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The space of subgroups

Let G be a countable group and let

SubG ⇢ P(G) = {0, 1 }G = 2G

be the set of subgroups H 6 G.

Observation
SubG is a closed subset of 2G.

Proof.
If S 2 2G isn’t a subgroup, then either

S 2 {T 2 2G | 1 /2 T},
or there exist a, b 2 G such that

S 2 {T 2 2G | a, b 2 T and ab�1 /2 T}.
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Invariant random subgroups

Note that G y SubG via conjugation: H
g7! g H g�1.

Definition (Abért)
A G-invariant probability measure ⌫ on SubG is called an invariant
random subgroup or IRS.

A Boring Example
If N E G, then the Dirac measure �N is an IRS of G.
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Stabilizer distributions

Observation
Suppose that G y (Z , µ ) is a measure-preserving action on
a probability space.
Let f : Z ! SubG be the G-equivariant map defined by
z 7! Gz = {g 2 G | g · z = z }.
Then the stabilizer distribution ⌫ = f⇤µ is an IRS of G.
If B ✓ SubG, then ⌫(B ) = µ( { z 2 Z | Gz 2 B } ).

Theorem (Abért-Glasner-Virag 2012)
If ⌫ is an IRS of G, then ⌫ is the stabilizer distribution of a
measure-preserving action G y (Z , µ ).
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Ergodicity

Definition
A measure-preserving action G y (Z , µ ) is ergodic if µ(A) = 0, 1
for every G-invariant µ-measurable subset A ✓ Z .

Theorem
If G y (Z , µ ) is a measure-preserving action on a probability space,
then the following statements are equivalent.

G y (Z , µ ) is ergodic.
If Y is a standard Borel space and f : Z ! Y is a G-invariant Borel
function, then there exists a G-invariant Borel subset M ✓ Z with
µ(M) = 1 such that f � M is a constant function.
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Ergodicity

Remark
If ⌫ is an ergodic IRS of G, then for every group-theoretic property �,

⌫( {H 2 SubG | H satisfies � } ) 2 {0, 1 }.

Observation
If G y (Z , µ ) is ergodic, then the corresponding stabilizer distribution
⌫ is an ergodic IRS of G.

Theorem (Creutz-Peterson 2013)
If ⌫ is an ergodic IRS of G, then ⌫ is the stabilizer distribution of
an ergodic action G y (Z , µ ).
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The Classification Problem

Problem
Given a countable group G, explicitly classify the ergodic IRSs of G
(or show that no such classification is possible).

Theorem (Kirillov 1965 & Peterson-Thom 2013)
If K is a countably infinite field and n � 2, then the only ergodic IRS
of G = PSL(n,K ) are �1 and �G.

Definition
A countable group G is strongly simple if the only ergodic IRS
of G are �1 and �G.
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What about G = SL(3,Z)?

Example
For each H 2 SubG, let C(H) = {gHg�1 | g 2 G }.
If [G : H ] < 1, then |C(H)| < 1 and we can define
an ergodic IRS by

⌫H(gHg�1) = 1/|C(H)|.

Theorem (Stuck-Zimmer 1994 & Abért-Glasner-Virag 2012)
The ergodic IRSs of G = SL(3,Z) are precisely

{ �1 } [ { ⌫H | [G : H ] < 1 }.
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What about G = SL(3,Z)?

Suppose that ⌫ 6= �1 is an ergodic IRS of G = SL(3,Z).

By Creutz-Peterson, ⌫ is the stabilizer distribution of an
ergodic action G y (Z , µ ).

Clearly G y (Z , µ ) is not essentially free.

By Stuck-Zimmer, this implies that there exists an orbit
G · z such that µ(G · z) = 1.

Then |G · z| < 1 and ⌫ = ⌫Gz .
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Some unclassifiable examples ...

Definition
If G is a countable group, then M(G) denotes the simplex of invariant
random subgroups of G.

Theorem (Bowen 2012)
If G is a nonabelian free group, then M(G) has a canonical Poulsen
subsimplex.

Theorem (Bowen-Grigorchuk-Kravchenko 2012)
If G = (Cp)n wr Z is a lamplighter group, then M(G) has a canonical
Poulsen subsimplex.
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A more interesting example ...

Definition
The finitary symmetric group Fin(N) is the subgroup of permutations
⇡ 2 Sym(N) such that {n 2 N | ⇡(n) 6= n } is finite.

