Invariant random subgroups I

Simon Thomas

Rutgers University

5th November 2018
Guy Fawkes Day

(A few are lines missing because of conversion to handout.)
The space of subgroups

- Let G be a countable group and let
 \[\text{Sub}_G \subset \mathcal{P}(G) = \{0, 1\}^G = 2^G \]
 be the set of subgroups $H \leq G$.

Observation

Sub$_G$ is a closed subset of 2^G.

Proof.

If $S \in 2^G$ isn’t a subgroup, then either

- $S \in \{T \in 2^G \mid 1 \notin T\}$,

or there exist $a, b \in G$ such that

- $S \in \{T \in 2^G \mid a, b \in T \text{ and } ab^{-1} \notin T\}$.
Note that $G \sim \text{Sub}_G$ via conjugation: $H \leftrightarrow gHg^{-1}$.

Definition (Abért)

A G-invariant probability measure ν on Sub_G is called an **invariant random subgroup** or IRS.

A Boring Example

If $N \trianglelefteq G$, then the Dirac measure δ_N is an IRS of G.
Stabilizer distributions

Observation

- Suppose that \(G \curvearrowright (Z, \mu) \) is a measure-preserving action on a probability space.
- Let \(f : Z \to \text{Sub}_G \) be the \(G \)-equivariant map defined by \(z \mapsto G_z = \{ g \in G \mid g \cdot z = z \} \).
- Then the stabilizer distribution \(\nu = f_* \mu \) is an IRS of \(G \).
- If \(B \subseteq \text{Sub}_G \), then \(\nu(B) = \mu(\{ z \in Z \mid G_z \in B \}) \).

Theorem (Abért-Glasner-Virag 2012)

If \(\nu \) is an IRS of \(G \), then \(\nu \) is the stabilizer distribution of a measure-preserving action \(G \curvearrowright (Z, \mu) \).
Ergodicity

Definition
A measure-preserving action $G \curvearrowright (Z, \mu)$ is ergodic if $\mu(A) = 0, 1$ for every G-invariant μ-measurable subset $A \subseteq Z$.

Theorem
If $G \curvearrowright (Z, \mu)$ is a measure-preserving action on a probability space, then the following statements are equivalent.

- $G \curvearrowright (Z, \mu)$ is ergodic.
- If Y is a standard Borel space and $f : Z \to Y$ is a G-invariant Borel function, then there exists a G-invariant Borel subset $M \subseteq Z$ with $\mu(M) = 1$ such that $f \upharpoonright M$ is a constant function.
Ergodicity

Remark
If \(\nu \) is an ergodic IRS of \(G \), then for every group-theoretic property \(\Phi \),

\[
\nu(\{ H \in \text{Sub}_G \mid H \text{ satisfies } \Phi \}) \in \{ 0, 1 \}.
\]

Observation
If \(G \curvearrowright (Z, \mu) \) is ergodic, then the corresponding stabilizer distribution \(\nu \) is an ergodic IRS of \(G \).

Theorem (Creutz-Peterson 2013)
If \(\nu \) is an ergodic IRS of \(G \), then \(\nu \) is the stabilizer distribution of an ergodic action \(G \curvearrowright (Z, \mu) \).
The Classification Problem

Problem

Given a countable group G, explicitly classify the ergodic IRSs of G (or show that no such classification is possible).

Theorem (Kirillov 1965 & Peterson-Thom 2013)

*If K is a countably infinite field and $n \geq 2$, then the only ergodic IRS of $G = \text{PSL}(n, K)$ are δ_1 and δ_G.***

Definition

A countable group G is strongly simple if the only ergodic IRS of G are δ_1 and δ_G.
What about $G = SL(3, \mathbb{Z})$?

Example

- For each $H \in \text{Sub}_G$, let $\mathcal{C}(H) = \{ gHg^{-1} \mid g \in G \}$.
- If $[G : H] < \infty$, then $|\mathcal{C}(H)| < \infty$ and we can define an ergodic IRS by

$$\nu_H(gHg^{-1}) = 1/|\mathcal{C}(H)|.$$

Theorem (Stuck-Zimmer 1994 & Abért-Glasner-Virag 2012)

The ergodic IRSs of $G = SL(3, \mathbb{Z})$ are precisely

$$\{ \delta_1 \} \cup \{ \nu_H \mid [G : H] < \infty \}.$$
What about \(G = SL(3, \mathbb{Z}) \)?

