Invariant random subgroups I

Simon Thomas

Rutgers University

5th November 2018 Guy Fawkes Day

(A few are lines missing because of conversion to handout.)

The space of subgroups

Let G be a countable group and let

$$\mathsf{Sub}_{G} \subset \mathcal{P}(G) = \{\,0,1\,\}^{G} = 2^{G}$$

be the set of subgroups $H \leqslant G$.

Observation

 Sub_G is a closed subset of 2^G .

Proof.

If $S \in 2^G$ isn't a subgroup, then either

•
$$S \in \{ T \in 2^G \mid 1 \notin T \},$$

or there exist $a, b \in G$ such that

•
$$S \in \{ T \in 2^G \mid a, b \in T \text{ and } ab^{-1} \notin T \}.$$

Invariant random subgroups

• Note that $G \curvearrowright \operatorname{Sub}_G$ via conjugation: $H \stackrel{g}{\mapsto} g H g^{-1}$.

Definition (Abért)

A G-invariant probability measure ν on Sub_G is called an invariant random subgroup or IRS.

A Boring Example

If $N \subseteq G$, then the Dirac measure δ_N is an IRS of G.

Stabilizer distributions

Observation

- Suppose that $G \curvearrowright (Z, \mu)$ is a measure-preserving action on a probability space.
- Let $f: Z \to \operatorname{Sub}_G$ be the G-equivariant map defined by $z \mapsto G_z = \{ g \in G \mid g \cdot z = z \}.$
- Then the stabilizer distribution $\nu = f_*\mu$ is an IRS of G.
- If $B \subseteq \operatorname{Sub}_G$, then $\nu(B) = \mu(\{z \in Z \mid G_z \in B\})$.

Theorem (Abért-Glasner-Virag 2012)

If ν is an IRS of G, then ν is the stabilizer distribution of a measure-preserving action $G \curvearrowright (Z, \mu)$.

Ergodicity

Definition

A measure-preserving action $G \curvearrowright (Z, \mu)$ is ergodic if $\mu(A) = 0$, 1 for every G-invariant μ -measurable subset $A \subseteq Z$.

Theorem

If $G \curvearrowright (Z, \mu)$ is a measure-preserving action on a probability space, then the following statements are equivalent.

- $G \curvearrowright (Z, \mu)$ is ergodic.
- If Y is a standard Borel space and $f: Z \to Y$ is a G-invariant Borel function, then there exists a G-invariant Borel subset $M \subseteq Z$ with $\mu(M) = 1$ such that $f \upharpoonright M$ is a constant function.

Ergodicity

Remark

If ν is an ergodic IRS of G, then for every group-theoretic property Φ ,

$$\nu$$
({ $H \in Sub_G \mid H$ satisfies Φ }) \in { 0, 1 }.

Observation

If $G \curvearrowright (Z, \mu)$ is ergodic, then the corresponding stabilizer distribution ν is an ergodic IRS of G.

Theorem (Creutz-Peterson 2013)

If ν is an ergodic IRS of G, then ν is the stabilizer distribution of an ergodic action $G \curvearrowright (Z, \mu)$.

The Classification Problem

Problem

Given a countable group *G*, explicitly classify the ergodic IRSs of *G* (or show that no such classification is possible).

Theorem (Kirillov 1965 & Peterson-Thom 2013)

If K is a countably infinite field and $n \ge 2$, then the only ergodic IRS of G = PSL(n, K) are δ_1 and δ_G .

Definition

A countable group G is strongly simple if the only ergodic IRS of G are δ_1 and δ_G .

What about $G = SL(3, \mathbb{Z})$?

Example

- For each $H \in \operatorname{Sub}_G$, let $\mathcal{C}(H) = \{ gHg^{-1} \mid g \in G \}$.
- If $[G:H] < \infty$, then $|\mathcal{C}(H)| < \infty$ and we can define an ergodic IRS by

$$\nu_H(gHg^{-1})=1/|\mathcal{C}(H)|.$$

Theorem (Stuck-Zimmer 1994 & Abért-Glasner-Virag 2012)

The ergodic IRSs of $G = SL(3, \mathbb{Z})$ are precisely

$$\{ \delta_1 \} \cup \{ \nu_H \mid [G : H] < \infty \}.$$

What about $G = SL(3, \mathbb{Z})$?

