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Abstract

Much of the (2, 5) minimal model in conformal field theory is described by
very classical mathematics: Schwarz’ work on algebraic hypergeometric func-
tions, Klein’s work on the icosahedron, the Rogers-Ramanujan functions etc. Un-
explored directions promise equally beautiful results.

1 The (2, 5) MM for g = 1

1.1 Some ODEs

For g = 1, the 1-point function 〈T (z)〉 is constant in position, denoted by 〈T〉. For the
(2, 5) minimal model, the Virasoro OPE is given by

T (z) ⊗ T (0) 7→
c/2
z4 .1 +

1
z2 {T (z) + T (0)} −

1
5

T ′′(0) + O(z) ,

where c = −22/5. This implies the 2-point function

〈T (z)T (0)〉 =
c
2
℘2(z|τ)〈1〉 + 2℘(z|τ)〈T〉 − c

π4

15
E4〈1〉 .

Changes in the modulus τ are generated by the Virasoro field T . We obtain a system of
ODEs of the type studied by [7] and [2]:

1
2πi

d
dτ
〈1〉 =

∮
〈T (z)〉

dz
(2πi)2 =

1
(2πi)2 〈T〉

1
2πi

d
dτ
〈T〉 =

∮
〈T (w)T (z)〉

dz
(2πi )2 =

1
6

E2〈T〉 +
11

3600
(2iπ)2E4〈1〉 ,

or in terms of the Serre derivative D := 1
2πi

d
dτ −

k
6 E2 (defined on modular forms of

weight 2k),

D
2〈1〉 =

11
3600

E4〈1〉 . (1)

Its solutions are the 0-point functions named after Rogers-Ramanujan (in the following
referred to as RR)

〈1〉i = q−
c

24 χi , i = 1, 2 ,
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for the characters

χ1 =

∞∑
n=0

qn2+n

(q; q)n
= 1 + q2 + q3 + q4 + q5 + 2q6 + 2q7 + . . . . (vacuum)

χ2 = q−
1
5

∞∑
n=0

qn2

(q; q)n
= q−

1
5

(
1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + . . .

)
.

Here q = exp(2πiτ). The partition function is

Z = |〈1〉1|2 + |〈1〉2|2 .

The space of all fields factorises as

F = FV ⊗ FV ⊕ FW ⊗ FW ,

where FV and FW denote the space of holomorphic fields (irreps of the Virasoro al-
gebra) that correspond to states in V and W, respectively, and the bar marks complex
conjugation.

We shall use the algebraic description of the torus as a double cover P1
C defined by

y2 = x(x − 1)(x − λ) ,

where λ ∈ C is the squared Jacobi modulus. Describing the change of λ by an action
of T (x), we find the ODE

d2

dλ2 f + p
d

dλ
f + q f = 0 (2)

with rational coefficients

q =
−αβ

λ(1 − λ)
, p =

γ

λ
+
γ − (α + β + 1)

1 − λ
,

where

(α, β; γ) =

(
7
10
,

11
10

;
7
5

)
or

(
3
10
,−

1
10

;
2
5

)
.

Its equivalence to (1) can be seen from [4]

dλ
1 − λ

= πi E2dτ − 6d(log `) ,

where ` is the inverse length of the real period.

Comparison of the two approaches yields

〈1〉1 = [λ(λ − 1)]−c/24
2F1

(
7

10
,

11
10

;
7
5

; λ
)

〈1〉2 = [λ(λ − 1)]−1/5−c/24
2F1

(
3

10
,−

1
10

;
2
5

; λ
)
.

These relations seem to be new though they’re closely related to Schwarz’ work [8] as
will be indicated in the rest of this section.

2



1.2 Algebraicity of solutions to the hypergeometric DE [8]

From general theory, we know that RR are algebraic [10]. Yet, using differential equa-
tions, we hope to generalise some of the classical arguments to higher genus.

A necessary condition for the general solution of the hypergeometric differential
equation (2) to be algebraic in λ is that α, β, γ ∈ Q (Kummer), which we will assume
in the following.

