial_{g_{d+1}}(f) = 0$$

The minimal such d is called its degree.

$\text{Pol}_d(G)$ denotes set polynomials of degree at most d.

Degree 1: a homomorphism plus a constant.

→ so only interesting for non-compact groups.

When $G = \mathbb{R}$ or \mathbb{Z} (or \mathbb{R}^n or \mathbb{Z}^n) we recover the ordinary polynomials (in n variables).
If G is a (lcsc) group, we consider $C(G) = C(G, \mathbb{R})$ with the (left) regular representation and define for each $g \in G$ the difference operator $\partial_g: C(G) \rightarrow C(G)$ by $\partial_g(f) := g.f - f$.

Following Leibman, $f \in C(G)$ is called a polynomial if there exists a $d \in \mathbb{N}_0$ such that for all $g_1, \ldots, g_{d+1} \in G$

$$\partial_{g_1} \circ \cdots \circ \partial_{g_{d+1}}(f) = 0$$

The minimal such d is called its degree.

$\text{Pol}_d(G)$ denotes set polynomials of degree at most d.

Degree 1: a homomorphism plus a constant.

\rightsquigarrow so only interesting for non-compact groups

When $G = \mathbb{R}$ or \mathbb{Z} (or \mathbb{R}^n or \mathbb{Z}^n) we recover the ordinary polynomials (in n variables).
If G is a (lcsc) group, we consider $C(G) = C(G, \mathbb{R})$ with the (left) regular representation and define for each $g \in G$ the difference operator $\partial_g : C(G) \rightarrow C(G)$ by $\partial_g(f) := g.f - f$.

Following Leibman, $f \in C(G)$ is called a polynomial if there exists a $d \in \mathbb{N}_0$ such that for all $g_1, \ldots, g_{d+1} \in G$

$$\partial_{g_1} \circ \cdots \circ \partial_{g_{d+1}} (f) = 0$$

The minimal such d is called its degree.

$\text{Pol}_d(G)$ denotes set polynomials of degree at most d.

Degree 1: a homomorphism plus a constant.

\Rightarrow so only interesting for non-compact groups

When $G = \mathbb{R}$ or \mathbb{Z} (or \mathbb{R}^n or \mathbb{Z}^n) we recover the ordinary polynomials (in n variables).
If G is the Heisenberg group then

\[
\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix}
\mapsto \begin{cases}
\quad a & \text{is a degree 1 polynomial} \\
\quad b & \text{is a degree 1 polynomial} \\
\quad c & \text{is a degree 2 polynomial}
\end{cases}
\]

Actually $\text{Pol}(G)$ is an algebra and spanned by products of these and 1.

\[\Rightarrow\] A similar description (in terms of a Mal’cev basis) holds for general csd nilpotent Lie groups.

If $\deg(\xi) \leq d$ then $\xi|_{G_{[d+1]}} = \xi(1)$.

This is analogous to the fact that homomorphisms $G \rightarrow \mathbb{R}$ factor through $G/[G, G]$.
• If G is the Heisenberg group then

\[
\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix}
\rightarrow \begin{cases}
\text{a is a degree 1 polynomial} \\
\text{b is a degree 1 polynomial} \\
\text{c is a degree 2 polynomial}
\end{cases}
\]

• Actually $\text{Pol}(G)$ is an algebra and spanned by products of these and 1.

→ A similar description (in terms of a Mal’cev basis) holds for general csc nilpotent Lie groups.

• If $\deg(\xi) \leq d$ then $\xi|_{G_{[d+1]}} = \xi(1)$.

• This is analogous to the fact that homomorphisms $G \rightarrow \mathbb{R}$ factor through $G/[G,G]$.
- If G is the Heisenberg group then

$$\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{cases} a & \text{is a degree 1 polynomial} \\ b & \text{is a degree 1 polynomial} \\ c & \text{is a degree 2 polynomial} \end{cases}$$

- Actually $\text{Pol}(G)$ is an algebra and spanned by products of these and 1.

\Rightarrow A similar description (in terms of a Mal’cev basis) holds for general connected nilpotent Lie groups.

- If $\deg(\xi) \leq d$ then $\xi|_{G/[G,G]} = \xi(1)$.