- Suppose that $\nu \neq \delta_1$ is an ergodic IRS of $G = SL(3, \mathbb{Z})$.
- By Creutz-Peterson, ν is the stabilizer distribution of an ergodic action G

 (Z, μ).
- Clearly $G \curvearrowright (Z, \mu)$ is not essentially free.
- By Stuck-Zimmer, this implies that there exists an orbit $G \cdot z$ such that $\mu(G \cdot z) = 1$.
- Then $|G \cdot z| < \infty$ and $\nu = \nu_{G_z}$.

Some unclassifiable examples ...

Definition

If G is a countable group, then M(G) denotes the simplex of invariant random subgroups of G.

Theorem (Bowen 2012)

If G is a nonabelian free group, then M(G) has a canonical Poulsen subsimplex.

Theorem (Bowen-Grigorchuk-Kravchenko 2012)

If $G = (C_p)^n$ wr \mathbb{Z} is a lamplighter group, then M(G) has a canonical Poulsen subsimplex.

A more interesting example ...

Definition

The finitary symmetric group $Fin(\mathbb{N})$ is the subgroup of permutations $\pi \in Sym(\mathbb{N})$ such that $\{n \in \mathbb{N} \mid \pi(n) \neq n\}$ is finite.

Theorem (Vershik 2011)

The uncountably many ergodic IRSs of $G = Fin(\mathbb{N})$ can be explicitly classified.

Remark

Throughout we will identify partitions of $\mathbb N$ with the corresponding equivalence relations.

Ergodic Random Invariant Partitions

- Let $\alpha = (\alpha_i) \in [0, 1]^{\mathbb{N}}$ be a sequence such that:
 - $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_i \ge \cdots \ge 0$
 - $\sum_{i=0}^{\infty} \alpha_i = 1$.
- Define a probability measure p_{α} on \mathbb{N} by $p_{\alpha}(\{i\}) = \alpha_i$.
- Let μ_{α} be the corresponding product probability measure on $\mathbb{N}^{\mathbb{N}}$.
- Then $Fin(\mathbb{N}) \curvearrowright (\mathbb{N}^{\mathbb{N}}, \mu_{\alpha})$ acts ergodically via the shift action $(\pi \cdot \xi)(n) = \xi(\pi^{-1}(n))$.
- Let $B_i^{\xi} = \{ n \in \mathbb{N} \mid \xi(n) = i \}.$
- Let $\xi \stackrel{\varphi}{\mapsto} \mathcal{P}^{\xi} = \bigsqcup_{n \in \mathcal{B}_0^{\xi}} \{ n \} \sqcup \bigsqcup_{i > 0} \mathcal{B}_i^{\xi}.$
- Then $m_{\alpha} = \varphi_* \mu_{\alpha}$ is an ergodic random invariant partition of \mathbb{N} .

Kingman's Theorem

Theorem (Kingman 1978)

If m is an ergodic random invariant partition of \mathbb{N} , then there exists α as above such that $m = \varphi_* \mu_{\alpha}$.

Observation (The law of large numbers)

For μ_{α} -a.e. $\xi \in \mathbb{N}^{\mathbb{N}}$, the following are equivalent for all $i \in \mathbb{N}^+$.

- (a) $\alpha_i > 0$.
- (b) $B_i^{\xi} \neq \emptyset$.
- (c) B_i^{ξ} is infinite.
- (d) $\lim_{n\to\infty} |\{\ell \in n \mid \xi(\ell) = i\}|/n = \alpha_i > 0.$

In this case, we say that ξ is μ_{α} -random.

The ergodic IRSs of $Fin(\mathbb{N})$

Example

Suppose that $\alpha_1=2/3$ and $\alpha_2=1/3$. Let ξ be μ_{α} -generic. Then there are the following obvious possibilities for a corresponding random subgroup.

- (i) $H_{\xi} = \operatorname{Fin}(B_1^{\xi}) \times \operatorname{Fin}(B_2^{\xi}).$
- (ii) $H_{\xi} = \operatorname{Alt}(B_1^{\xi}) \times \operatorname{Alt}(B_2^{\xi}).$
- (iii) $H_{\xi} = \operatorname{Fin}(B_1^{\xi}) \times \operatorname{Alt}(B_2^{\xi}).$
- (iv) $H_{\xi} = \operatorname{Alt}(B_1^{\xi}) \times \operatorname{Fin}(B_2^{\xi}).$
- (v) $H_{\xi} = \{ (\pi, \theta) \in \operatorname{Fin}(B_1^{\xi}) \times \operatorname{Fin}(B_2^{\xi}) \mid \operatorname{sgn}(\pi) = \operatorname{sgn}(\theta) \}.$