Theorem (Vershik 2011)
The uncountably many ergodic IRSs of G = Fin(N) can be
explicitly classified.

Remark
Throughout we will identify partitions of N with the corresponding
equivalence relations.
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Ergodic Random Invariant Partitions

Let ↵ = (↵i ) 2 [ 0, 1 ]N be a sequence such that:
↵1 � ↵2 � · · · � ↵i � · · · � 0P1

i=0 ↵i = 1.

Define a probability measure p↵ on N by p↵( { i } ) = ↵i .

Let µ↵ be the corresponding product probability measure on NN.

Then Fin(N) y (NN, µ↵ ) acts ergodically via the shift action
(⇡ · ⇠ )(n) = ⇠(⇡�1(n) ).

Let B ⇠
i = {n 2 N | ⇠(n) = i }.

Let ⇠ '7! P ⇠ =
F

n2B ⇠
0
{n } t

F
i>0 B ⇠

i .

Then m↵ = '⇤µ↵ is an ergodic random invariant partition of N.
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Kingman’s Theorem

Theorem (Kingman 1978)
If m is an ergodic random invariant partition of N, then
there exists ↵ as above such that m = '⇤µ↵.

Observation (The law of large numbers)
For µ↵-a.e. ⇠ 2 NN, the following are equivalent for all i 2 N+.
(a) ↵i > 0.
(b) B ⇠

i 6= ;.

(c) B ⇠
i is infinite.

(d) limn!1 |{ ` 2 n | ⇠(`) = i }|/n = ↵i > 0.
In this case, we say that ⇠ is µ↵-random.
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The ergodic IRSs of Fin(N)

Example
Suppose that ↵1 = 2/3 and ↵2 = 1/3. Let ⇠ be µ↵-generic. Then
there are the following obvious possibilities for a corresponding
random subgroup.

(i) H⇠ = Fin(B ⇠
1 )⇥ Fin(B ⇠

2 ).

(ii) H⇠ = Alt(B ⇠
1 )⇥ Alt(B ⇠

2 ).

(iii) H⇠ = Fin(B ⇠
1 )⇥ Alt(B ⇠

2 ).

(iv) H⇠ = Alt(B ⇠
1 )⇥ Fin(B ⇠

2 ).

(v) H⇠ = { (⇡, ✓ ) 2 Fin(B ⇠
1 )⇥ Fin(B ⇠

2 ) | sgn(⇡) = sgn(✓) }.
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The ergodic IRSs of Fin(N)

Let I = { i 2 N+ | ↵i > 0 } and let S↵ =
L

i2I Ci , where
each Ci = {±1 } is cyclic of order 2.

Fix some subgroup A 6 S↵.

Let ⇠ be µ↵-random and let s⇠ be the homomorphism

s⇠ :
M

i2I

Fin(B⇠
i ) !

M

i2I

Ci

(⇡i ) 7! ( sgn(⇡i) ).

Let ⇠ f A
7! H⇠ = s�1

⇠ (A).

Then ⌫ A
↵ = (f A)⇤µ↵ is an ergodic IRS of Fin(N).
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The ergodic IRSs of Fin(N)

Theorem (Vershik 2011 with corrections by Thomas 2013)
If ⌫ is an ergodic IRS of Fin(N), then there exists ↵, A as above
such that ⌫ = ⌫A

↵ .

The proof makes use of:

Theorem (Wielandt 1959)
If H 6 Fin(N) is a primitive subgroup, then H = Alt(N), Fin(N).
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The proof begins ...

Suppose that ⌫ is an ergodic IRS of Fin(N).

For each H 2 SubFin(N), let p(H) be the partition of N into H-orbits.

Then m = p⇤⌫ is an ergodic random invariant partition of N.

Hence there exists ↵ 2 [ 0, 1 ]N such that m = '⇤µ↵.

Let I = { i 2 N+ | ↵i > 0 }.

Then for ⌫-a.e. H 2 SubFin(N), there exists a µ↵-generic ⇠ 2 NN

such that p(H) is
N =

G

i2I

B⇠
i t

G

n2B⇠
0

{n }.
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An application of Wielandt’s Theorem

Lemma
For ⌫-a.e. H 2 SubFin(N), for all i 2 I, the subgroup H induces
at least Alt(B⇠

i ) on B⇠
i .

