The p-canonical basis for Hecke algebras and p-cells

Lars Thorge Jensen

Max Planck Institute for Mathematics

November 22, 2017
Motivation

Notation: \(k = \overline{k} \) field of characteristic \(p \geq 0 \).

Long-standing open problems in modular representation theory (for \(p > 0 \)):

What are the characters of ...

- modular irreducible modules of \(S_r \) over \(k \) for \(p \leq r \)?
- indecomposable tilting modules of \(GL_n \) over \(k \)?

The following basis contains the answer to these questions...
Idea for the p-canonical basis

Notation (for $G \supseteq B \supseteq T$ a split, sc alg. group /k with Borel and max. torus):

- the affine Weyl group $W := W_f \rtimes \mathbb{Z}\Phi$ as a Coxeter system (W, S),
- $^k\mathcal{H}$ the Hecke category (defined over k of characteristic p),
- \mathcal{H} the Hecke algebra assoc. to (W, S) over $\mathbb{Z}[v, v^{-1}]$.

Theorem (Elias-Williamson, Soergel, Kazhdan-Lusztig, ...)

There exists an isomorphism of $\mathbb{Z}[v, v^{-1}]$-algebras:

$$\text{ch} : \left[^k\mathcal{H}\right] \longrightarrow \mathcal{H}, \quad [B_s] \rightsquigarrow H_s \text{ for } s \in S$$

where $\left[^k\mathcal{H}\right]$ denotes the split Grothendieck group of $^k\mathcal{H}$.

Definition

The p-canonical basis of \mathcal{H} is given by:

$$\{pH_w \mid w \in W\} = \text{ch}(\{\text{self-dual indecomposable objects in } ^k\mathcal{H}\}/\cong).$$
Properties of the p-canonical basis

Instead of precisely stating its properties, we give the following slogans:

- The p-canonical basis is a positive characteristic analogue of the Kazhdan-Lusztig basis.

- The p-canonical basis loses many of the *combinatorial properties* of the KL basis, but preserves its *positivity properties* (as stated in the Kazhdan-Lusztig positivity conjectures).

- The KL-basis (and the KL-polynomials) are ubiquitous in representation theory (e.g. in the *KL-conjectures* relating characters of Verma and simple modules for a semisimple Lie algebra), the p-canonical basis is expected to play a similar role in *modular representation theory*.
The 3-canonical basis in terms of the Kazhdan-Lusztig basis:

\[
\begin{align*}
3H_s &= H_s \\
3H_{st} &= H_{st} \\
3H_{sts} &= H_{sts} \\
3H_{stst} &= H_{st} + H_{stst} \\
3H_{ststs} &= H_s + H_{ststs} \\
3H_{ststst} &= H_{ststs} + H_{stststs} \\
3H_{stststst} &= H_{stst} + H_{stststst}
\end{align*}
\]

Figure: The 3-canonical basis in terms of the Kazhdan-Lusztig basis.

The multiplicities of $\Delta(m)$ in $T(n)$ for $p = 3$.
p-Cells

p-Cells give a first approximation of the multiplication in the *p*-canonical basis.

Definition

Define a pre-order $p \leq_R W$ via:

$$x \leq_R^p y \iff \exists h \in \mathcal{H} : p^H x \text{ occurs with non-zero coefficient in } p^H y h$$

The equivalence classes w.r.t. \leq are called *right* *p*-cells. The left *p*-cell (resp. two-sided) *p*-cell preorder \leq_L^p (resp. \leq_{LR}^p) as well as left (resp. two-sided) *p*-cells are defined similarly.
Right p-cells in type \tilde{A}_2 and $p = 5$
p-Cells in finite type A

In finite type A_{n+1}, we can explicitly describe p-cells via the Robinson-Schensted correspondence which establishes a bijection between the symmetric group S_n and pairs of standard tableaux with n boxes mapping $w \in S_n$ to $(P(w), Q(w))$. Following Ariki’s work we can prove:

Theorem
For $x, y \in S_n$ we have:

\[
\begin{align*}
 x \overset{p}{\sim}_L y & \iff Q(x) = Q(y), \\
 x \overset{p}{\sim}_R y & \iff P(x) = P(y), \\
 x \overset{p}{\sim}_{LR} y & \iff Q(x) \text{ and } Q(y) \text{ have the same shape.}
\end{align*}
\]

In particular, Kazhdan-Lusztig cells and p-cells of S_n coincide.
References I

Susumu Ariki,
Robinson-Schensted correspondence and left cells

Henning Haahr Andersen,
Cells in affine Weyl groups and tilting modules

Lars Thorge Jensen and Geordie Williamson,
The p-Canonical Basis for Hecke Algebras

David Kazhdan and George Lusztig,
Representations of Coxeter groups and Hecke algebras.

______,
Cells in affine Weyl groups.