Claim 1. Let f1, f2 be solutions of (2), for some choice of α, β, γ ∈ Q, such that f1/ f2
is algebraic. Then f1, f2 are themselves algebraic.

Proof. (Heine) Let s = f1/ f2. Since

s′ =:
W
f 2
2

,

it suffices to show that the Wronskian W = f ′1 f2 − f ′2 f1 is algebraic: We have

W ′ = f ′′1 f2 − f ′′2 f1 = −pW

by eq. (2), so

W ∼ exp
(
−

∫
p dλ

)
= λA(λ − 1)B ,

where by assumption A, B ∈ Q. �

Outline: Given two independent algebraic solutions f1, f2 to (2), their quotient
s = f1/ f2 solves a linear third order differential equation in λ [8]. By linearity of (2), s
is invariant under Möbius transformations. s defines a map

P1
C \ {0, 1,∞} → P

1
C , λ 7→ ( f1 : f2) . (3)

Suppose f R1 , f R2 are real on (0, 1) and their quotient sR = f R1 / f R2 maps the interval onto
a segment I(0,1) of P1

R. Via an analytic extension to H+, sR can be extended to the
intervals (−∞, 0) and (1,∞). An interval (−ε, ε) ⊂ R is mapped to two arcs forming
some angle. Together, the images of (0, 1), (1,∞) and (−∞, 0) form a triangle in P1

C.
In the elliptic case (angular sum > 180◦), the triangle is conformally equivalent to a
spherical triangle on S 2 whose edges are formed by arcs of great circles. By crossing
any of the intervals (1,∞) (0, 1), or (−∞, 0), sR can be further continued to H−. The
reflection symmetry w.r.t. the real line in the λ-plane corresponds to circle inversion
w.r.t. the respective triangle edge.

Analytic continuating along paths circling the singularities in any order may in
general produce an infinite number of triangles in P1

C. The number is finite if and only
if the quotient of solutions is algebraic.

The problem is therefore transformed into sorting out all spherical triangles whose
symmetric and congruent repetitions lead to a finite number only of triangles of differ-
ent shape and position.

A necessary condition for a spherical shape and its symmetric and congruent repetions
to form a closed Riemann surface is that the edges lie in planes which are symmetry
planes of a regular polytope. For the spherical triangles, this leads to a finite list of
triples of angles that correspond to platonic solids.
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1.3 Invariants related to the icosahedron [3]

Theorem 1. The function

e−πi/5
θ

[
3/5
1

]
(5τ)

θ

[
1/5
1

]
(5τ)

= e2πiτ/5
∑∞

n=−∞(−1)n(eπiτ)5n2+3n∑∞
n=−∞(−1)n(eπiτ)5n2+n

is algebraic.

To prove this statement, consider an icosahedron (symmetry group A5) inscribed in
the unit sphere. Subdivide each face into 6 triangles by connecting its centroid with the
surrounding vertices and edge midpoints. Projecting the vertices and edges onto the
sphere from its center results in a tessellation of the sphere by triangles.

Let Ṽ be the degree 12 invariant homogeneous poynomial in projective coordinates
s1, s2 on P1

C which has a simple root at s1s2 = 0. (We assume here that the two poles
are vertices). The Hessian F̃ of Ṽ and the functional determinant of Ṽ and F̃ have
roots corresponding to 20 face centers and to 30 mid-edge points of the ikosahedron,
respectively. The three polynomials satisfy a syzygy. By stereographic projection,
the tessellation of the sphere gives rise to a configuration of intersecting arcs on the
extended complex plane Ĉ (with coordinate z). We call a point of intersection an edge
point, a face point or a vertex depending on its origin in the icosahedron. The 11 finite
vertices and the face points define simple roots of monic polynomials V and F of degree
11 and 12 respectively. To A5 corresponds the subgroup G60 ⊆ PS L(2,C) of Möbius
transformations. F,V transform under G60 in such a way that

J(z) =
F3(z)
V5(z)

is invariant. For z̃ = z5, the associated icosahedral equation reads

(z̃4 − 228z̃3 + 494z̃2 + 228z̃ + 1)3 + z̃(z̃2 + 11z̃ − 1)5J(z) = 0 .