- Suppose that \(\nu \neq \delta_1 \) is an ergodic IRS of \(G = SL(3, \mathbb{Z}) \).
- By Creutz-Peterson, \(\nu \) is the stabilizer distribution of an ergodic action \(G \curvearrowright (Z, \mu) \).
- Clearly \(G \curvearrowright (Z, \mu) \) is not essentially free.
- By Stuck-Zimmer, this implies that there exists an orbit \(G \cdot z \) such that \(\mu(G \cdot z) = 1 \).
- Then \(|G \cdot z| < \infty \) and \(\nu = \nu_{Gz} \).
Some unclassifiable examples ...

Definition
If G is a countable group, then $M(G)$ denotes the simplex of invariant random subgroups of G.

Theorem (Bowen 2012)
If G is a nonabelian free group, then $M(G)$ has a canonical Poulsen subsimplex.

Theorem (Bowen-Grigorchuk-Kravchenko 2012)
If $G = (C_p)^n \wr \mathbb{Z}$ is a lamplighter group, then $M(G)$ has a canonical Poulsen subsimplex.
A more interesting example ...

Definition

The finitary symmetric group $\text{Fin}(\mathbb{N})$ is the subgroup of permutations $\pi \in \text{Sym}(\mathbb{N})$ such that $\{ n \in \mathbb{N} \mid \pi(n) \neq n \}$ is finite.

Theorem (Vershik 2011)

The uncountably many ergodic IRSs of $G = \text{Fin}(\mathbb{N})$ can be explicitly classified.

Remark

Throughout we will identify partitions of \mathbb{N} with the corresponding equivalence relations.
Let \(\alpha = (\alpha_i) \in [0, 1]^\mathbb{N} \) be a sequence such that:

- \(\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_i \geq \cdots \geq 0 \)
- \(\sum_{i=0}^{\infty} \alpha_i = 1 \).

Define a probability measure \(p_{\alpha} \) on \(\mathbb{N} \) by \(p_{\alpha}(\{i\}) = \alpha_i \).

Let \(\mu_{\alpha} \) be the corresponding product probability measure on \(\mathbb{N}^\mathbb{N} \).

Then \(\text{Fin}(\mathbb{N}) \bowtie (\mathbb{N}^\mathbb{N}, \mu_{\alpha}) \) acts ergodically via the shift action \((\pi \cdot \xi)(n) = \xi(\pi^{-1}(n)) \).

Let \(B_i^\xi = \{ n \in \mathbb{N} \mid \xi(n) = i \} \).

Let \(\xi \mapsto \mathcal{P}_{\xi} = \bigsqcup_{n \in B_0^\xi} \{ n \} \sqcup \bigsqcup_{i > 0} B_i^\xi \).

Then \(m_{\alpha} = \varphi \cdot \mu_{\alpha} \) is an ergodic random invariant partition of \(\mathbb{N} \).
Kingman’s Theorem

Theorem (Kingman 1978)

If \(m \) is an ergodic random invariant partition of \(\mathbb{N} \), then there exists \(\alpha \) as above such that \(m = \varphi_\ast \mu_\alpha \).

Observation (The law of large numbers)

For \(\mu_\alpha \)-a.e. \(\xi \in \mathbb{N}^\mathbb{N} \), the following are equivalent for all \(i \in \mathbb{N}^+ \).

(a) \(\alpha_i > 0 \).
(b) \(B_i^\xi \neq \emptyset \).
(c) \(B_i^\xi \) is infinite.
(d) \(\lim_{n \to \infty} \frac{|\{ \ell \in n \mid \xi(\ell) = i \}|}{n} = \alpha_i > 0 \).

In this case, we say that \(\xi \) is \(\mu_\alpha \)-random.
Example

Suppose that $\alpha_1 = 2/3$ and $\alpha_2 = 1/3$. Let ξ be μ_α-generic. Then there are the following obvious possibilities for a corresponding random subgroup.

(i) $H_\xi = \text{Fin}(B_1^\xi) \times \text{Fin}(B_2^\xi)$.

(ii) $H_\xi = \text{Alt}(B_1^\xi) \times \text{Alt}(B_2^\xi)$.

(iii) $H_\xi = \text{Fin}(B_1^\xi) \times \text{Alt}(B_2^\xi)$.

(iv) $H_\xi = \text{Alt}(B_1^\xi) \times \text{Fin}(B_2^\xi)$.