If not, then there exists a fixed i 2 I such that for ⌫-a.e.
H 2 SubFin(N), the subgroup H preserves a nontrivial
equivalence relation EB on B = B⇠

i .
Clearly each EB-class is finite.

Claim
We can choose EB in a Fin(N)-equivariant Borel manner.
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Assuming the Claim ...

The Borel map H e7! EH = EB t Id(Nr B) is Fin(N)-equivariant.

Thus m 0 = e⇤⌫ is an ergodic random invariant partition which
concentrates on the equivalence relations E such that

every E-class is finite;
there exists an E-class of some fixed size k > 1.

For each S 2 [N ]k , let CS be the event that S is an E-class.

Then there exists a fixed r > 0 such that m 0(CS) = r
for all S 2 [N ]k .

Since the events {CS | 0 2 S 2 [N ]k } are mutually exclusive,
this is a contradiction.
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Towards a proof of the Claim

Lemma
If H 6 Fin(N) acts transitively but imprimitively on N, then there exist
only finitely many minimal nontrivial H-invariant equivalence relations.

Suppose that {En | n 2 N } are distinct minimal H-invariant
nontrivial equivalence relations.
Let Cn be the En-class such that 0 2 Cn.
If n 6= m, then Cn \ Cm = {0 }.
Choose an 2 Cn r {0 }.
Then there exists ⇡ 2 H such that ⇡(0) = a0.
If n > 0, then a0 2 ⇡(Cn) 6= Cn and so ⇡(an) 6= an.
But this means that ⇡ /2 Fin(N).
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Proof of the Claim

Theorem (Neumann 1975 & Segal 1974)
If H 6 Fin(N) acts transitively but imprimitively on N, then either:

(i) there exists a unique maximal nontrivial H-invariant
equivalence relation Emax; or

(ii) there exists a sequence of nontrivial H-invariant equivalence
relations R0 ⇢ R1 ⇢ · · · ⇢ R` ⇢ · · · such that N2 =

S
R`.

If (i) holds, we can choose Emax.
Suppose that (ii) holds and let E1, · · · ,En be the minimal nontrivial
H-invariant equivalence relations.
Then there exists a unique nontrivial H-invariant equivalence
relation R which is minimal such that E1 [ · · · [ En ✓ R.
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The analysis continues ...

Lemma
For ⌫-a.e. H 2 SubFin(N), for all i 2 I, the subgroup H induces
at least Alt(B⇠

i ) on B⇠
i .

Lemma
For ⌫-a.e. H 2 SubFin(N), we have that

L
i2I Alt(B

⇠
i ) 6 H.
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By a purely algebraic argument ...

Proposition
There exists a partition {F↵ | ↵ 2 ⌦ } of I into finite pieces such that

H \
M

i2I

Alt(B⇠
i ) =

M

↵2⌦
Diag(

M

j2F↵

Alt(B⇠
j )),

where the diagonal subgroups are determined by unique bijections
Tjk : B⇠

j ! B⇠
k for j, k 2 F↵.

Let E be the ergodic invariant random partition defined by

n E m () ( 9 j , k ) Tjk (n) = m.

Since E has finite classes, it follows that each |F↵| = 1.
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Almost there ...

Remark
An easy ergodicity argument shows that there exists a fixed
subgroup A 6 L

i2I Ci such that ⌫ concentrates on the same
collection X A

↵ ✓ SubG of subgroups as ⌫A
↵ .

Question
But why is ⌫ = ⌫A

↵?

Theorem
The action Fin(N) y X A

↵ is uniquely ergodic.
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The Pointwise Ergodic Theorem

Theorem (Vershik 1974 & Lindenstrauss 1999)
Suppose that G =

S
n2N Gn is the union of an increasing chain of

finite groups and that G y (Z , µ ) is ergodic. Then for µ-a.e. z 2 Z,
for every µ-measurable subset Y ✓ Z,

µ(Y ) = lim
n!1

1
|Gn|

|{g 2 Gn | g · z 2 Y }|.

Remark
Thus, to prove that G y (Z , µ ) is uniquely ergodic, it is enough to
show that if z, z 0 2 Z and U ✓ Z is a basic open subset, then

lim
n!1

1
|Gn|

|{g 2 Gn | g · z 2 U }| = lim
n!1

1
|Gn|

|{g 2 Gn | g · z 0 2 U }|.

The End
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