When J(z) equals the classical j-invariant

j = 28 (1 − λ(1 − λ))3

λ2(1 − λ)2

a solution is given by z̃ = z5 where z is the function in the claim. The icosahedral
equation for the modular j-invariant is the minimal polynomial of z5 over Q( j(τ)).

1.4 Discussion of the RR case

As mentioned abbove, we know that RR are algebraic.

Claim 2. The pair of RR 〈1〉1, 〈1〉2) defines a finite covering of P1
C.

Indeed, we have a map

RR : H+ → P1
C, τ 7→ (〈1〉1 : 〈1〉2)
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since RR are nowhere simultaneously zero. The map descends to a map

Γ \ H+ → P1
C ,

for some finite index subgroup Γ ⊂ Γ1 = S L(2,Z). The fundamental domain FΓ of Γ is
a finite union of copies of the fundamental domain F1 of Γ1. When compactified, the
latter is conformally equivalent to P1

C, and FΓ defines a finite cover of P1
C.

Claim 3. The quotient r(τ) =
〈1〉1
〈1〉2 is algebraic. r5 defines a 12-fold covering of P1

C.

Indeed, r(τ) is modular on Γ(5), the principal congruence subgroup of level 5. The
modular curve

Γ(5) \ (H+ ∪ {∞})

has g = 0 and the symmetry of an icosahedron A5. One verifies [1] that r(τ) equals the
function studied in Claim 1.

Observe that also d(log r5) = 5W
〈1〉1〈1〉2 defines a 12-fold covering of P1

C, where the
Wronskian W is known explicitely from the hypergeometric equation (2).

The RR are themselves algebraic; they feature as the most symmetric case (no. XI,
i.e. all three angles equal 2π/5) in the list of Schwarz [8].

Functions that satisfy a hypergeometric differential equation for particular values
of α, β, γ are algebraic (Schwarz), thus they define a finite covering of P1

C (Riemann).
This leads to the consideration of platonic solids. Using differential equations, these
methods should generalise to higher genus. Thus we expect that the 0-point functions
of the (2, 5) minimal model continue to be algebraic for g ≥ 2.

2 The (2, 5) MM for g ≥ 2

2.1 ODEs for the 0-point functions

Theorem 2. [5]
0-point functions for genus 2 solve a 5th order linear ODE (w.r.t. any of its ramification
points) with regular singularities. (The system is given explicitely.)

The main idea of the proof is to use algebraic coordinates, x = ℘(z|τ), y = ∂z℘(z|τ).

Alternatively: Use the rich theory of elliptic functions by letting the genus g = 2
surface degenerate (Deligne-Mumford compactification (1969) of the moduli space of
Riemann surfaces).

For i = 1, 2, let (Σi, Pi) with Pi ∈ Σi be a non-singular Riemann surface of genus gi

with puncture Pi. Let zi be a local coordinate vanishing at Pi. Excise sufficiently small
discs {|z1| < ε} and {|z2| < ε} from Σ1 and Σ2, respectively, and sew the two remaining
surfaces by the condition

z1z2 = ε2 (4)

on tubular neigbourhoods of the circles {|zi| = ε}.

This operation yields a non-singular Riemann surface of genus g1 + g2 with no
punctures. The g = 2 partition function is obtained perturbatively as a power expansion
in ε. Two possibilities [9]:
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1. The g = 2 surface decomposes into two tori (with modulus τ and τ̂, respectively)
when three ramification points run together (cutting through the neck along a
cycle that is homologous to zero). We have for a, b ∈ {1, 2} (Gilroy & Tuite, and
[6]),

〈1〉g=2
a,b (q, q̂, ε) = 〈1〉a〈1〉

∧
b −

2
c
ε2〈T 〉a〈T 〉

∧
b −

7
31c

ε6〈L4L21〉a〈L4L21〉
∧

b + O(ε8) .