The ergodic IRSs of $Fin(\mathbb{N})$

- Let $I = \{ i \in \mathbb{N}^+ \mid \alpha_i > 0 \}$ and let $S_\alpha = \bigoplus_{i \in I} C_i$, where each $C_i = \{ \pm 1 \}$ is cyclic of order 2.
- Fix some subgroup $A \leqslant S_{\alpha}$.
- Let ξ be μ_{α} -random and let s_{ξ} be the homomorphism

$$egin{aligned} s_{\xi} : igoplus_{i \in I} \mathsf{Fin}(\mathcal{B}_i^{\xi}) &
ightarrow igoplus_{i \in I} \mathcal{C}_i \ (\pi_i) &
ightarrow (\operatorname{sgn}(\pi_i)). \end{aligned}$$

- Let $\xi \stackrel{f^A}{\mapsto} H_{\xi} = s_{\xi}^{-1}(A)$.
- Then $\nu_{\alpha}^{A} = (f^{A})_{*}\mu_{\alpha}$ is an ergodic IRS of Fin(N).

The ergodic IRSs of $Fin(\mathbb{N})$

Theorem (Vershik 2011 with corrections by Thomas 2013)

If ν is an ergodic IRS of Fin(\mathbb{N}), then there exists α , A as above such that $\nu = \nu_{\alpha}^{A}$.

• The proof makes use of:

Theorem (Wielandt 1959)

If $H \leq Fin(\mathbb{N})$ is a primitive subgroup, then $H = Alt(\mathbb{N})$, $Fin(\mathbb{N})$.

The proof begins ...

- Suppose that ν is an ergodic IRS of Fin(\mathbb{N}).
- For each $H \in \operatorname{Sub}_{\operatorname{Fin}(\mathbb{N})}$, let p(H) be the partition of \mathbb{N} into H-orbits.
- Then $m = p_* \nu$ is an ergodic random invariant partition of \mathbb{N} .
- Hence there exists $\alpha \in [0,1]^{\mathbb{N}}$ such that $m = \varphi_* \mu_\alpha$.
- Let $I = \{ i \in \mathbb{N}^+ \mid \alpha_i > 0 \}.$
- Then for ν -a.e. $H \in \operatorname{Sub}_{\mathsf{Fin}(\mathbb{N})}$, there exists a μ_{α} -generic $\xi \in \mathbb{N}^{\mathbb{N}}$ such that p(H) is

$$\mathbb{N} = \bigsqcup_{i \in I} B_i^{\xi} \sqcup \bigsqcup_{n \in B_0^{\xi}} \{ n \}.$$

An application of Wielandt's Theorem

Lemma

For ν -a.e. $H \in Sub_{Fin(\mathbb{N})}$, for all $i \in I$, the subgroup H induces at least $Alt(B_i^{\xi})$ on B_i^{ξ} .

- If not, then there exists a fixed $i \in I$ such that for ν -a.e. $H \in \operatorname{Sub}_{\operatorname{Fin}(\mathbb{N})}$, the subgroup H preserves a nontrivial equivalence relation E_B on $B = B_i^{\xi}$.
- Clearly each E_B-class is finite.

Claim

We can choose E_B in a $Fin(\mathbb{N})$ -equivariant Borel manner.

Assuming the Claim ...

- The Borel map $H \stackrel{e}{\mapsto} E_H = E_B \sqcup \operatorname{Id}(\mathbb{N} \setminus B)$ is $\operatorname{Fin}(\mathbb{N})$ -equivariant.
- Thus $m' = e_* \nu$ is an ergodic random invariant partition which concentrates on the equivalence relations E such that
 - every E-class is finite;
 - there exists an E-class of some fixed size k > 1.
- For each $S \in [N]^k$, let C_S be the event that S is an E-class.
- Then there exists a fixed r > 0 such that $m'(C_S) = r$ for all $S \in [N]^k$.
- Since the events $\{ C_S \mid 0 \in S \in [\mathbb{N}]^k \}$ are mutually exclusive, this is a contradiction.

Towards a proof of the Claim

Lemma

If $H \leq \text{Fin}(\mathbb{N})$ acts transitively but imprimitively on \mathbb{N} , then there exist only finitely many minimal nontrivial H-invariant equivalence relations.