(v) $H_\xi = \{ (\pi, \theta) \in \text{Fin}(B_1^\xi) \times \text{Fin}(B_2^\xi) \mid \text{sgn}(\pi) = \text{sgn}(\theta) \}$.
The ergodic IRSs of $\text{Fin}(\mathbb{N})$

- Let $I = \{ i \in \mathbb{N}^+ \mid \alpha_i > 0 \}$ and let $S_{\alpha} = \bigoplus_{i \in I} C_i$, where each $C_i = \{ \pm 1 \}$ is cyclic of order 2.

- Fix some subgroup $A \leq S_{\alpha}$.

- Let ξ be μ_{α}-random and let s_ξ be the homomorphism

$$s_\xi : \bigoplus_{i \in I} \text{Fin}(B_i^\xi) \to \bigoplus_{i \in I} C_i$$

$$(\pi_i) \mapsto (\text{sgn}(\pi_i)).$$

- Let $\xi \mapsto H_\xi = s_\xi^{-1}(A)$.

- Then $\nu^A_{\alpha} = (f^A)_* \mu_{\alpha}$ is an ergodic IRS of $\text{Fin}(\mathbb{N})$.
The ergodic IRSs of $\text{Fin}(\mathbb{N})$}

Theorem (Vershik 2011 with corrections by Thomas 2013)

If ν is an ergodic IRS of $\text{Fin}(\mathbb{N})$, then there exists α, A as above such that $\nu = \nu^A_{\alpha}$.

- The proof makes use of:

Theorem (Wielandt 1959)

If $H \leq \text{Fin}(\mathbb{N})$ is a primitive subgroup, then $H = \text{Alt}(\mathbb{N})$, $\text{Fin}(\mathbb{N})$.

Simon Thomas (Rutgers University)
Hausdorff Institute for Mathematics
5th November 2018
The proof begins ...

- Suppose that ν is an ergodic IRS of $\text{Fin}(\mathbb{N})$.
- For each $H \in \text{Sub}_{\text{Fin}(\mathbb{N})}$, let $p(H)$ be the partition of \mathbb{N} into H-orbits.
- Then $m = p_* \nu$ is an ergodic random invariant partition of \mathbb{N}.
- Hence there exists $\alpha \in [0, 1]^\mathbb{N}$ such that $m = \varphi_* \mu_\alpha$.
- Let $I = \{ i \in \mathbb{N}^+ \mid \alpha_i > 0 \}$.
- Then for ν-a.e. $H \in \text{Sub}_{\text{Fin}(\mathbb{N})}$, there exists a μ_α-generic $\xi \in \mathbb{N}^\mathbb{N}$ such that $p(H)$ is
 \[\mathbb{N} = \bigcup_{i \in I} B_i^{\xi} \cup \bigcup_{n \in B_0^{\xi}} \{ n \}. \]
An application of Wielandt’s Theorem

Lemma

For \(\nu \)-a.e. \(H \in \text{Sub}_{\text{Fin}(\mathbb{N})} \), for all \(i \in I \), the subgroup \(H \) induces at least \(\text{Alt}(B_i^\xi) \) on \(B_i^\xi \).

- If not, then there exists a fixed \(i \in I \) such that for \(\nu \)-a.e. \(H \in \text{Sub}_{\text{Fin}(\mathbb{N})} \), the subgroup \(H \) preserves a nontrivial equivalence relation \(E_B \) on \(B = B_i^\xi \).
- Clearly each \(E_B \)-class is finite.

Claim

We can choose \(E_B \) in a \(\text{Fin}(\mathbb{N}) \)-equivariant Borel manner.
The Borel map $H \mapsto E_H = E_B \cup \text{Id}(\mathbb{N} \setminus B)$ is $\text{Fin}(\mathbb{N})$-equivariant.

Thus $m' = e_* \nu$ is an ergodic random invariant partition which concentrates on the equivalence relations E such that
- every E-class is finite;
- there exists an E-class of some fixed size $k > 1$.

For each $S \in [\mathbb{N}]^k$, let C_S be the event that S is an E-class.

Then there exists a fixed $r > 0$ such that $m'(C_S) = r$ for all $S \in [\mathbb{N}]^k$.

Since the events $\{ C_S \mid 0 \in S \in [\mathbb{N}]^k \}$ are mutually exclusive, this is a contradiction.
Towards a proof of the Claim

Lemma

If $H \leq \text{Fin}(\mathbb{N})$ acts transitively but imprimitively on \mathbb{N}, then there exist only finitely many minimal nontrivial H-invariant equivalence relations.

