Finite case

\begin{verbatim}
G := Group([[[0,1,0,0], [0,0,1,0], [0,0,0,1], [1,0,0,0]],
 [[0,1,0,0], [1,0,0,0], [0,0,1,0], [0,0,0,1]]]);
gap> iso := IsomorphismPcpGroup(G);;
gap> H := Image(iso);
Pcp-group with orders [2, 3, 2, 2]
gap> mats := List(Cgs(H), x -> PreImagesRepresentative(iso,x));
[[[1,0,0,0], [0,0,1,0], [0,1,0,0], [0,0,0,1]],
 [[1,0,0,0], [0,0,1,0], [0,0,0,1], [0,1,0,0]],
 [[0,1,0,0], [1,0,0,0], [0,0,0,1], [0,0,1,0]],
 [[0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0]]]
gap> StabilizerIntegralAction(H, mats, [1,0,0,0]);
Pcp-group with orders [2, 3]
gap> StabilizerIntegralAction(H, mats, [1,0,0,1]);
Pcp-group with orders [2, 2]
\end{verbatim}
Unipotent case

gap> G := UnitriangularPcpGroup(4,0);
Pcp-group with orders [0, 0, 0, 0, 0, 0]
gap> mats := G!.mats;
[[[1,1,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]],
 [[1,0,0,0], [0,1,1,0], [0,0,1,0], [0,0,0,1]],
 [[1,0,0,0], [0,1,0,0], [0,0,1,1], [0,0,0,1]],
 [[1,0,1,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]],
 [[1,0,0,0], [0,1,0,1], [0,0,1,0], [0,0,0,1]],
 [[1,0,0,1], [0,1,0,0], [0,0,1,0], [0,0,0,1]]]
gap> Cgs(G);
[g1, g2, g3, g4, g5, g6]

gap> Cgs(StabilizerIntegralAction(G, mats, [1,0,0,0]));
[g2, g3, g5]
gap> Cgs(StabilizerIntegralAction(G, mats, [1,1,1,1]));
[g2*g4^-1, g3*g6^-1, g5*g6^-1]
gap> f := x^3 - 7*x + 1;;
gap> K := FieldByPolynomial(f);
<algebraic extension over the Rationals of degree 3>
gap> U := UnitGroup(K);
<group with 3 generators>
gap> u := GeneratorsOfGroup(U);
[!-1, a, a^2+2*a-2]

gap> m2 := List(Basis(K), x-> Coefficients(Basis(K),x*u[2]));
[[0, 1, 0], [0, 0, 1], [-1, 7, 0]]
gap> m3 := List(Basis(K), x-> Coefficients(Basis(K),x*u[3]));
[[-2, 2, 1], [-1, 5, 2], [-2, 13, 5]]
gap> G := Group(m2, m3);;
Field case

gap> iso := IsomorphismPcpGroup(G);;
gap> H := Image(iso);;
gap> mats := List(Cgs(H), x -> PreImagesRepresentative(iso,x));
[[[0, 1, 0], [0, 0, 1], [-1, 7, 0]],
 [[-2, 2, 1], [-1, 5, 2], [-2, 13, 5]]]

gap> StabilizerIntegralAction(H, mats, [1,0,0]);
Pcp-group with orders []
gap> StabilizerIntegralAction(H, mats, [1,1,0]);
Pcp-group with orders []
gap> StabilizerIntegralAction(H, mats, [1,1,1]);
Pcp-group with orders []
a := [[-1, 1, 8],[-5, -2, 20],[-1, 0, 5]];
b := [[-47, -24, 192],[0,1,0],[-12,-6,49]];
c := [[-23, 0, 96],[0,1,0],[-6, 0, 25]];
G := Group(a,b,c);
H := Image(IsomorphismPcpGroup(G));

\[
gap\text{Cgs(StabilizerIntegralAction(H, [a,b,c], [1,0,0]));} \\
[g1^{24}g2^{-10572}g3^{-17106}]
\]

\[
gap\text{Cgs(StabilizerIntegralAction(H, [a,b,c], [0,1,0]));} \\
[g2, g3]
\]

\[
gap\text{Cgs(StabilizerIntegralAction(H, [a,b,c], [0,0,1]));} \\
[g1^{24}g2^{-12504}g3^{-20232}]
\]