- This is analogous to the fact that homomorphisms $G \to \mathbb{R}$ factor through $G/[G,G]$.
If G is the Heisenberg group then

$$
\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix} \rightarrow \begin{cases}
a & \text{is a degree 1 polynomial} \\
b & \text{is a degree 1 polynomial} \\
c & \text{is a degree 2 polynomial}
\end{cases}
$$

Actually $\text{Pol}(G)$ is an algebra and spanned by products of these and 1.

A similar description (in terms of a Mal’cev basis) holds for general csc nilpotent Lie groups.

If $\deg(\zeta) \leq d$ then $\zeta|_{G/[G,G]} = \zeta(1)$.

This is analogous to the fact that homomorphisms $G \rightarrow \mathbb{R}$ factor through $G/[G,G]$.

• If G is the Heisenberg group then

\[
\begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix} \mapsto \begin{cases}
a & \text{is a degree 1 polynomial} \\
b & \text{is a degree 1 polynomial} \\
c & \text{is a degree 2 polynomial}
\end{cases}
\]

• Actually $\text{Pol}(G)$ is an algebra and spanned by products of these and 1.

\leadsto A similar description (in terms of a Mal’cev basis) holds for general csc nilpotent Lie groups.

• If $\deg(\xi) \leq d$ then $\xi \upharpoonright_{G[d+1]} \equiv \xi(1)$.

• This is analogous to the fact that homomorphisms $G \to \mathbb{R}$ factor through $G/[G, G]$.
If G is the Heisenberg group then

\[
\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{cases} a & \text{is a degree 1 polynomial} \\
 b & \text{is a degree 1 polynomial} \\
 c & \text{is a degree 2 polynomial} \end{cases}
\]

Actually $\text{Pol}(G)$ is an algebra and spanned by products of these and 1.

A similar description (in terms of a Mal’cev basis) holds for general csc nilpotent Lie groups.

If $\deg(\zeta) \leq d$ then $\zeta|_{G_{[d+1]}} \equiv \zeta(1)$.

This is analogous to the fact that homomorphisms $G \to \mathbb{R}$ factor through $G/[G,G]$.
Polynomial Cohomology

- Note that the map $\partial_g : \xi \mapsto g.\xi - \xi$ makes sense for any G-module E.
- So we can define the d'th order invariants as
 \[E^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \} \]
- In this language, $\text{Pol}_d(G) = C(G)^{G(d+1)}$
- One may check that $(-)^{G(d)}$ is a left exact endo-functor on the category of (topological) G-modules.
- As such it has right derived functors — we denote them $H^n_{(d)}(G, -)$ and call them the polynomial cohomology of G.

Proposition (K-Petersen)

- $H^n_{(d)}(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_{d-1}(G))$ (*linear description*)
- $H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}_d(G)/\text{Pol}_{d-1}(G)$ (*inhomogeneous picture*)
POLYNOMIAL COHOMOLOGY

- Note that the map \(\partial_g : \xi \mapsto g.\xi - \xi \) makes sense for any \(G \)-module \(E \).
- So we can define the \(d' \)th order invariants as

\[
E^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \}
\]

- In this language, \(\text{Pol}_d(G) = C(G)^{G(d+1)} \)
- One may check that \((-)^{G(d)}\) is a left exact endo-functor on the category of (topological) \(G \)-modules.
- As such it has right derived functors — we denote them \(H_{(d)}^n(G, -) \) and call them the polynomial cohomology of \(G \).

PROPOSITION (K-PETERSEN)

- \(H_{(d)}^n(G, \mathbb{R}) \cong H^n(G, \text{Pol}_{d-1}(G)) \) \textit{(linear description)}
- \(H_{(d)}^1(G, \mathbb{R}) \cong \text{Pol}_d(G) / \text{Pol}_{d-1}(G) \) \textit{(inhomogeneous picture)}

\[\hookrightarrow\] blackboard justification
POLYNOMIAL COHOMOLOGY

- Note that the map $\partial_g : \xi \mapsto g.\xi - \xi$ makes sense for any G-module E.
- So we can define the d'th order invariants as

$$E^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \}$$

- In this language, $\text{Pol}_d(G) = C(G)^{G(d+1)}$
 - One may check that $(_)^{G(d)}$ is a left exact endo-functor on the category of (topological) G-modules.
 - As such it has right derived functors — we denote them $H_{(d)}^n(G, -)$ and call them the polynomial cohomology of G.