- Suppose that $\{E_n \mid n \in \mathbb{N}\}$ are distinct minimal H-invariant nontrivial equivalence relations.
- Let C_n be the E_n -class such that $0 \in C_n$.
- If $n \neq m$, then $C_n \cap C_m = \{ 0 \}$.
- Choose $a_n \in C_n \setminus \{0\}$.
- Then there exists $\pi \in H$ such that $\pi(0) = a_0$.
- If n > 0, then $a_0 \in \pi(C_n) \neq C_n$ and so $\pi(a_n) \neq a_n$.
- But this means that $\pi \notin Fin(\mathbb{N})$.

Proof of the Claim

Theorem (Neumann 1975 & Segal 1974)

If $H \leq Fin(\mathbb{N})$ acts transitively but imprimitively on \mathbb{N} , then either:

- (i) there exists a unique maximal nontrivial H-invariant equivalence relation E_{max} ; or
- (ii) there exists a sequence of nontrivial H-invariant equivalence relations $R_0 \subset R_1 \subset \cdots \subset R_\ell \subset \cdots$ such that $\mathbb{N}^2 = \bigcup R_\ell$.
 - If (i) holds, we can choose E_{\max} .
 - Suppose that (ii) holds and let E_1, \dots, E_n be the minimal nontrivial H-invariant equivalence relations.
 - Then there exists a unique nontrivial H-invariant equivalence relation R which is minimal such that $E_1 \cup \cdots \cup E_n \subseteq R$.

The analysis continues ...

Lemma

For ν -a.e. $H \in Sub_{\mathsf{Fin}(\mathbb{N})}$, for all $i \in I$, the subgroup H induces at least $\mathsf{Alt}(B_i^\xi)$ on B_i^ξ .

Lemma

For ν -a.e. $H \in Sub_{Fin(\mathbb{N})}$, we have that $\bigoplus_{i \in I} Alt(B_i^{\xi}) \leqslant H$.

By a purely algebraic argument ...

Proposition

There exists a partition $\{ F_{\alpha} \mid \alpha \in \Omega \}$ of I into finite pieces such that

$$H\cap\bigoplus_{i\in I}\operatorname{Alt}(B_i^\xi)=\bigoplus_{\alpha\in\Omega}\operatorname{Diag}(\bigoplus_{j\in F_\alpha}\operatorname{Alt}(B_j^\xi)),$$

where the diagonal subgroups are determined by unique bijections $T_{jk}: B_j^{\xi} \to B_k^{\xi}$ for $j, k \in F_{\alpha}$.

Let E be the ergodic invariant random partition defined by

$$n E m \iff (\exists j, k) T_{jk}(n) = m.$$

• Since *E* has finite classes, it follows that each $|F_{\alpha}| = 1$.

Almost there ...

Remark

An easy ergodicity argument shows that there exists a fixed subgroup $A \leqslant \bigoplus_{i \in I} C_i$ such that ν concentrates on the same collection $X_{\alpha}^A \subseteq \operatorname{Sub}_G$ of subgroups as ν_{α}^A .

Question

But why is $\nu = \nu_{\alpha}^{A}$?

Theorem

The action $Fin(\mathbb{N}) \curvearrowright X_{\alpha}^{A}$ is uniquely ergodic.

The Pointwise Ergodic Theorem

Theorem (Vershik 1974 & Lindenstrauss 1999)

Suppose that $G = \bigcup_{n \in \mathbb{N}} G_n$ is the union of an increasing chain of finite groups and that $G \curvearrowright (Z, \mu)$ is ergodic. Then for μ -a.e. $z \in Z$, for every μ -measurable subset $Y \subseteq Z$,

$$\mu(Y) = \lim_{n \to \infty} \frac{1}{|G_n|} |\{ g \in G_n \mid g \cdot z \in Y \}|.$$

Remark

Thus, to prove that $G \curvearrowright (Z, \mu)$ is uniquely ergodic, it is enough to show that if $z, z' \in Z$ and $U \subseteq Z$ is a basic open subset, then

$$\lim_{n\to\infty}\frac{1}{|G_n|}|\{\,g\in G_n\mid g\cdot z\in U\,\}|=\lim_{n\to\infty}\frac{1}{|G_n|}|\{\,g\in G_n\mid g\cdot z'\in U\,\}|.$$

The End