- Suppose that $\{ E_n \mid n \in \mathbb{N} \}$ are distinct minimal H-invariant nontrivial equivalence relations.
- Let C_n be the E_n-class such that $0 \in C_n$.
- If $n \neq m$, then $C_n \cap C_m = \{ 0 \}$.
- Choose $a_n \in C_n \setminus \{ 0 \}$.
- Then there exists $\pi \in H$ such that $\pi(0) = a_0$.
- If $n > 0$, then $a_0 \in \pi(C_n) \neq C_n$ and so $\pi(a_n) \neq a_n$.
- But this means that $\pi \notin \text{Fin}(\mathbb{N})$.
Proof of the Claim

Theorem (Neumann 1975 & Segal 1974)

If \(H \leq \text{Fin}(\mathbb{N}) \) acts transitively but imprimitively on \(\mathbb{N} \), then either:

(i) there exists a unique maximal nontrivial \(H \)-invariant equivalence relation \(E_{\text{max}} \); or

(ii) there exists a sequence of nontrivial \(H \)-invariant equivalence relations \(R_0 \subset R_1 \subset \cdots \subset R_\ell \subset \cdots \) such that \(\mathbb{N}^2 = \bigcup R_\ell \).

- If (i) holds, we can choose \(E_{\text{max}} \).
- Suppose that (ii) holds and let \(E_1, \cdots, E_n \) be the minimal nontrivial \(H \)-invariant equivalence relations.
- Then there exists a unique nontrivial \(H \)-invariant equivalence relation \(R \) which is minimal such that \(E_1 \cup \cdots \cup E_n \subseteq R \).
The analysis continues ...

Lemma

For ν-a.e. $H \in \text{Sub}_{\text{Fin}(\mathbb{N})}$, for all $i \in I$, the subgroup H induces at least $\text{Alt}(B_i^\xi)$ on B_i^ξ.

Lemma

For ν-a.e. $H \in \text{Sub}_{\text{Fin}(\mathbb{N})}$, we have that $\bigoplus_{i \in I} \text{Alt}(B_i^\xi) \leq H$.
Proposition

There exists a partition \(\{ F_\alpha \mid \alpha \in \Omega \} \) of \(I \) into finite pieces such that

\[
H \cap \bigoplus_{i \in I} \text{Alt}(B_i^\xi) = \bigoplus_{\alpha \in \Omega} \text{Diag} \left(\bigoplus_{j \in F_\alpha} \text{Alt}(B_j^\xi) \right),
\]

where the diagonal subgroups are determined by unique bijections \(T_{jk} : B_j^\xi \to B_k^\xi \) for \(j, k \in F_\alpha \).

Let \(E \) be the ergodic invariant random partition defined by

\[
 n E m \iff \left(\exists j, k \right) T_{jk}(n) = m.
\]

Since \(E \) has finite classes, it follows that each \(|F_\alpha| = 1 \).
Remark
An easy ergodicity argument shows that there exists a fixed subgroup $A \leq \bigoplus_{i \in I} C_i$ such that ν concentrates on the same collection $X^A_\alpha \subseteq \text{Sub}_G$ of subgroups as ν^A_α.

Question
But why is $\nu = \nu^A_\alpha$?

Theorem
The action $\text{Fin}(\mathbb{N}) \curvearrowright X^A_\alpha$ is uniquely ergodic.
The Pointwise Ergodic Theorem

Theorem (Vershik 1974 & Lindenstrauss 1999)

Suppose that $G = \bigcup_{n \in \mathbb{N}} G_n$ is the union of an increasing chain of finite groups and that $G \varsubsetneq (Z, \mu)$ is ergodic. Then for μ-a.e. $z \in Z$, for every μ-measurable subset $Y \subseteq Z$,

$$
\mu(Y) = \lim_{n \to \infty} \frac{1}{|G_n|} |\{ g \in G_n \mid g \cdot z \in Y \}|.
$$

Remark

Thus, to prove that $G \varsubsetneq (Z, \mu)$ is uniquely ergodic, it is enough to show that if $z, z' \in Z$ and $U \subseteq Z$ is a basic open subset, then

$$
\lim_{n \to \infty} \frac{1}{|G_n|} |\{ g \in G_n \mid g \cdot z \in U \}| = \lim_{n \to \infty} \frac{1}{|G_n|} |\{ g \in G_n \mid g \cdot z' \in U \}|.
$$

The End