PROPOSITION (K-PETERSEN)

- $H_{(d)}^n(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_{d-1}(G))$ (linear description)
- $H_{(d)}^1(G, \mathbb{R}) \simeq \text{Pol}_d(G)/\text{Pol}_{d-1}(G)$ (inhomogeneous picture)
POLYNOMIAL COHOMOLOGY

- Note that the map $\partial_g : \xi \mapsto g.\xi - \xi$ makes sense for any G-module E.
- So we can define the d'th order invariants as
 $$E_{G}^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \}$$
- In this language, $\text{Pol}_d(G) = C(G)^{G(d+1)}$
- One may check that $(-)^{G(d)}$ is a left exact endo-functor on the category of (topological) G-modules.
 - As such it has right derived functors — we denote them $H_{(d)}^n(G, -)$ and call them the polynomial cohomology of G.

PROPOSITION (K-PETERSEN)

- $H_{(d)}^n(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_{d-1}(G))$ (linear description)
- $H_{(d)}^1(G, \mathbb{R}) \simeq \text{Pol}_d(G)/\text{Pol}_{d-1}(G)$ (inhomogeneous picture)
POLYNOMIAL COHOMOLOGY

- Note that the map $\partial_g : \xi \mapsto g.\xi - \xi$ makes sense for any G-module E.
- So we can define the d'th order invariants as
 $$E^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \}$$
- In this language, $\text{Pol}_d(G) = C(G)^{G(d+1)}$
- One may check that $(-)^{G(d)}$ is a left exact endo-functor on the category of (topological) G-modules.
- As such it has right derived functors — we denote them $H^n_{(d)}(G, -)$ and call them the polynomial cohomology of G.

PROPOSITION (K-Petersen)

- $H^n_{(d)}(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_{d-1}(G))$ (linear description)
- $H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}_d(G) / \text{Pol}_{d-1}(G)$ (inhomogeneous picture)
POLYNOMIAL COHOMOLOGY

- Note that the map $\partial_g : \xi \mapsto g.\xi - \xi$ makes sense for any G-module E.
- So we can define the d'th order invariants as

$$E^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \}$$

- In this language, $\text{Pol}_d(G) = C(G)^{G(d+1)}$
- One may check that $(-)^{G(d)}$ is a left exact endo-functor on the category of (topological) G-modules.
- As such it has right derived functors — we denote them $H^n_{(d)}(G, -)$ and call them the polynomial cohomology of G.

PROPOSITION (K-PETERSEN)

- $H^n_{(d)}(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_{d-1}(G))$ (linear description)
- $H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}_d(G)/\text{Pol}_{d-1}(G)$ (inhomogeneous picture)
POLYNOMIAL COHOMOLOGY

- Note that the map \(\partial_g : \xi \mapsto g \cdot \xi - \xi \) makes sense for any \(G \)-module \(E \).
- So we can define the \(d' \)th order invariants as
 \[
 E^{G(d)} := \{ \xi \in E \mid \partial_{g_1} \circ \cdots \circ \partial_{g_d} \xi = 0 \text{ for all } g_1, \ldots, g_d \in G \}
 \]
- In this language, \(\text{Pol}_d(G) = C(G)^{G(d+1)} \)
- One may check that \((-)^{G(d)} \) is a left exact endo-functor on the category of (topological) \(G \)-modules.
- As such it has right derived functors — we denote them \(H^d_{(d)}(G, -) \) and call them the polynomial cohomology of \(G \).

PROPOSITION (K-PETersen)

- \(H^d_{(d)}(G, \mathbb{R}) \simeq H^d(G, \text{Pol}_{d-1}(G)) \) (linear description)
- \(H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}_d(G)/\text{Pol}_{d-1}(G) \) (inhomogeneous picture)
Theorem (K-Petersen)

If G and H are UME csc nilpotent Lie groups then $H^n_{(2)}(G, \mathbb{R})$ is isomorphic to $H^n_{(2)}(H, \mathbb{R})$ for all $n \in \mathbb{N}_0$.

- Like Shalom’s theorem but with coefficients in $\text{Pol}_1(-)$; recall that $H^n_{(2)}(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_1(G))$.