(The hat refers to the modulus τ̂.) In addition there is a 5th solution:

〈1〉g=2
ϕ (q, q̂, ε) = ε−1/5 (

η η̂
)−2/5

{
1+

13
8, 208, 000

(2πi)8ε4E4Ê4 + O(ε6)
}
.

2. One obtains a single torus by letting two ramification points run together (cutting
through a genus g = 2 surface along a cycle that is not homologous to zero) [6].

The invariant is

Zg=2 =

4∑
i

|〈1〉g=2
i |

2 + κ|〈1〉g=2
5 |

2 ,

for some κ ∈ R (so that Z is modular).

2.2 Related ODEs

The physical interpretation of the 5th solution requires another field Φ with (locally)
Φ = ϕhol ⊗ ϕhol where ϕ := ϕhol is lowest weight vector (of weight −1/5) in the irrep
FW of the Virasoro algebra. Its 1-point function satisfies

D〈ϕ〉 = 0 .

Thus
〈ϕ〉 = η−2/5 = q−

1
60

∏
n≥1

(1 − qn)−2/5

We apply the methods used previoulsy in FV to ϕ ∈ FW . The continuation of the theory
from g = 1 to g = 2 requires both lowest weight vectors.

Claim 4. The 2-pt function of ϕ satisfies a 3rd order ODE with regular singularities,

25
12
〈ϕ(3)(z)ϕ(0)〉 = h℘′(z)〈ϕ(z)ϕ(0)〉 + ℘(z)〈ϕ′(z)ϕ(0)〉 .

In algebraic coordinates (and the corresponding field ϕ̌), the above ODE reads

y4/5
(
p(x)

d3

dx3 + f (x)
d2

dx2 + g(x)
d
dx

+ h(x)
)
Ψ(x) = 0 ,

where Ψ(x) = 〈ϕ̌(x)ϕ(0)〉,

p(x) = 4
(
x3 −

π4

3
E4x −

2
27
π6E6

)
,
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and

f =
6
5

p′

g =
3

100
[p′]2

p
+

9
50

p′′

h = −
33

500
[p′]3

p2 +
33

250
p′p′′

p
−

288
125

.

In particular, the ODE has simple poles at the four ramification points.

A proof of the statement can be found in [6].

References

[1] Duke, W.: Continued fractions and modular functions, Bulletin of the AMS 42.2
(2005), 137–162;

[2] Kaneko M., Zagier D.: Supersingular j-invariants, hypergeometric series, and
Atkin’s orthogonal polynomials, AMS/IP Stud. Adv. Math. 7 (1998), 97–126;

[3] Klein, F.: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen
vom fünften Grade Leipzig B.G. Teubner(1884), or Lectures on the ikosahedron
and the solution of equations of the fifth degree, London: Trübner & Co. (1988);

[4] Leitner, M.: An algebraic approach to minimal models in CFTs, preprint
arXiv:1705.08294;

[5] Leitner, M., Nahm, W.: Rational CFTs on Riemann surfaces, preprint
arXiv:1705.07627;

[6] Leitner, M.: The (2,5) minimal model on degenerating genus two surfaces,
preprint arXiv:1801.08387;

[7] Mathur, S.D., Mukhi, S., and Sen, A.: On the classification of rational conformal
field theories, Phys. Lett. B213 (1988), No. 3, 303–308;

[8] H. A. Schwarz, H.A.: Über diejenigen Fälle, in welchen die Gaussiche hyper-
geometrische Reihe eine algebraische Function ihres vierten Elements darstellt.
Journal für die reine und angewandte Mathematik 75 (1873), pp. 292–335;

[9] Sonoda, H.: Sewing Conformal Field Theories, Nucl.Phys. B311 (1988), 401–
416;

[10] Zagier, D.: Elliptic modular forms and their applications, in The 1-2-3 of Modu-
lar Forms: Lectures at a Summer School in Nordfjordeid, Norway, Universitext,
Springer-Verlag, Berlin-Heidelberg-New York (2008), pp. 1–103.

7