Theorem (K-Petersen)

If G and H are 2-step nilpotent groups the isomorphism $H^1_{(2)}(G, \mathbb{R}) \simeq H^1_{(2)}(H, \mathbb{R})$ (pre-)dualizes to an isomorphism $H \simeq G$.

- 2-step analogue of the fact that when both G and H are of the form \mathbb{R}^k, any isomorphism $\text{Hom}(G, \mathbb{R}) \simeq \text{Hom}(H, \mathbb{R})$ pre-dualizes to an isomorphism $H \simeq G$.

Corollary (Pansu)

If Γ and Λ are quasi-isometric, 2-step, nilpotent groups then their Mal’cev completions are isomorphic.
Theorem (K-Petersen)

If G and H are UME csc nilpotent Lie groups then $H^{(2)}_{(2)}(G, \mathbb{R})$ is isomorphic to $H^{(2)}_{(2)}(H, \mathbb{R})$ for all $n \in \mathbb{N}_0$.

- Like Shalom’s theorem but with coefficients in $\text{Pol}_1(-)$; recall that $H^{(2)}_{(2)}(G, \mathbb{R}) \cong H^{(2)}_{(2)}(G, \text{Pol}_1(G))$.

Theorem (K-Petersen)

If G and H are 2-step nilpotent groups the isomorphism $H^1_{(2)}(G, \mathbb{R}) \cong H^1_{(2)}(H, \mathbb{R})$ (pre-)dualizes to an isomorphism $H \cong G$.

- 2-step analogue of the fact that when both G and H are of the form \mathbb{R}^k, any isomorphism $\text{Hom}(G, \mathbb{R}) \cong \text{Hom}(H, \mathbb{R})$ pre-dualizes to an isomorphism $H \cong G$.

Corollary (Pansu)

If Γ and Λ are quasi-isometric, 2-step, nilpotent groups then their Mal’cev completions are isomorphic.
THEOREM (K-PETERSEN)

*If G and H are UME csc nilpotent Lie groups then $H_{(2)}^{n}(G, \mathbb{R})$ is isomorphic to $H_{(2)}^{n}(H, \mathbb{R})$ for all $n \in \mathbb{N}_0$.***

- Like Shalom’s theorem but with coefficients in $\text{Pol}_1(-)$; recall that $H_{(2)}^{n}(G, \mathbb{R}) \simeq H^{n}(G, \text{Pol}_1(G))$.

THEOREM (K-PETERSEN)

*If G and H are 2-step nilpotent groups the isomorphism $H_{(2)}^{1}(G, \mathbb{R}) \simeq H_{(2)}^{1}(H, \mathbb{R})$ (pre-)dualizes to an isomorphism $H \simeq G$.***

- 2-step analogue of the fact that when both G and H are of the form \mathbb{R}^k, any isomorphism $\text{Hom}(G, \mathbb{R}) \simeq \text{Hom}(H, \mathbb{R})$ pre-dualizes to an isomorphism $H \simeq G$.

COROLLARY (PANSU)

If Γ and Λ are quasi-isometric, 2-step, nilpotent groups then their Mal’cev completions are isomorphic.
Theorem (K-Petersen)
If G and H are UME csc nilpotent Lie groups then $H_{(2)}^n(G, \mathbb{R})$ is isomorphic to $H_{(2)}^n(H, \mathbb{R})$ for all $n \in \mathbb{N}_0$.

- Like Shalom’s theorem but with coefficients in $\text{Pol}_1(-)$; recall that $H_{(2)}^n(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_1(G))$.

Theorem (K-Petersen)
If G and H are 2-step nilpotent groups the isomorphism $H_{(2)}^l(G, \mathbb{R}) \simeq H_{(2)}^l(H, \mathbb{R})$ (pre-)dualizes to an isomorphism $H \simeq G$.

- 2-step analogue of the fact that when both G and H are of the form \mathbb{R}^k, any isomorphism $\text{Hom}(G, \mathbb{R}) \simeq \text{Hom}(H, \mathbb{R})$ pre-dualizes to an isomorphism $H \simeq G$.

Corollary (Pansu)
If Γ and Λ are quasi-isometric, 2-step, nilpotent groups then their Mal’cev completions are isomorphic.
THEOREM (K-PETERSEN)
If G and H are UME csc nilpotent Lie groups then $H^\big(2\big)_n(G, \mathbb{R})$ is isomorphic to $H^\big(2\big)_n(H, \mathbb{R})$ for all $n \in \mathbb{N}_0$.

- Like Shalom’s theorem but with coefficients in $\text{Pol}_1(-)$; recall that $H^\big(2\big)_n(G, \mathbb{R}) \simeq H^n(G, \text{Pol}_1(G))$.

THEOREM (K-PETERSEN)
If G and H are 2-step nilpotent groups the isomorphism $H^\big(2\big)_1(G, \mathbb{R}) \simeq H^\big(2\big)_1(H, \mathbb{R})$ (pre-)dualizes to an isomorphism $H \simeq G$.

- 2-step analogue of the fact that when both G and H are of the form \mathbb{R}^k, any isomorphism $\text{Hom}(G, \mathbb{R}) \simeq \text{Hom}(H, \mathbb{R})$ pre-dualizes to an isomorphism $H \simeq G$.

COROLLARY (PANSU)
If Γ and Λ are quasi-isometric, 2-step, nilpotent groups then their Mal’cev completions are isomorphic.
The key to the proof is a reciprocity type theorem à la Monod- Shalom:

- If G and H are UME via (Ω, η) then for all $G \times H$-modules E

 \[H^n(G, L^2_{\text{loc}}(\Omega, E)^H) \cong H^n(H, L^2_{\text{loc}}(\Omega, E)^G) \]

- When $E = \text{Pol}_1(G)$ with trivial H-action then:
 - The LHS identifies with $H^n(G, \text{Pol}_1(G))$ — this is not completely immediate and uses Shalom’s property H_T and the fact that $H^n(G, \text{Pol}_1(G))$ is fd.
 - Difficult part: to identify the RHS with $H^n(H, \text{Pol}_1(H))$.
The key to the proof is a reciprocity type theorem à la Monod- Shalom:

If G and H are UME via (Ω, η) then for all $G \times H$-modules E

$$H^n(G, L^2_{\text{loc}}(\Omega, E)^H) \simeq H^n(H, L^2_{\text{loc}}(\Omega, E)^G)$$

When $E = \text{Pol}_1(G)$ with trivial H-action then:

The LHS identifies with $H^n(G, \text{Pol}_1(G))$ — this is not completely immediate and uses Shalom’s property H_T and the fact that $H^n(G, \text{Pol}_1(G))$ is fd.

Difficult part: to identify the RHS with $H^n(H, \text{Pol}_1(H))$.
The key to the proof is a reciprocity type theorem à la Monod- Shalom:

If G and H are UME via (Ω, η) then for all $G \times H$-modules E

$$H^n(G, L^2_{\text{loc}}(\Omega, E)^H) \approx H^n(H, L^2_{\text{loc}}(\Omega, E)^G)$$

When $E = \text{Pol}_1(G)$ with trivial H-action then:

- The LHS identifies with $H^n(G, \text{Pol}_1(G))$ — this is not completely immediate and uses Shalom’s property H_T and the fact that $H^n(G, \text{Pol}_1(G))$ is fd.
- Difficult part: to identify the RHS with $H^n(H, \text{Pol}_1(H))$.
The key to the proof is a reciprocity type theorem à la Monod- Shalom:

If G and H are UME via (Ω, η) then for all $G \times H$-modules E

$$H^n(G, L^2_{\text{loc}}(\Omega, E)^H) \simeq H^n(H, L^2_{\text{loc}}(\Omega, E)^G)$$

When $E = \text{Pol}_1(G)$ with trivial H-action then:

The LHS identifies with $H^n(G, \text{Pol}_1(G))$ — this is not completely immediate and uses Shalom’s property H_T and the fact that $H^n(G, \text{Pol}_1(G))$ is fd.

Difficult part: to identify the RHS with $H^n(H, \text{Pol}_1(H))$.
The key to the proof is a reciprocity type theorem à la Monod- Shalom:

If G and H are UME via (Ω, η) then for all $G \times H$-modules E

$$H^n(G, L^2_{\text{loc}}(\Omega, E)^H) \cong H^n(H, L^2_{\text{loc}}(\Omega, E)^G)$$

When $E = \text{Pol}_1(G)$ with trivial H-action then:

The LHS identifies with $H^n(G, \text{Pol}_1(G))$ — this is not completely immediate and uses Shalom’s property H_T and the fact that $H^n(G, \text{Pol}_1(G))$ is fd.

Difficult part: to identify the RHS with $H^n(H, \text{Pol}_1(H))$.
In general, $H^1_{(2)}(G, \mathbb{R})$ is not a complete invariant of G.

But the collection $\bigoplus_d H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}(G)$ is, if one remembers all of its structure (Hopf algebra).

Actually, in the sense of algebraic geometry, $\text{Pol}(G)$ is the Hopf algebra of regular functions on G, which is well-known to be a Hopf algebra which completely remembers G.

We are working on showing the general result that for UME, csc, nilpotent Lie groups G and H we have

$$H^n_{(d)}(G, \mathbb{R}) \simeq H^n_{(d)}(H, \mathbb{R}),$$

and that, for $n = 1$, these isomorphisms can be ‘glued together’ to a Hopf algebra isomorphism $\text{Pol}(G) \simeq \text{Pol}(H)$.

- In general, $H^1_{(2)}(G, \mathbb{R})$ is not a complete invariant of G.
- But the collection $\bigoplus_d H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}(G)$ is, if one remembers all of its structure (Hopf algebra).
- Actually, in the sense of algebraic geometry, $\text{Pol}(G)$ is the Hopf algebra of regular functions on G, which is well-known to be a Hopf algebra which completely remembers G.
- We are working on showing the general result that for UME, csc, nilpotent Lie groups G and H we have
 \[H^n_{(d)}(G, \mathbb{R}) \simeq H^n_{(d)}(H, \mathbb{R}), \]
- and that, for $n = 1$, these isomorphisms can be ‘glued together’ to a Hopf algebra isomorphism $\text{Pol}(G) \simeq \text{Pol}(H)$.

In general, $H^1_{(2)}(G, \mathbb{R})$ is not a complete invariant of G.

But the collection $\bigoplus_d H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}(G)$ is, if one remembers all of its structure (Hopf algebra).

Actually, in the sense of algebraic geometry, $\text{Pol}(G)$ is the Hopf algebra of regular functions on G, which is well-known to be a Hopf algebra which completely remembers G.

We are working on showing the general result that for UME, csc, nilpotent Lie groups G and H we have

$$H^n_{(d)}(G, \mathbb{R}) \simeq H^n_{(d)}(H, \mathbb{R}),$$

and that, for $n = 1$, these isomorphisms can be ‘glued together’ to a Hopf algebra isomorphism $\text{Pol}(G) \simeq \text{Pol}(H)$.

In general, $H^1_{(2)}(G, \mathbb{R})$ is not a complete invariant of G.

But the collection $\bigoplus_d H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}(G)$ is, if one remembers all of its structure (Hopf algebra).

Actually, in the sense of algebraic geometry, $\text{Pol}(G)$ is the Hopf algebra of regular functions on G, which is well-known to be a Hopf algebra which completely remembers G.

We are working on showing the general result that for UME, csc, nilpotent Lie groups G and H we have

$$H^n_{(d)}(G, \mathbb{R}) \simeq H^n_{(d)}(H, \mathbb{R}),$$

and that, for $n = 1$, these isomorphisms can be ‘glued together’ to a Hopf algebra isomorphism $\text{Pol}(G) \simeq \text{Pol}(H)$.
In general, $H^1_{(2)}(G, \mathbb{R})$ is not a complete invariant of G.

But the collection $\bigoplus_d H^1_{(d)}(G, \mathbb{R}) \simeq \text{Pol}(G)$ is, if one remembers all of its structure (Hopf algebra).

Actually, in the sense of algebraic geometry, $\text{Pol}(G)$ is the Hopf algebra of regular functions on G, which is well-known to be a Hopf algebra which completely remembers G.

We are working on showing the general result that for UME, csc, nilpotent Lie groups G and H we have

$$H^n_{(d)}(G, \mathbb{R}) \simeq H^n_{(d)}(H, \mathbb{R}),$$

and that, for $n = 1$, these isomorphisms can be ‘glued together’ to a Hopf algebra isomorphism $\text{Pol}(G) \simeq \text{Pol}(H)$.